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We study the length distribution of a particular class of DNA sequences known as the 5� untranslated regions

exons. These exons belong to the messenger RNA of protein coding genes, but they are not coding �they are

located upstream of the coding portion of the mRNA� and are thus less constrained from an evolutionary point

of view. We show that in both mice and humans these exons show a very clean power law decay in their length

distribution and suggest a simple evolutionary model, which may explain this finding. We conjecture that this

power law behavior could indeed be a general feature of higher eukaryotes.
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I. INTRODUCTION

Recently, there has been a lot of effort devoted to trying to

find universal laws in nucleotide distributions in DNA se-

quences. A typical example was the identification more than

10 years ago of long-range correlations in the base compo-

sition of DNA �see, for instance, �1,2�, and references

therein�. With the availability of complete sequenced ge-

nomes, the correlation property of length sequences has been

studied separately for coding and noncoding segments of

complete bacterial genomes, showing a rich variety of be-

havior for different kinds of sequences �3,4�. This line of

research has been recently extended to the search for similar

universal distributions of more complex features of eukary-

otic DNA sequences, for instance, the 5� untranslated regions

�5�UTR� lengths �5�, UTR introns �6�, or strand asymmetries

in nucleotide content �7,10�. The main reason of interest for

this type of analysis is the search of general rules behind the

observed universal behaviors. The hope is to obtain, in this

way, new insight in the evolutionary mechanisms shaping

higher eukaryotes genomes and to understand the functional

role of the various portions of the genome. An intermediate

important step of this process is the construction of simpli-

fied �and possibly exactly solvable� stochastic models to de-

scribe the observed behaviors. This is the case, for instance,

of the model discussed in �8� for base pair correlations or the

model proposed in �5� for the 5�UTR length. In this paper we

describe a similar universal law for the exon length in the

5�UTR of the human and mouse genomes. Looking at the

5�UTR exons collected in the existing genome databases for

the two organisms we shall first show that they follow with a

high degree of confidence a power law distribution with a

decay exponent of about 2.5 and then suggest a simple solv-

able model to describe this behavior.

We shall also compare the impressive stability of the

power law decay of 5�UTR exons with the distributions in

the case of the 3�UTR and coding exons which turn out to be

completely different. This is most probably due to the differ-

ent evolutionary pressures that are subject to the three types

of sequences.

We think that the behavior that we observed should in-

deed be a general feature of higher eukaryotes, however its

identification requires a very careful annotation of the

5�UTR which exist, for the moment, only for a human and a

mouse �see Table I�.
This paper is organized as follows. After a short introduc-

tion to the biological aspects of the problem �Sec. II� we

discuss the exon length distribution in Sec. III. Section IV is

then devoted to the discussion of a simple stochastic model

which gives as equilibrium distribution the observed power-

like behavior. Details on the model are collected in the

Appendix.

II. BIOLOGICAL BACKGROUND

In eukaryotic organisms, DNA information stored in

genes is translated into proteins through a series of complex

processes, carefully controlled at each step by specific regu-

latory mechanisms activated by the cell. In particular, two

crucial events in this process are the production of an inter-

mediate molecule, the messenger RNA �mRNA� transcript,

and the translation of the mRNA into proteins. The cell pro-

vides fine regulatory systems to regulate the gene expression

both at transcriptional and post-transcriptional levels, using

several cis-acting signals located in the DNA sequence. A

common molecular basis for much of the control of the gene

expression �whether it occurs at the level of initiation of

transcription, mRNA processing, translation, or mRNA trans-

port� is the binding of protein factors and specific RNA ele-

ments to regulatory nucleic acid sequences.

Once mRNA is transcribed, it usually contains not only

the protein coding sequence, but also additional segments,

which are transcribed but not translated, namely a flanking
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TABLE I. Estimate of critical index � and length threshold lmin

for the power law distribution of the 5�UTR exons in a human and

a mouse.

Species �̃2 � index lmin �bps�

H. sapiens 0.52 2.56�2� 150

M. musculus 0.74 2.61�2� 140
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5� untranslated region and a final 3� untranslated region.�
11

Nucleotide patterns or motifs located in 5�UTR and 3�UTR
are known to play crucial roles in the post-transcriptional
regulation. Most of the primary transcripts of eukaryotic
genes also contain sequences �named “introns”� which are
eliminated during a maturation process named “splicing.”
The sequences which survive this splicing process are named
“exons,” they are glued together by the splicing machinery
and form the mature mRNA transcript. Both the UTR and the
coding portions of the mRNA are usually composed by the
union of several exons. It is thus possible to classify the
exons as coding, 3�UTR, and 5�UTR, depending on the por-
tion of the mRNA to which they belong.

22

A cell can splice the “primary transcript” in different ways
and thereby make different polypeptide chains from the same
gene �a process called alternative RNA splicing� and a sub-
stantial proportion of higher eukaryotic genes �at least one-
third of human genes, it is estimated� produce multiple pro-
teins in this way �isoforms�, thanks to special signals in

primary mRNA transcripts.

Some hints about the 5� and 3� role in gene expressions

can be derived from a quantitative analysis of the UTR

length.

Recent large scale databases suggest that the mean 3�UTR

length in human transcript is nearly 4 times longer than the

mean human 5�UTR length �9� and that the evolutionary

expansion of 3�UTR in higher vertebrates, not observed in

5�UTR, is associated to their peculiar regulatory role. Very

recent works revealed the existence of an extremely impor-

tant post-transcriptional regulatory mechanism, performed

by an abundant class of small noncoding RNA, known as

microRNA �miRNA�, that recognize and bind to multiple

copies of partially complementary sites in the 3�UTR of tar-

get transcripts, without involving the 5�UTR �11–13�.
Differently, 5�UTR sequences are expected to be con-

strained mainly by the splicing process and translation effi-

ciency. The exons in the 5�UTR are usually termed “noncod-

ing exons,” since they are not included in the protein coding

portion of the transcript. However, their characteristics, as

their length, secondary structure, and the presence of AUG

triplets upstream of the true translation start in mRNA,

known as upstream AUGs, have been shown to affect the

efficiency of translation and to be preserved in the evolution

of these sequences �5,14,15�. The 5�UTR exon length can

vary between few tens until hundreds of nucleotides, without

typical length scale around the favorite size, and the lower

and upper bounds of this distribution are likely to be shaped

by splicing and translation efficiency: exons that are too

short �under 50 bps� leave no room for the spliceosomes

�enzymes that perform the splicing� to operate �16�, while

exons that are too long can contain signals that affect trans-

lation efficiency. The 5�UTR “noncoding exons” are also

free from selective pressure acting on coding exons, which

strongly preserves the amino acid information written in trip-

lets of nucleotides in the protein coding exons.

For these reasons, in our analysis we decided to construct

strictly disjoint subsets of exons, according to their position

in the transcript �5�UTR exons, protein coding exons, or

3�UTR exons�.33
Moreover, we created nonredudant

genome-wide data sets of exons, considering only one iso-

form for each gene, the most extended one.

Curated information about DNA sequences and annota-

tion of eukaryotic organisms are provided by the Ensembl

project, based on a software system which produces and

maintains automatic annotation on selected eukaryotic ge-

nomes �17�.

III. ANALYSIS OF EXON DISTRIBUTION

We downloaded from the Ensembl database �release 40

�17�� all the available transcripts annotated as protein coding

for different organisms, and we created a filtered data set of

nonredundant exons, considering the most extended tran-

script for each gene. We eliminated all the exons with mixed

annotations and grouped the remaining ones in three classes:

5�UTR, protein coding exons, and 3�UTR.

Plotting the length distribution of exons, separately for

5�UTR, coding exons and 3�UTR, we clearly observe differ-

ent behaviors, which we think should reflect different evolu-

tionary constraints acting on these classes of DNA sequences

�Figs. 1�a�–1�c��. In particular, the 5�UTR exon size distri-

bution shows a remarkably smooth power decay for large

enough values of the exon length. To assess this point and to

evaluate the threshold above which the power law behavior

starts, we fitted the observed distributions with a power law,

N�l� = l−�, �1�

where N�l� is the number of exons of length l.

In order to evaluate the goodness of the fits that we per-

formed, we divided the set of all exons into 18 equivalent

bins and then assumed the variance of these bins as an indi-

cation of the statistical uncertainty of our estimates �results

are independent from the binning choice�. This allowed us to

perform a meaningful �2 test on the fits. This test is com-

monly used when an assumed distribution is evaluated

against the observed data �18�. The quantity �2 may be

thought of as a measure of the discrepancy between the ob-

served values and the respective expected values. It

is convenient to compute the reduced �̃2 �i.e., the ratio

�2 / �Np−N f�, where Np is the number of points included in

the fit and N f is the number of parameters of the fit�. With

this normalization one can immediately see if the fitting

function correctly describes the data �which requires �̃2�1�.
When instead �̃2�1 the absolute value of �̃2 gives a rough

1
5� and 3� refer to the position �5� and 3�, respectively� of the

carbon atoms of the mRNA backbone at the two extrema of the

mRNA and are conventionally used to denote the “upstream” �5��
and “downstream” �3�� sides of the mRNA chain.

2
Obviously in several cases one can have exons which are par-

tially included in one of the two UTR and partially in the coding

portion of the mRNA. These mixed exons were excluded from our

analysis.

3
Obviously in several cases one can have exons which are par-

tially included in one of the two UTR and partially in the coding

portion of the mRNA. These mixed exons were excluded from our

analysis.
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estimate of how inaccurate the tested distribution is to de-

scribe the data.

We fitted the data for the 5�UTR exons setting a minimum

threshold on the exon length and then gradually increasing

this threshold until a reduced �̃2 value smaller than 1 was

obtained. The rationale behind this choice is that �as we shall

see below� the power law decay is likely to be an asymptotic

behavior which is violated for short exon lengths. Starting

from lmin�150, both in human and in mouse, good �̃2 values

were obtained and we could estimate the critical index to be

��2.5. Detailed results of the fits are reported in Table I.

The �̃2 values that we found support in a quantitative way

the power law behavior of the data, which was already evi-

dent looking at Fig. 1�a�.
On the contrary, the coding exons and the 3�UTR exon

length histograms display �on a ln-ln scale� nonlinear distri-

butions with peaks of population around the favorite sizes. In

the range, where we are able to fit the power law decay of

5�UTR exon length, �̃2 values for linear fits in the other

classes of exons are completely unacceptable �Table II�.
The same plots for other organisms show an exactly

analogous trend, but they are affected by poor annotation of

5�UTR and 3�UTR, which are very difficult to identify en-

tirely �see Table III�. In Table III we reported the total num-

ber of annotated protein coding genes, annotated 5�UTR, and

annotated 3�UTR for four different mammalian genomes, ac-

cording to Ensembl database release 40. These data under-

line the current lack in the annotation of 5�UTR and 3�UTR

for other mammals, besides H. sapiens and M. musculus. For

this reason, the same analysis performed for H. sapiens and

M. musculus exon length distribution is prevented for other

organisms.

In order to understand this peculiar behavior of the

5�UTR exons we propose and discuss in the following sec-

tion a simple model of exon evolution. Our goal is to under-

stand if it is possible to associate the different behavior that

we observe to the greater freedom from selective pressure of

TABLE II. �̃2 values for the linear fit of the protein coding

exons and the 3�UTR exons length distribution, in the same range

where we are able to fit the power law decay of the 5�UTR exons

length.

Species Protein coding exons 3�UTR exons lmin �bps�

H. sapiens 84.37 13.46 150

M. musculus 153.31 5.91 140

TABLE III. Annotated protein coding genes, 5�UTR and

3�UTR, in Ensembl database release 40.

Species

Annotated protein

coding genes

Annotated

5�UTR

Annotated

3�UTR

H. sapiens 23735 18333 18592

M. musculus 24438 15945 16429

C. familiaris 18214 5925 6298

G. gallus 18632 7463 7670
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FIG. 1. �Color online� Exon length distribution in �a� 5�UTR,

�b� protein coding exons, and �c� 3�UTR in human and mouse ge-

nome reported in ln-ln histograms �with bin size growing logarith-

mically�. Plot errors are derived by dividing the complete data set

into subsets of comparable dimension, avoiding biological biases,

and averaging the length distribution of each subset.
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the 5�UTR exons with respect to the coding and 3�UTR

exons.

IV. MODEL

Evolutionary models describe evolution of the DNA se-

quence as a series of stochastic mutations. There are three

major classes of mutations: changes in the nucleotide type,

insertions or deletions of one or more nucleotides. The vari-

ous existing models differ with each other for the different

assumptions they make on the parameter which control these

changes �for a review see, for instance, �19–21��. From a

biological point of view the two main assumptions of any

evolutionary model are as follows:

�i� Evolution can be described as a Markov process, i.e.,

the modifications of a DNA sequence only depend on its

current state and not on its previous history.

�ii� Evolution is “shaped” by functional constraints: DNA

sequences with a negligible functional role evolve at a higher

rate with respect to functionally important regions. This im-

plies that regions with different functional roles must be de-

scribed by different choices of the various mutational rates.

The free evolution of sequences without functional con-

straints is usually called “neutral evolution.”

Let us provide a few examples:

�i� Protein coding exons are usually strongly constrained

since the proteins they code have an important role in the life

of the cell, however due to the redundancy of the genetic

code, the third basis of each codon in the coding exons is

free to mutate. On the contrary insertions and deletions are

suppressed because they can dramatically affect the shape

and function of the protein.

�ii� Sequences devoted to transcriptional regulations

�which very often lie outside exons� are usually so important

for the life of the cell that they are kept almost unchanged

over millions of years of evolution.

�iii� Regulatory sequences on the messenger RNA

�mRNA� whose function often depends on the tridimensional

shape of the RNA molecule and not on its exact sequence are

in an intermediate situation between the above cases and the

neutral evolution: they can tolerate mutations which do not

modify their tridimensional shape �typically these are pairs

of pointlike changes of bases and are usually called “com-

pensatory mutations”�. Most of the mRNA regulatory signals

of this type are located in the 3�UTR exons.

�iv� Sometimes the 5�UTR contain regulatory sequences

of the transcriptional type �which, as mentioned above, are

strongly conserved under evolution�, but their relative posi-

tion does not seem to have a crucial functional role. They can

thus tolerate insertion and deletions as far as they do not

affect the regulatory regions.

Since in our model we are only interested in the exon

length distribution we may neglect the nucleotide changes

and concentrate only on insertions and deletions. From this

point of view, according to the above discussion, both coding

and 3�UTR should behave as highly constrained sequences,

while the 5�UTR should be more similar to the neutrally

evolving ones. With this picture in mind we decided to

model the neutral evolution of a DNA sequence under the

effect of insertions and deletions only, to see which general

behavior one should expect for the length distribution and

then compare it with the data discussed in the preceding

section.

To this end, let us define n j as the number of 5�UTR

exons of length j in the genome and let N be the total number

of such exons. Let x j �n j /N be the fraction of exons of

length j.

If we assume that the exon length distribution evolves as

a consequence of insertions and/or deletions of single nucle-

otides we find the following evolution equation for the x j�t�
�where t labels the time step of this process�:

x j�t + 1� = x j�t� + �j − 1��x j−1�t� − j�x j�t�

+ �j + 1��x j+1�t� − j�x j�t� , �2�

where � and � denote the insertion and deletion probabili-

ties, respectively, and we have taken into account the fact

that for an exon of length j there are exactly j sites in which

the new nucleotide can be inserted �i.e., that the insertion and

deletion probabilities are linear functions of j, since the im-

plied assumption is that all sites in our sequences are inde-

pendent of one another�.
At equilibrium the exon length distribution must satisfy

the following equation �we omit the t dependence which is

now irrelevant�:

�j − 1��x j−1 − j�x j + �j + 1��x j+1 − j�x j = 0. �3�

It is easy to see that the only solution compatible with this

equation is a power law of this type: x j =cj� with c a suitable

normalization constant. Inserting this proposal in Eq. �3� one

immediately finds �=−1.

This result is very robust, it does not depend on the values

of � and � and, what is more important, it holds also if

instead of assuming the insertion �or deletion� of a single

nucleotide, we assume the insertion or deletion of oligos

�i.e., small sequences of nucleotides� of length k, with any

choice of the probability distribution for the oligos length as

far as k is much smaller than the typical exon length. More-

over, one can also show that the power law decay still holds

if we add to the process a fixed background probability of the

creation of new exons of random length as far as this prob-

ability is smaller than x jmax
��−��, where jmax is the largest

exonic length for which the power law is still observed. This

is rather important since it is known that retrotransposed re-

peats �in particular of the Alu family� may in some cases

�with very low probability� become new active exons and

represent one of the major sources of evolutionary changes

in the transcriptome.

On the contrary, this power law disappears if we assume

that there is a finite probability that, as a consequence of the

new insertion or deletion, the exon is eliminated. In this case

the power law changes into a exponential distribution. This

may explain why the power law decay is not observed in the

coding and the 3�UTR portion of the genes which are under

a much stronger selective pressure �the 3�UTR contain a lot

of post-transcriptional regulatory signals�.
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Since the critical index that we observe in the actual exon

distribution in a human and a mouse is much larger than 1, it

is interesting to see which type of evolutionary mechanism

could lead to a ��1 behavior while keeping a power law

decay. It is easy to see that this can be achieved assuming

that the insertion �or deletion� probability is not linear with

the length of the exon but behaves, say, as pinsertion=�j� with

��1. Then, following the same derivation discussed above,

we find at equilibrium an exon length distribution x j =cj−�.

A possible explanation for such nonlinear insertion rate

comes from the observation that the transcribed portions of

the genome �like the 5�UTR exons in which we are inter-

ested�, besides the normal mutation processes typical of the

intergenic regions, are subject to specific mutation events

due to the transcriptional machinery itself �see, for instance,

�7��.
It is clear from the above discussion that in this case the

critical index of the exon distribution, strictly speaking, is

not any more an universal quantity, but depends on the par-

ticular biological process leading to the pinsertion=�j� prob-

ability discussed above. However it is conceivable that simi-

lar mechanisms should be at work in related species. This, in

our opinion, explains why the critical indices associated to

the mouse and human distributions are so similar and lead us

to conjecture that similar values should be found also in

other mammalians as more and more 5�UTR sequences will

be annotated.

Let us conclude by noticing that this whole derivation is

based on the assumption that the system had reached its

equilibrium distribution. This is by no means an obvious

assumption and it is well possible that the fact that we ob-

serve a critical index larger than 1 simply denotes that the

system is still slowly approaching the equilibrium distribu-

tion. There are three ways to address this issue. First, one

should extend the analysis to other organisms �however, as

we discussed above, this will require a better annotation of

the UTR in these organisms�. Second, one could reconstruct,

by suitable aligning procedures, the UTR exons of the com-

mon ancestor between mouse and man and see if they also

follow a power law distribution and, if this is the case, which

is the critical index. Third, one could simulate the model

discussed above and look to the behavior of the exon distri-

bution as the equilibrium is approached. We plan to address

these issues in a forthcoming presentation.
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APPENDIX: DERIVATION OF THE POWER LAW

Inserting the distribution x j =cj� in Eq. �3� we find

��j − 1��+1 − ��j��+1 + ��j + 1��+1 − ��j��+1 = 0, �A1�

which can be expanded in the large j limit as

j�+1���1 −
� + 1

j
	 − � + ��1 −

� − 1

j
� − �
 = 0,

�A2�

which implies

�� − ��
� + 1

j
= 0, �A3�

which �assuming ���� implies, as anticipated, �=−1.

A few observations are in order:

�a� It is clear from the derivation that the result is inde-

pendent from the specific values of � and � as far as they do

not coincide. This independence from the details of the

model holds also if we assume at each time step a finite,

constant �i.e., not proportional to j� probability ������ of

random insertion �deletion� of a nucleotide. In this case the

evolution equation becomes

x j�t + 1� = x j�t� + �j − 1��x j−1�t� − j�x j�t� + �j + 1��x j+1�t�

− j�x j�t� + ���x j−1�t� − x j�t�� + ���x j+1�t� − x j�t�� ,

�A4�

which still admits the same asymptotic distribution x j =cj−1.

�b� If we include a fixed exonization probability pe to

create a new exon from, say, duplicated or retrotransposed

sequences the evolution equation changes trivially by simply

adding such a constant contribution. The solution, in this

case, becomes x j =cj−1+d, where the constant d is related to

pe as follows: d= pe / ��−��, and it is negligible as far as it is

smaller than x jmax
.

�c� Remarkably enough, the above results are still valid

even if the inserted �or deleted� sequence is composed by

more than one nucleotide. Let us study as an example the

situation in which we allow the insertion of oligos of length

k with 0	k	L and L smaller than the typical exon length.

Let us assume for simplicity to neglect deletions and let us

choose the same insertion probability � for all values of k.

The evolution equation becomes

x j�t + 1� = x j�t� + ���
k=1

L

x j−k�t��j − k� − Ljx j�t�	, �A5�

which implies

jx j =
1

L
�
k=1

L

�j − k�x j−k. �A6�

In the large j limit this equation admits again a power law

solution x j =cj�. Inserting this solution in Eq. �A5� we find

j�+1�� 1

L
�
k=1

L

�1 −
k�� + 1�

j
	 − 1
 = 0, �A7�

which is satisfied, as above, if we set �=−1.

�d� On the contrary, if we assume a finite probability

�1−
� of elimination of an exon as a consequnce of the

insertion �or deletion� event �as one would expect if the se-

quence is under strong selective pressure� we find the follow-

ing evolution equation:
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x j�t + 1� = x j�t� + ��j − 1��x j−1�t�
 − j�x j�t�� , �A8�

where � is, as above, the insertion probability and we are

assuming for simplicity single base insertions. This equation

no longer admits a power law solution at equilibrium but

requires an exponential distribution, x j =e−�jj� with �=−1

and �=ln�
�.
�e� It is instructive to reobtain the result discussed in �a�

above by looking at the equilibrium equation as a recursive

equation in j,

x j+1 =
j

j + 1
�1 +

�

�
	x j −

�

�
x j−1 �j � jmin� �A9�

and

x j+1 =
j

j + 1
�1 +

�

�
	x j �j = jmin� , �A10�

and construct recursively the solution for any j starting from

x jmin
=c / jmin. The recursion can be solved exactly and gives

x j = x jmin

jmin

j

1 − ��

�� j−jmin+1

1 −
�

�

, �A11�

which �assuming �	��44
leads asymptotically to the solu-

tion x j =c / j with c=x jmin

jmin

1−�/�
. This result allows us to under-

stand exactly the “finite size” corrections, with respect to this

asymptotic solution, which turn out to be proportional to

� �

�
� j−jmin+1

and vanish if only deletions �i.e., �=0� or only

insertions �i.e., �=0� are present. In these cases the

asymptotic solution is actually the exact equilibrium solution

of the stochastic model.
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If �	�, one should study the inverse recursion relation starting

from x jmax
.
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