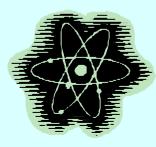
INVITO ALLA FISICA

Che cos'e` la fisica: da Aristotele a Galileo, da Newton a Einstein, a oggi la fisica e` lo studio dei fenomeni naturali (per es. il moto dei pianeti, il buio della notte, l'arcobaleno, il colore del cielo, la struttura della materia, isolanti e conduttori elettrici, le interazioni fondamentali, ecc...).


GRANDEZZE FISICHE

QUANTITA MISURABILI

Conseguenza: i dati sperimentali sono alla base della Fisica.

Il metodo di analisi dei dati richiede l'uso della **Statistica** (per es. valor medio, varianza, distribuzioni di probabilita`, errori statistici e sistematici) e della **teoria degli errori**.

La definizione di grandezze misurabili, la raccolta dei dati tramite esperimenti e l'analisi statistica dei dati sono alla base del **metodo** "scientifico" utilizzato in tutti i campi della scienza.

CENNI STORICI

Si deve ai popoli dell'antichita` (babilonesi, caldei, egizi, sumeri, fenici, ecc..) la nascita della nostra civilta`.

Il mondo ellenistico fece una sintesi delle loro conoscenze e diede origine alla scienza classica.

La **Fisica di Aristotele**: gli elementi fondamentali della natura (terra, acqua, aria, fuoco) e le forze che agiscono tra loro.

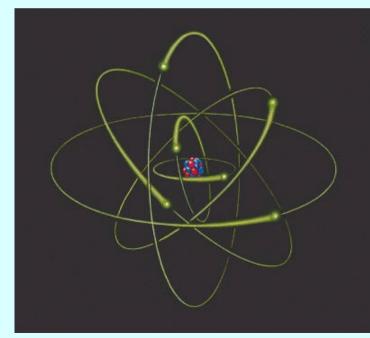
La **teoria atomistica**: Democrito, Pitagora, Lucrezio.

Astronomia e cosmologia degli antichi greci: Tolomeo e Ipparco.

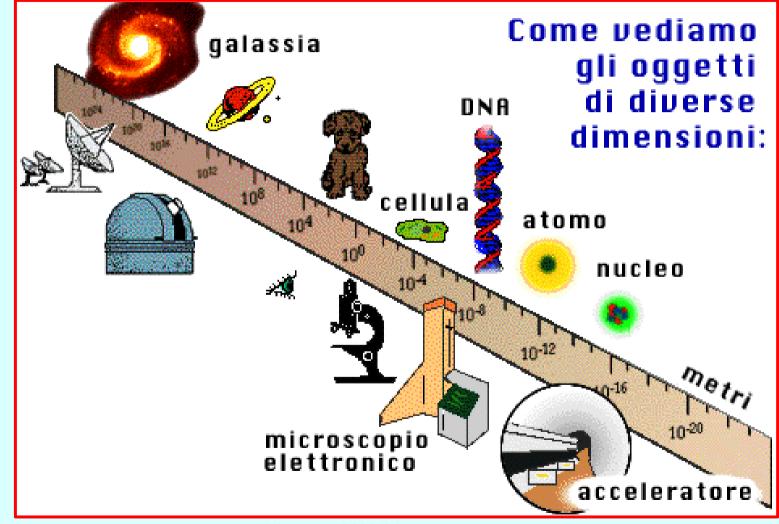
Le nuove idee: Bruno e Campanella.

Newton, Cartesio.

La **seconda rivoluzione scientifica** e la nascita della scienza moderna. Teorie, esperimenti e osservazioni.


Einstein e la relativita`. Meccanica quantistica. L'atomo di **Bohr** e la nascita della **fisica atomica**. **Fisica nucleare**, decadimenti radioattivi, fissione e

fusione.


•Particelle elementari: quark e leptoni.

•Astrofisica e cosmologia moderne: il **Big Bang**.

•Radiazione cosmica e **Fisica astroparticellare**.

La fisica ciassica studia fenomeni su **scala umana**, la fisica moderna studia anche **l'infinitamente piccolo** e **l'infinitamente grande**.

Fisica - a.a.2003/04

Parte prima

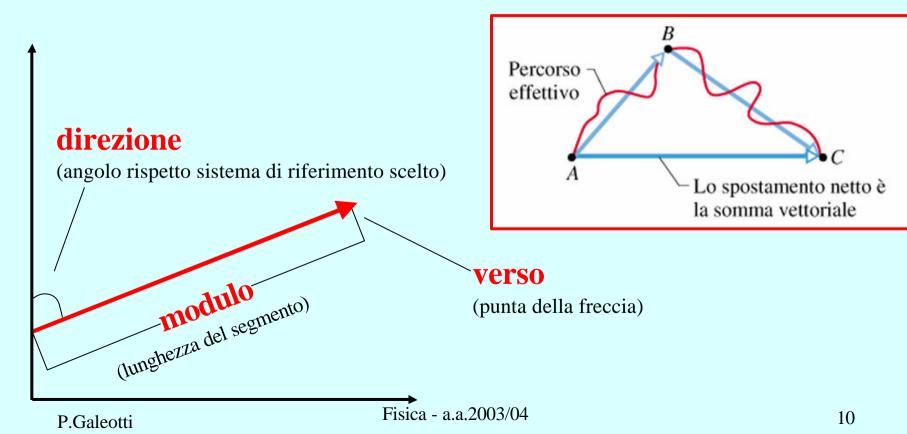
MECCANICA

Grandezze fisiche e unità di misura

Esistono grandezze dimensionali e adimensionali (tra queste ultime, per es. il **radiante**, ossia il rapporto tra l'arco e il raggio definito da un angolo), e inoltre grandezze **fondamentali** e grandezze **derivate** (per es.: **spostamento, tempo** e **velocità**).

Si devono definire le **unita`di misura fondamentali** e quelle **derivate**.

Per le unita` di misura delle grandezze si e` adottato il **Sistema Internazionale S.I.** o **MKS** (Metro-Kilogrammo-Secondo) ma a volte in fisica si usa ancora il sistema **cgs**.


Potenze di 10: da meno di 10⁻¹² (**pico**) a oltre 10¹² (**tera**) ma anche molto piu` piccole (per es. 10⁻⁴³ s, il tempo di Plank) o molto piu` grandi (per es. 10²⁶ m, il raggio dell'universo oppure 10³⁰ kg, la massa del Sole).

Le unita` fondamentali del **S.I.** sono riportate in tabella.

Grandezza	Nome	Simbolo
lunghezza	metro	m
massa	kilogrammo	kg
tempo	secondo	S
corrente	ampere	A
temperatura	kelvin	K
quantita` di sostanza	mole	mol
intensita` luminosa	candela	cd

Grandezze scalari e vettoriali

Le grandezze fisiche possono essere **scalari o vettoriali** (per es. la velocita` e` definita da un modulo, una direzione e un verso).

Il **prodotto scalare** (o interno) tra due vettori e` una grandezza scalare a·b = ab cosq (il prodotto scalare e` nullo per $\theta = \pi/2$). Il **prodotto vettoriale** (o esterno) tra due vettori e` una grandezza vettoriale $\mathbf{c} = \mathbf{a}$? b di modulo $c = ab \sin\theta$, direzione perpendicolare al piano contenente i due vettori a e b, verso tale da essere antioraria la sovrapposizione del primo vettore sul secondo (il prodotto vettoriale e` nullo per $\theta = 0$). A differenza del prodotto scalare, per il prodotto vettoriale **non vale la proprieta**` commutativa, ossia a? b? b? a.

IL MOVIMENTO

Cinematica

1 - <u>velocita` e accelerazione</u> come grandezze scalari

• velocita` media $v_m = \Delta s/\Delta t = s/t$

velocita` istantanea

$$v = \frac{ds}{dt}$$

• accelerazione media $a_m = \Delta v/\Delta t$

accelerazione istantanea

$$a = \frac{dv}{dt} = \frac{d^2s}{dt^2}$$

Unità di misura

Nel S.I. le unita` di misura della velocita`e dell'accelerazione sono misurate in

m/s e m/s² rispettivamente.

Si noti che 1 m/s equivale a 3.6 km/h.

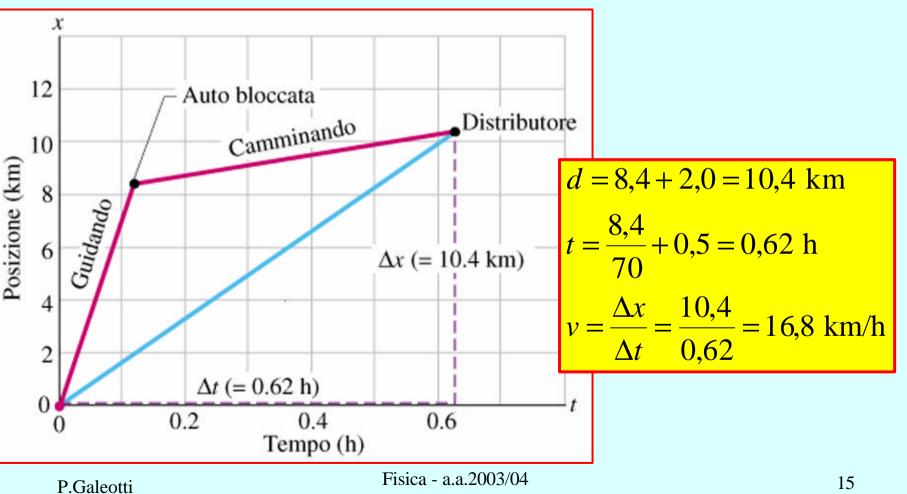
Ossia 1 km/h = 1000 m/ 3600 s = (1/3.6) m/s

Tra i moti lungo una sola direzione sono particolarmente importanti i seguenti:

Moto uniforme:

avviene a velocita`

Ne seguono le espressioni per l'accelerazione:


$$\mathbf{a} = \mathbf{0}$$

e per lo spazio:

$$s = s_0 + vt$$

Per esempio...

Dopo aver percorso 8,4 km a 70 km/ora un automobilista rimane senza benzina e prosegue per 2,0 km fino al distributore, dove arriva dopo 30 minuti. Qual e` stata la distanza complessiva percorsa? Quanto tempo e` stato impiegato in tutto? Qual e` stata la velocita` vettoriale media?

Moto uniformemente vario:

avviene ad accelerazione

a = costante (positiva o negativa),

da cui si ottengono:

$$v = v_0 + at$$

$$s = s_0 + v_0 t + \frac{1}{2} a t^2$$

e espressioni equivalenti, per esempio, da $t = (v - v_0)/a$ si ottiene:

$$s = s_0 + v_0 \frac{v - v_0}{a} + \frac{1}{2} a \frac{(v - v_0)^2}{a^2} = s_0 + \frac{v^2 - v_0^2}{2a}$$

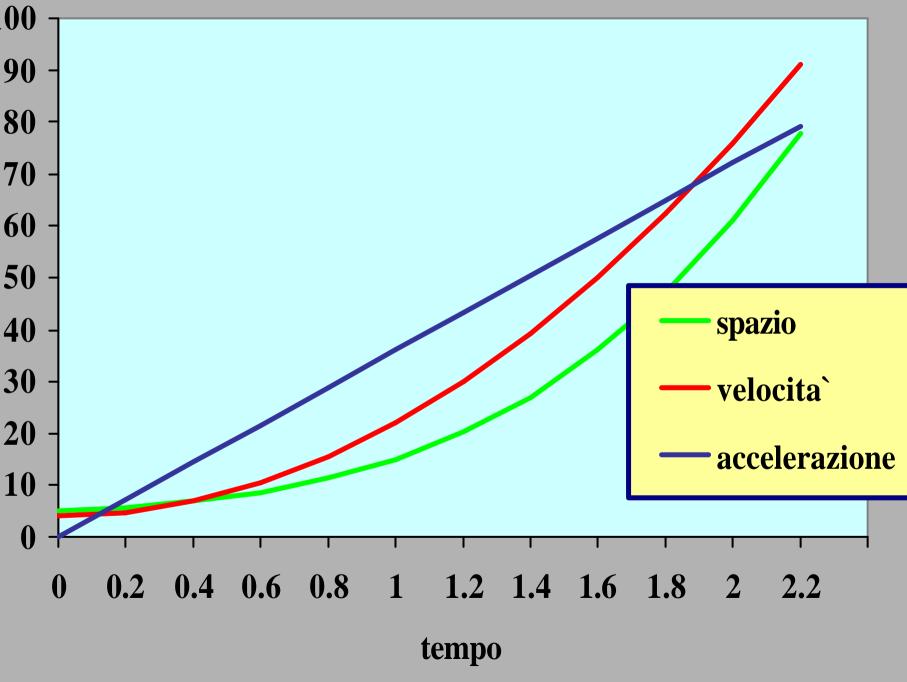
Se **a** > **0** (oppure a < 0) il moto si dice **uniformemente accelerato** (oppure uniformemente ritardato).

Altre espressioni per descrivere il moto uniformemente accelerato sono

$$v = \sqrt{v_0^2 + 2as}, \quad a = \frac{v^2 - v_0^2}{2s}, \quad s = \frac{v^2 - v_0^2}{2a}$$

avendo assunto $s_0 = 0$ per semplicita`.

Esempio di moto in una direzione:

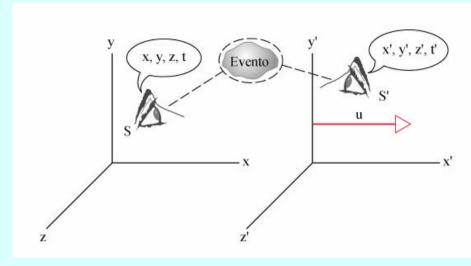

Sia lo spazio percorso $\mathbf{s} = \mathbf{6t^3} + \mathbf{4t} + \mathbf{5}$ in direzione ettilinea. La velocita` $\mathbf{v} = \mathbf{18t^2} + \mathbf{4}$ e l'accelerazione $\mathbf{s} = \mathbf{36t}$ si ricavano per derivazione. Si ottenegono così i valori riportati in tabella e figura seguenti.

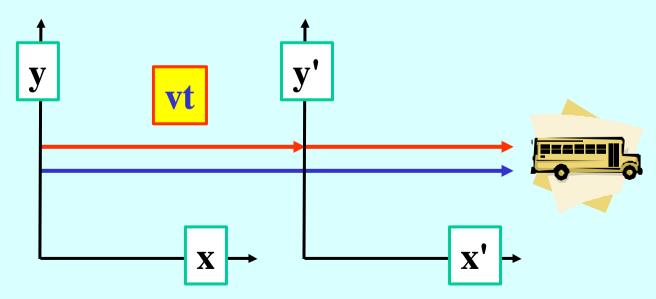
	0.0	0.2	0.4	0.6	0.8	1.0	1.2	1.4	1.6	1.8	2.0	2.2
	0.0	7.2	14.4	21.6	28.8	36.0	43.2	50.4	57.6	64.8	72.0	79.
7	4.0	4.8	6.94	10.5	15.6	22.0	30.0	39.3	50.1	62.4	76.0	91.
7	5.0	5.8	6.98	8.70	11.3	15.0	20.2	27.1	36.0	47.0	61.0	77.

Fisica - a.a.2003/04

P.Galeotti

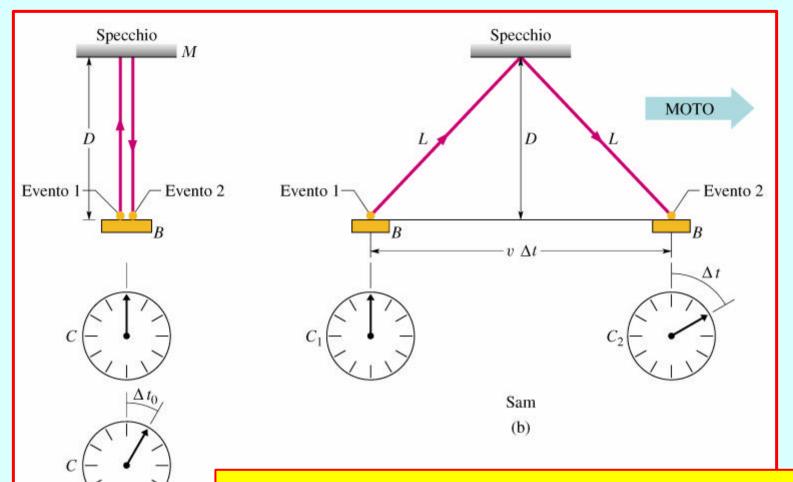
18




LA RELATIVITA

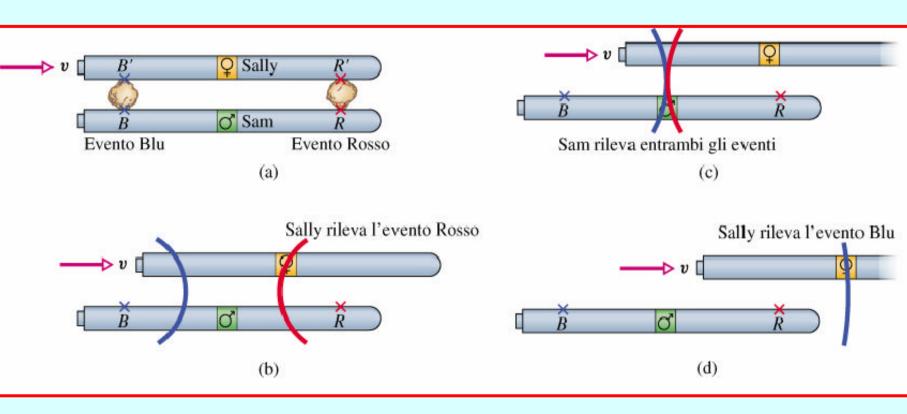
La relativita` newtoniana e le trasformazioni galileiane:

$$x'=x-vt$$
, $t'=t$


comportano: $\mathbf{u} = \mathbf{u}' + \mathbf{v}$

P.Galeotti

Fisica - a.a.2003/04


L'evento a e` misurato, per esempio, da un passeggero a bordo di un vagone ferroviario; l'evento b da un passeggero fermo in stazione.

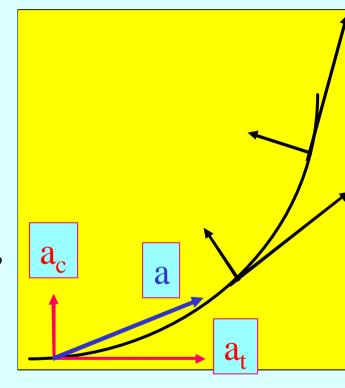
21

Sally

(a)

La simultaneita e relativa

La velocita` della luce e` costante (c = 300.000 km/s) e non dipende dalla direzione del moto della Terra.

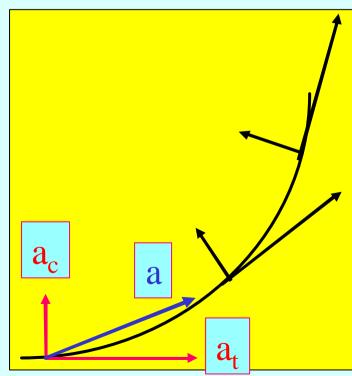

P.Galeotti Fisica - a.a.2003/04 22

2 – velocita` e accelerazione come grandezze vettoriali

La velocita` istantanea v cambia in modulo, direzione e verso per effetto di una accelerazione vettoriale istantanea

$$\mathbf{a} = d\mathbf{v}/dt = \mathbf{a}_t + \mathbf{a}_c$$

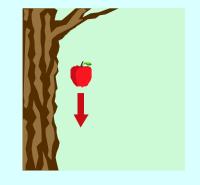
dove \mathbf{a}_t e` la componente tangenziale, diretta verso la direzione del moto, e \mathbf{a}_c e` la componente centripeta, diretta verso il centro di curvatura del moto.


P.Galeotti Fisica - a.a.2003/04

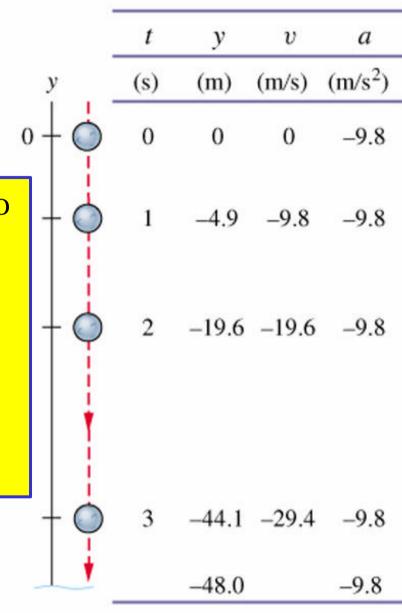
La variazione di velocita` puo` avvenire:

- solo in modulo (moto rettilineo non uniforme, $\mathbf{a}_c = 0$),
- solo in direzione e verso (moto circolare, $\mathbf{a}_t = 0$),
- oppure lungo entrambe le componenti.

L'accelerazione totale a, in modulo, non e` data da $a = a_t + a_c$,


ma da $\mathbf{a} = \mathbf{v} \ (\mathbf{a}_{t}^{2} + \mathbf{a}_{c}^{2}).$

P.Galeotti


Fisica - a.a.2003/04

Corpi in caduta libera

Sulla Terra, tutti i corpi sono soggetti alla stessa accelerazione di gravita g, definita da un vettore diretto verso il centro della Terra e di modulo costante, circa 9,8 m/s² sulla superficie terrestre.

Per effetto della gravita`, e trascurando la resistenza dell'aria, ogni corpo non vincolato e` soggetto allo stesso tipo di moto (uniformemente accelerato) indipendentemente dal suo stato di moto iniziale.

Caduta di un corpo nel campo gravitazionale terrestre.

L'accelerazione ha i valori seguenti:

- modulo: $a = g = 9.8 \text{ m/s}^2$,
- direzione: verticale,
- verso: verso il basso.

P.Galeotti Fisica - a.a.2003/04 26

Esempio di moto in due direzioni

Moto di un proiettile: caso particolare del moto di un corpo soggetto anche all'accelerazione di gravita`. Sia θ_0 l'angolo con cui viene lanciato il corpo (sasso, proiettile, missile, ecc..) rispetto alla direzione orizzontale. Sia v_0 il modulo della sua velocita` iniziale, e siano $a_y = -g$ e $a_x = 0$ le componenti delle accelerazioni lungo gli assi. Si

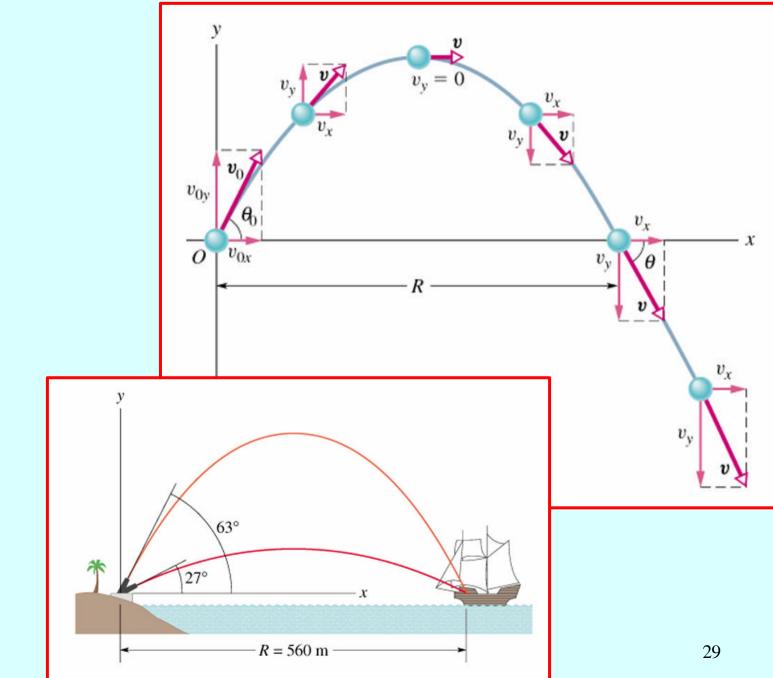
$$v_{x} = v_{0x} \cos \mathbf{J}_{0}, \quad v_{y} = v_{0y} \sin \mathbf{J}_{0} - gt$$

$$x = v_{0x}t = v_{0x} \cos \mathbf{J}_{0} \cdot t$$

$$y = v_{0y}t - \frac{1}{2}gt^{2} = v_{0y} \sin \mathbf{J}_{0} \cdot t - \frac{1}{2}gt^{2}$$

Fisica - a.a.2003/04 27

dove θ_0 e` l'angolo iniziale del proiettile rispetto all'asse x. Eliminando il tempo tra le ultime due equazioni si ottiene una parabola: $y = \operatorname{tg} \boldsymbol{J_0} \cdot x - \frac{g}{2v_0^2 \cos^2 \boldsymbol{J_0}} x^2$


Da essa si possono ricavare la gittata R (massima per $\theta_0 = 45^0$) e l'altezza massima h, che viene raggiunta dal proiettile.

$$R = \frac{v_0^2}{g} \sin 2J_0, \ h = \frac{v_0^2}{2g} \sin^2 J_0$$

Si ha y = h per:

$$x = \frac{R}{2}, v_y = 0, t = \frac{v_0}{g} \sin J_0$$

P.Galeotti Fisica - a.a.2003/04 28

Moto circolare uniforme

E` un'altra importante applicazione del moto a due dimensioni. Un moto curvilineo lungo una circonferenza si dice circolare; se la velocita` v varia solo in direzione e verso (ma **non in modulo**) il moto viene detto circolare uniforme. In questo caso l'accelerazione deve essere solo radiale o centripeta, e l'accelerazione tangenziale

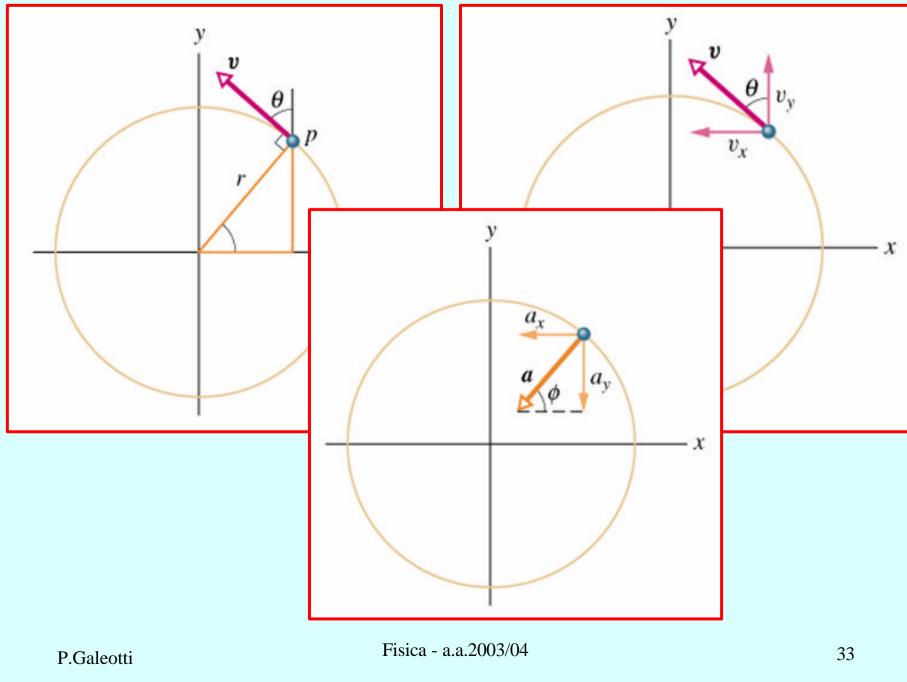
deve essere nulla:

$$a = a_c = \frac{\left|v^2\right|}{R}, \quad a_t = \frac{dv}{dt} = 0$$

Si noti che la definizione di accelerazione centripeta e` vera anche per curve non circolari (per le quali R e`variabile).

Si definisce **velocita**` **angolare** la quantita` $\mathbf{w} = \mathbf{dq}/\mathbf{dt}$ [ω viene misurata in rad/s].

Poiche` **ds** = **Rd**q, e la velocita` sull'arco di circonferenza e` data da **v** = **ds**/**dt**, il legame tra velocita` angolare e velocita` tangenziale e`:

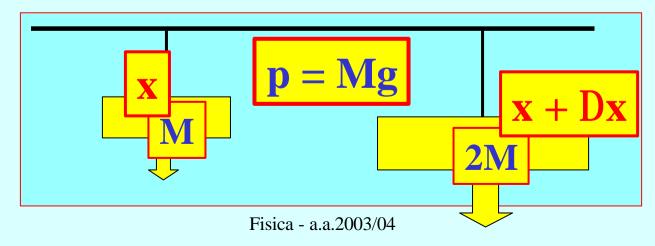

(da cui
$$\mathbf{a_c} = \mathbf{w^2 R}$$
).

ita` $v = R \frac{dJ}{dt} = wR$

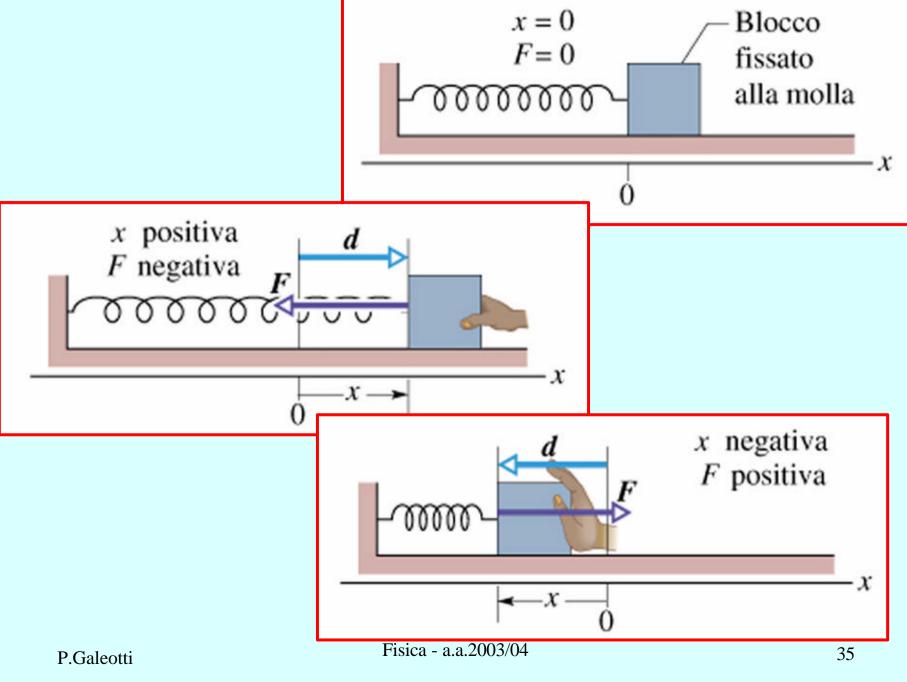
Poiche` R e`costante in una circonferenza, il moto circolare e` uniforme se ω e` costante.

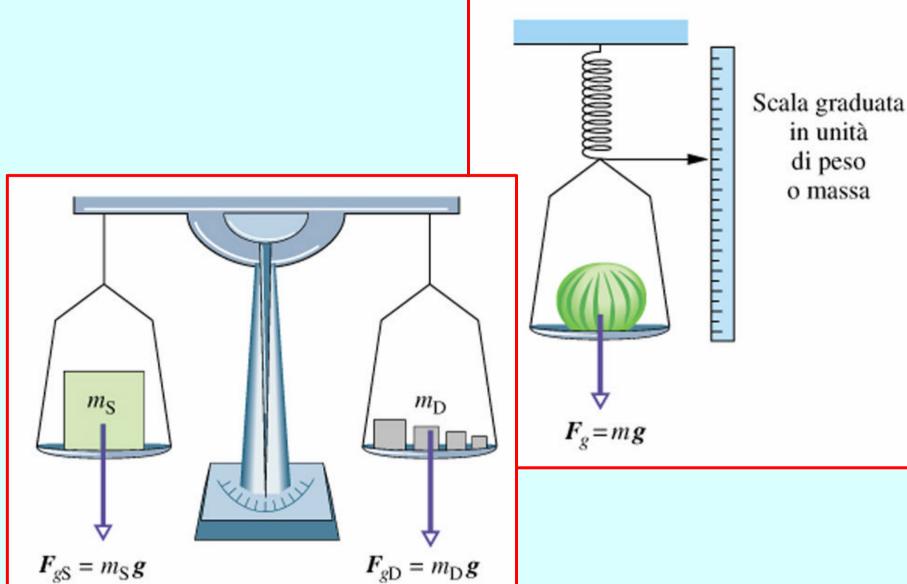
Nel moto circolare uniforme si definiscono il periodo T [s], e la frequenza (talvolta indicata con ν , talvolta con f) $\nu = 1/T$ [Hz].

Le grandezze fisiche variabili possono essere periodiche (per es. le funzioni sinusoidali) o aperiodiche. Una funzione puo` comunque essere sviluppata in una serie di funzioni periodiche, sinusoidali, mediante lo sviluppo in serie di Fourier.



LE FORZE


Dinamica


Le forze sono VETTORI

che modificano lo stato di quiete o di moto rettilineo uniforme. Quindi **producono un'accelerazione** (effetto dinamico) anche se non sono a contatto del corpo su cui agiscono; **oppure una deformazione** (effetto statico). Esempi: forza gravitazionale (o forza peso), legge di Hooke, forze elettromagnetiche, ecc...

P.Galeotti

Leggi della dinamica

Prima legge (principio di inerzia)

Ogni corpo mantiene il suo stato di quiete o di moto rettilineo uniforme fino a che non interviene una forza a variarlo.

Esistono sistemi di riferimento inerziali (per es. il sistema del laboratorio, un treno a velocita` costante, il sistema eliocentrico, ecc...) e sistemi non inerziali, ossia accelerati.

Leggi della dinamica

Seconda legge (secondo principio della dinamica)

Questo principio introduce il **concetto di massa**: una conseguenza del fatto che l'effetto dinamico di forze diverse sullo stesso corpo produce accelerazioni diverse, ma tali da avere un rapporto costante tra forza e accelerazione:

$$F_1/a_1 = F_2/a_2 = \dots = costante = m,$$
 ossia:

Vale il principio di sovrapposizione

$$SF_i = m Sa_i$$

delle forze (proprieta` additiva);

Nel S.I. il Kg e` l'unita` di massa e il Newton e` l'unita` delle forze:

$$1N = 1kg \cdot 1m/s^2$$

Nel sistema cgs l'unita` derivata della forza e` la dina $(1 \text{ N} = 10^5 \text{ dine})$.

Leggi della dinamica

Terza legge (terzo principio della dinamica)

Principio di azione e reazione: ad ogni forza corrisponde una reazione uguale in modulo e direzione ma di verso opposto: $\mathbf{F}_{\Lambda} = -\mathbf{F}_{R}$, da cui:

$$\mathbf{F_A} + \mathbf{F_B} = \mathbf{0}$$
 o, piu` generalmente: $\sum_i F_i = 0$

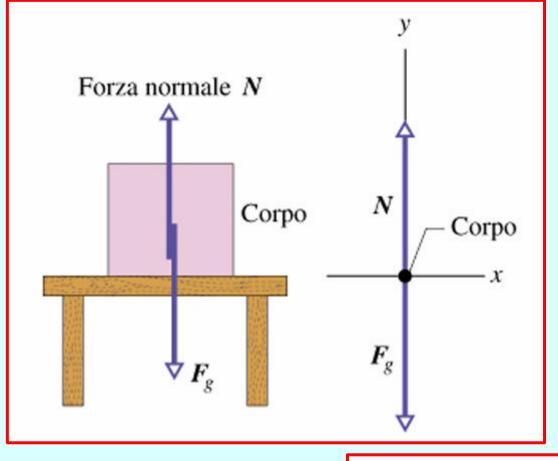
$$\sum_{i} F_{i} = 0$$

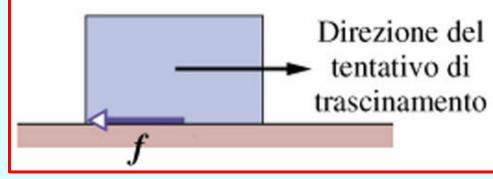
I sistemi di propulsione (naturale o artificiale) sono basati su questo principio; non sarebbero possibili se non ci fossero le forze di attrito

Esempi di forze

Forza peso e accelerazione di gravita`

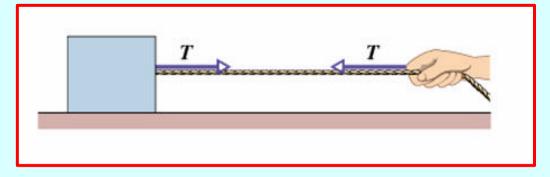
Come sappiamo, un corpo in caduta libera nel vuoto (con attrito in un fluido quale l'aria) ha peso $\mathbf{p} = \mathbf{mg}$ (un vettore misurato in N), e massa m (uno scalare misurato in Kg). Essendo g costante, il moto e` uniformemente accelerato, verticale verso il centro della Terra.

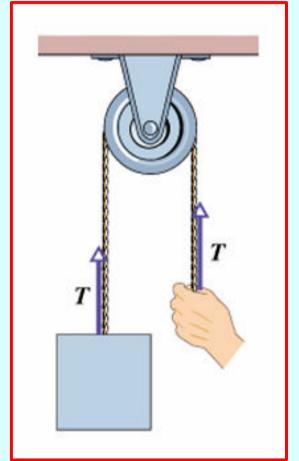

Forza elettrica

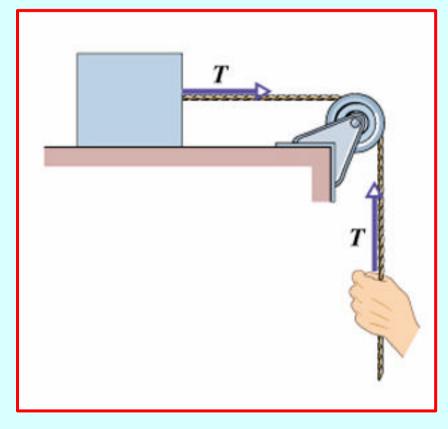

E' responsabile del moto delle cariche all'interno di un filo conduttore

Forza attrito

E' responsabile del rallentamento di un corpo che scivola lungo un piano scabro

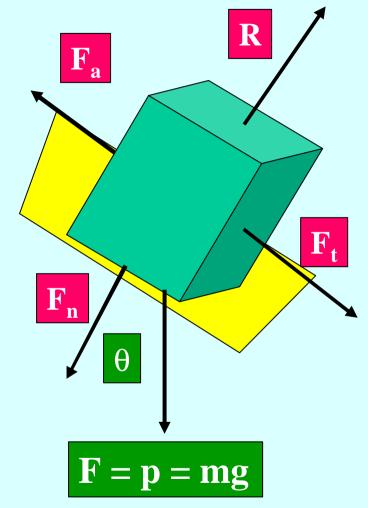

P.Galeotti Fisica - a.a.2003/04 41



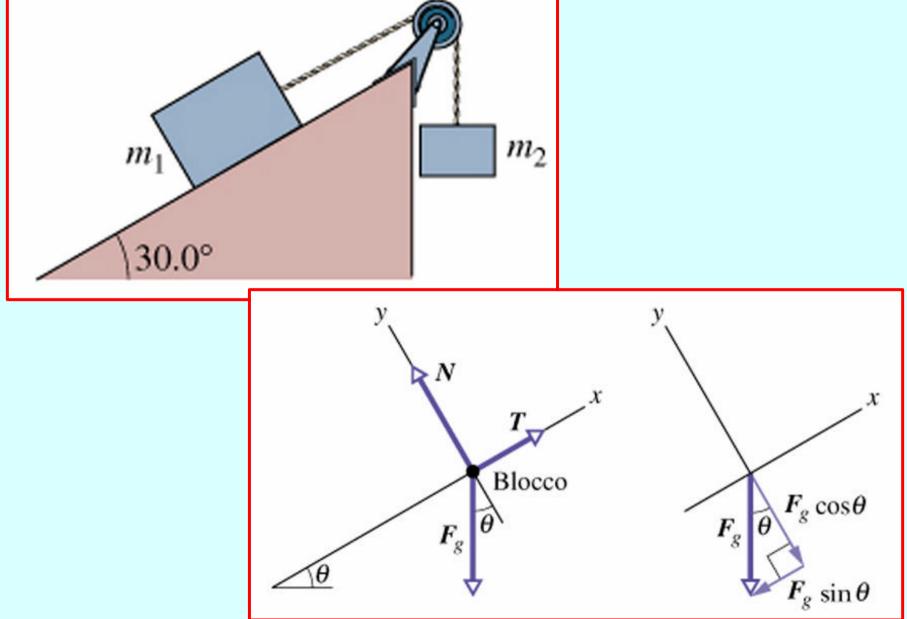


Fisica - a.a.2003/04 42

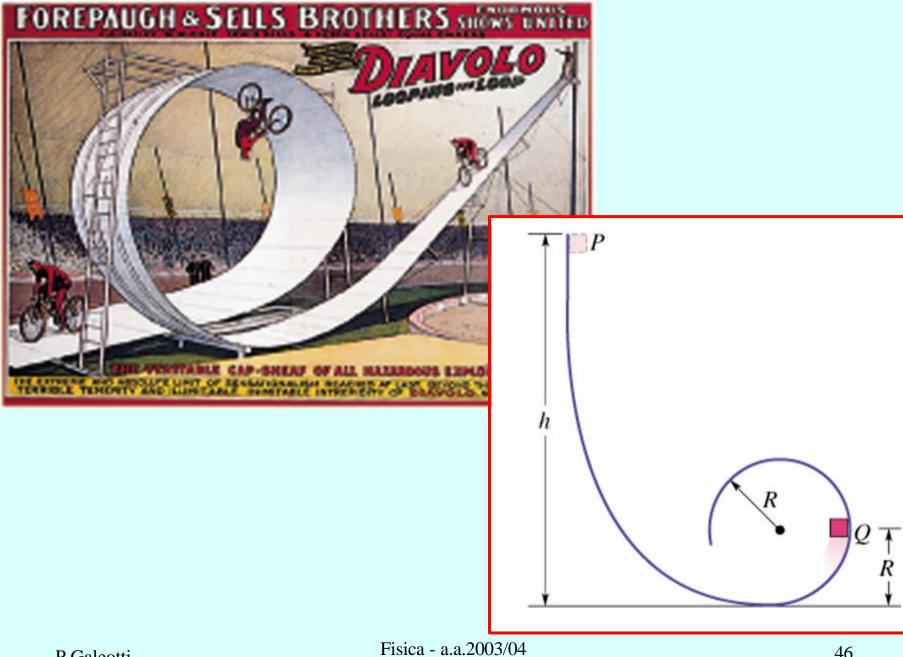
P.Galeotti

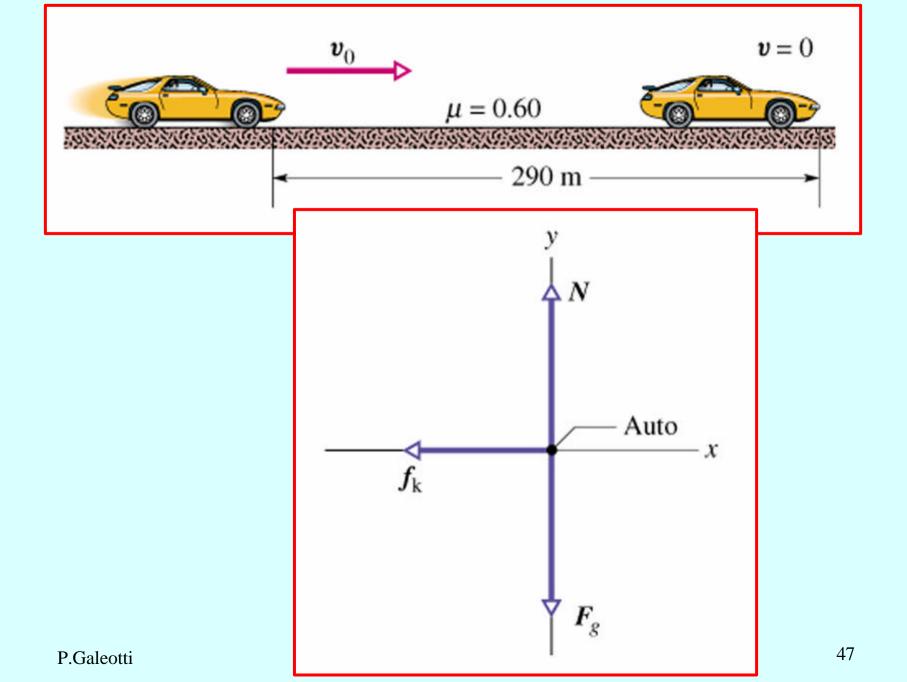

Fisica - a.a.2003/04

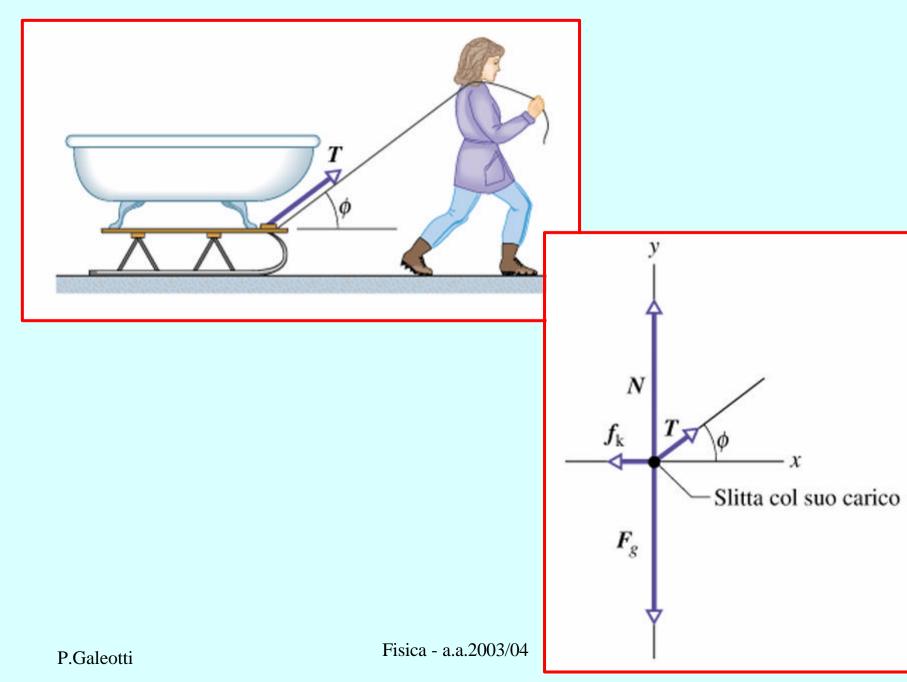
Condizioni di equilibrio


Valgono sempre:

- a) per un corpo sospeso (tensione),
- b) per un corpo appoggiato su un piano orizzontale,
- c) oppure appoggiato su un piano inclinato.


La forza di attrito, $\mathbf{F_a} = \mathbf{f} \ \mathbf{F_n}$ dove \mathbf{f} e` il coefficiente di attrito, si oppone sempre al movimento. Per avere equilibrio statico ($\mathbf{SF_i} = \mathbf{0}$) non si puo` mai trascurare l'attrito.


Fisica - a.a.2003/04 44



P.Galeotti Fisica - a.a.2003/04 45

46 P.Galeotti

Quantità di moto

Talvolta, anziche` la velocita`, si preferisce usare una grandeza ad essa collegata, l'impulso (o quantita` di moto), definoto come **q** = **mv**.

Da questa definizione segue che *q* e` costante se F e` nulla, in quanto

F = ma = mdv/dt = dq/dt.

Lavoro e energia

Il lavoro L e` una **grandezza scalare**, prodotto scalare dei due vettori forza **F** e spostamento **s**, ossia **L** = **Fs** cosq, il cui segno e` dato dal segno di cos θ . Si ha L = 0 per $\theta = \pi/2$: il lavoro e` nullo quando **F** e s sono ortogonali.

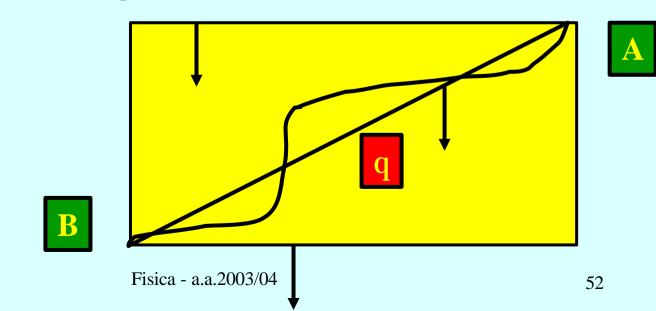
L'unita` di misura del lavoro e` il joule: $1J = 1N\cdot 1m = 10^5 \text{ dine}\cdot 100 \text{ cm} = 10^7 \text{ erg}$

Se **F** e` variabile e la traiettoria e` curvilinea, e il lavoro e` dato da: $L_{AB} = \sum F_i \Delta s_i = \int F \cos \boldsymbol{J} ds$

Fisica - a.a.2003/04 50

Lavoro e energia

Da $L = F \cdot s = ma \cdot s$ si ricava


$$L = \frac{ma(v_2^2 - v_1^2)}{2a} = \frac{1}{2}m(v_2^2 - v_1^2) = K_2 - K_1$$

In quanto si definisce energia cinetica di un corpo la quantità $\frac{1}{\kappa - \frac{1}{mv^2}}$

Questa relazione e` nota come **teorema delle forze vive** o dell'energia cinetica: il lavoro totale svolto corrisponde alla variazione di energia cinetica:

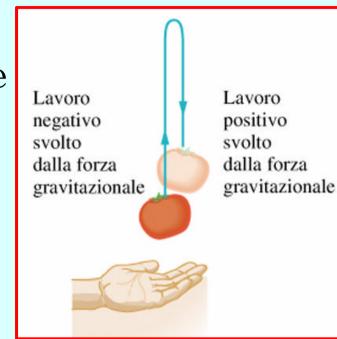
Forze conservative Si tratta di forze per le quali il lavoro compiuto per spostarsi da un punto A ad un punto B (o viceversa) non dipende dal percorso effettuato e implicano l'esistenza di un'energia potenziale W. Sono conservative, per esempio le forze elastiche $(F = -kx, W = -\frac{1}{2}kx^2)$, le forze gravitazionali (F = mg, W = mgh), e altre.

Poiche' il lavoro compiuto da forze conservative e` $L = W_1 - W_2$, dal teorema delle forze vive si ricava DW + DK = 0 per cui

$$\Delta W + \Delta K = 0 \rightarrow \Delta (W + K) = 0$$

$$W + K = E_{tot} \rightarrow \Delta E = 0 \rightarrow E_{tot} = \cos t$$

Sono pero` anche presenti forze non conservative (per es. attriti, lavoro fisiologico, calore).


La **potenza P = L/Dt = F·v** si misura in Watt, dove 1W=1J/1s.

Il campo gravitazionale

Esempio di forze conservative

Un esempio importante di forze conservative sono le forze gravitazionali, una delle interazioni fondamentali della natura. Vale la legge di Newton:

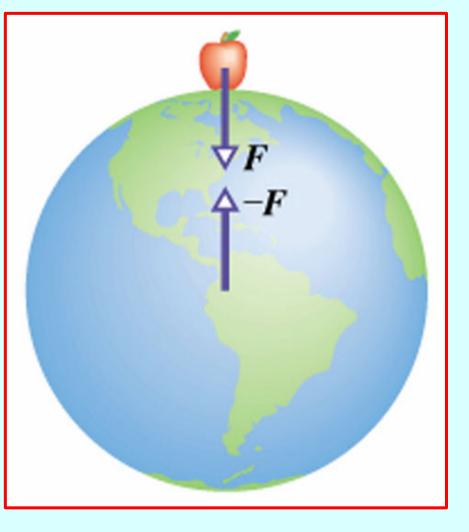
 $F_G = G \frac{m_1 m_2}{r^2}$

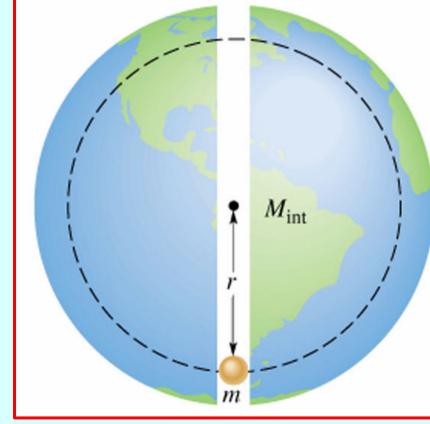
dove:

 m_1 e m_2 sono due masse poste a distanza r,

a costante $G = 6.7 \cdot 10^{-11} \text{ Nm}^2/\text{kg}^2 \text{ e}$ detta di gravitazione universale.

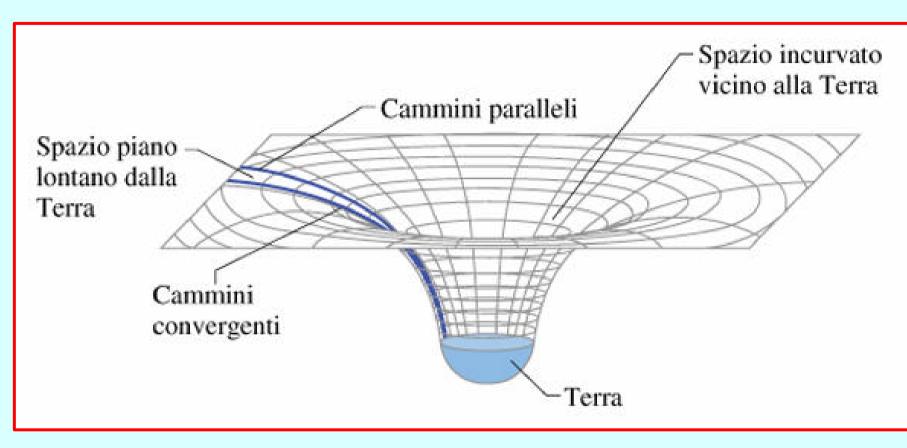
Il campo gravitazionale


Si dice campo gravitazionale quello generato da una massa M nello spazio circostante.


L'intensita` del campo gravitazionale si estende fino a infinito (ma varia come r^{-2}) ed una massa \mathbf{m} viene attratta con intensita` $\mathbf{g} = \mathbf{F}/\mathbf{m}$.

Nel caso terrestre il prodotto **m·g** definisce la **forza peso** del corpo di massa **m** nel campo gravitazionale terrestre:

 $g = GM_T/r_T^2 = 9.8 \text{ m/s}^2 \text{ e}$ il valore dell'accelerazione di gravita al suolo terrestre.


P.Galeotti Fisica - a.a.2003/04 55

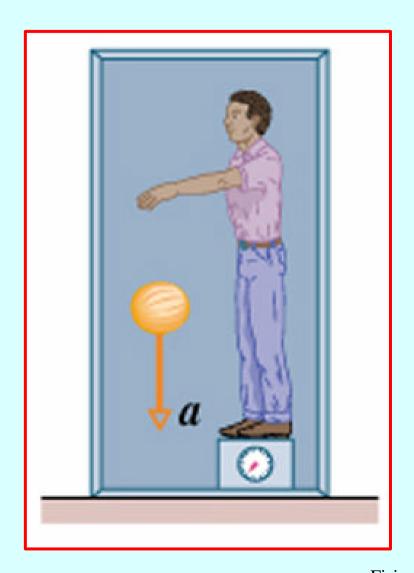
P.Galeotti Fisica - a.a.2003/04 56

Campo gravitazionale terrestre

Esempio di campo gravitazionale generato dalla massa della Terra $M_{\rm T}$ nello spazio vicino

P.Galeotti Fisica - a.a.2003/04 57

Come esempio, assumendo per semplicita` che il moto della Terra intorno al Sole (anziche ellittico) sia circolare uniforme, dall'uguaglianza tra forza gravitazionale e forza centripeta, si ottiene:


$$F_G = G \frac{M_S M_T}{d^2} = F_C = M_T a_C = M_T \mathbf{w}^2 d$$

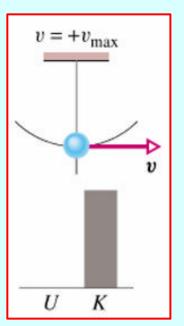
Da questa, essendo $\omega = 2\pi/P$, si ricava la massa del Sole:

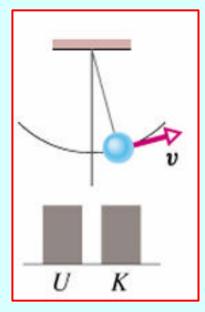
$$M_S = \frac{4p^2d^3}{GP^2}$$

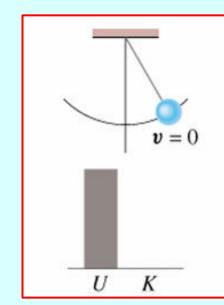
e la terza legge di Keplero

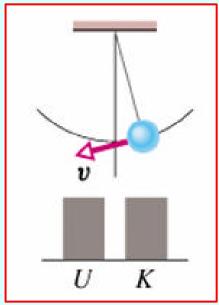
Principio di equivalenza

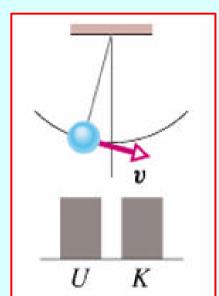
Come secondo esempio di forze conservative esaminiamo il pendolo semplice, ossia una massa m vincolata ad un cavo di lunghezza l.

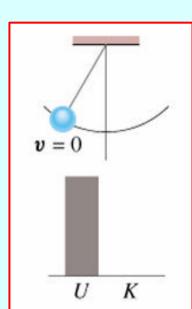

 $p_n = mg \sin \mathbf{J} \approx mg\mathbf{J} = \frac{mgx}{l} = m\mathbf{w}^2 x = -ma = -m\frac{d^2x}{dt^2}$

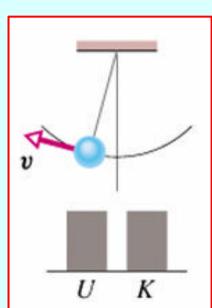

del tipo
$$d^2x/dt^2 = -w^2x$$
, avendo posto $g/l = w^2$. La cui soluzione e`: $x = A\cos(wt + j)$

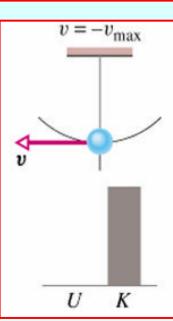

Fisica - a.a.2003/04


ossia un moto armonico di periodo


$$T = 2\mathbf{p}\sqrt{\frac{l}{g}}$$







P.Galeotti

Fisica - a.a.2003/04

62

Fine della prima parte