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About H()

Measuring Hj is a complex problem since in a curved Universe the knowledge of a method for
measuring distances is required. Due to the Hubble law, v, = Hyd, H is fundamental to determine
the age and fate of the Universe, but it has been a long struggle against systematic error, bias, and
complexity in distance ladder, cosmic-background and geometric measurements.

In our analysis we used a gaussian prior on Hj obtained from different recent measurements:

e by SHOES team [1], we used two values, obtained using only Cepheids and SN Ia as standard
candles, measured by the Wide Field Camera 3 (WFC3) on the Hubble Space Telescope (HST):
Hy=738+24kms ! Mpc;

e the Carnegie Hubble Program (CHP) team [2]|, descended from the Hubble Key Project on
the Distance Scale, observed MW and LMC Cepheids with Spitzer and obtained Hy = 74.3 £
2.1 km s~ Mpc™*:

e using COSmological MOnitoring of GRAvItational Lenses (COSMOGRAIL) and Hubble Space
Telescope data, [3] obtained a value Hy = 78.732 km s™! Mpc ™! in a flat ACDM model with
fixed QA = 0.73.

The prior we used is a weighted mean of the reported measurements: Hy = 74.74+1.6km s~! Mpc ™!

SBL analysis

Recent Short Baseline experiments show neutrino oscillations generated by a mass difference
AmZ%,; > 0.1 eV? that is much larger than the measured solar Am2,, = (7.6 £0.2) - 1075 eV*
and atmospheric Am 2 = (2.3270:42) - 1073 eV? squared-mass differences. The minimal neutrino
mixing schemes that can provide a third squared-mass difference require the introduction of a sterile
neutrino vs.

The neutrino flavor eigenstates are written in term of the mass eigenstates:

3+1

Vo = § Uozkyka
k=1

so that v is mainly composed of a heavy neutrino vy, having:

(2)

U,k 1s the unitary mixing matrix, which can be written in term of the squared-mass differences

Amgj =m? — m? and the effective mixing angles

my, Mo, M3 K< My .

sin? 2045 = 4| Una|*|Us4)? , sin? 2000 = 4|Una* (1 — |Una|?) (3)
with 2,7 =1,2,3,4and o, 8 =e, u, 7, s.
We consider the four-neutrino mixing as a perturbation of the three-neutrino mixing:

|Ue4’27 ‘U,u4|27 ‘UT4|2 < 1 ) ‘US4‘2 ~ ]
For the analysis of SBL data in a 341 neutrino mass model we used the marginalized posterior
probability for mg obtained in Ref. [4] and printed in Fig. [1]

Figure 1: Marginalized posterior of myg
from SBL experiments.
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Additional neutrinos in cosmology

For a relativistic fermion s, one can assume the distribution function:

p
er/oTv 41

fs(p) = (4)

(p is the particle momentum, 7, = (4/ 11)1/ 3T % is the temperature of the neutrino plasma, 7’ is the temperature of CMB photons,
a =T,/T, and ( describe a family of distribution functions).

If s becomes non-relativistic after photon decoupling, its physical effects on the cosmological back-
ground and perturbation evolution are described mainly by [3]:

e its contribution to the relativistic energy density before photon decoupling, usually parametrized
through an effective neutrino number Nqg:

7 (T,\"
1+-(22) N,
+8<T’7> H]p7

pr energy density provided by the radiation in the early universe, p, and 7T, photon energy density and temperature).
g gl

PR = (5)

If Eq. [ holds for s, one can obtain:

ANeff 65& <6>

e its current energy density, parametrized by the dimensionless number w, = Q h?, where h is the
reduced Hubble parameter, or equivalently by an effective mass m®:

= (94.1eV) w (7)

where the constant is given by > m; = (94.1 eV) w, for SM neutrinos.

ws = ps/pY is defined from py = myny, the energy density today for the not more relativistic
s population, where p! is the critical density today and m, the mass of one s particle. If Eq.
holds for the specie s, we obtain:

eff (8)

m, = msﬁsai’ .

We cannot solve for (my, a, B5) having only two experimental data (Eq. 6] [§).
As a simpler case, we can consider:

e a light thermal relic with a Fermi-Dirac distribution at a temperature Ty = a1, with oy #£ 1
and B = 1 (thermal scenario): this scenario can be motivated by the existence of massive
neutrinos that had decoupled long before the SM ones. For one family of additional neutrinos,
we have

9)

e a light non-thermal relic. Requiring the fi(p) as in Eq. [, we can consider the Dodelson -
Widrow (DW) scenario 6], motivated by early active-sterile neutrino oscillations in the limit
of small mixing angle and zero lepton asymmetry, corresponding to apy = 1 and SBpy # 1. For
one family of additional neutrinos, we have

eff 3 thermal 3/4
Mihermal — Ms g = Mg (AN )

m%ch Mg BDW — Mg ANG%W . (10)

Figure 6: m&" and N.g in different models,

Red points are models without SBL prior, blue points
correspond to DW scenario, black points to thermal scenario. Error bars are 68%, 95% and 99% CL.

Data analysis

We used a modified version of the publicly available software CosmoMC [7].

To include the neutrino analysis, the ACDM model is expanded to a A Mixed Dark Matter (MDM) model

Testing 3+1 Neutrino Mass Models with
Cosmology and Short-Baseline Experiments

(component of HDM in form of massive neutrinos). To parametrize the neutrino component we used:

AmATM)

e the sum of the standard neutrino masses » S m, gq = 0.06 eV (my ~ 0, m2

e the effective number of neutrinos Neg (Eq. ), with 3.046 < Ng < 6;

AmSOLv m3

o the effective mass of the additional neutrinos m¢ ., (Eq. [7), with 0 < m&/(eV) < 5.
With these choices, AN.g = Nog — 3.046 is the effective number of additional neutrinos.

For our analysis we used different data sets and likelihood calculators:

e Planck: TT spectra, CamSpec, Commander likelihoods.

o WMAP 9-year polarized data and likelihood. We will refer to the WMAP set plus the Planck set as CMB.
e high-l spectra from Atacama Cosmology Telescope (ACT) and South Pole Telescope (SPT).
e Barionic Acoustic Oscillations (BAQ): values obtained from the SDSS-DR7, the SDSS BOSS-DR9 and

the 6dFGS.
o H, prior: Hy=74.7+1.6kms™! Mpc™!

When including the prior by SBL experiments, we consider the models listed before:
melt J(ANhermal3/4y and DW scenario (mPWY = m$l /ANEV).

(mthermal —
We considers three different possibilities for the additional neutrino:
e no SBL prior on my;
e SBL prior on mg for a DW neutrino;

e SBL prior on m, for a thermal neutrino.

For each of these possibilities, we run CosmoMC with different cosmological data set inclusions: CMB only (base
model), CMB + BAO, CMB + H,, CMB + H, + BAO, CMB + high-l and CMB + Hy + BAO + high-/.

Results

Results are resumed in Fig. 2] to [6]

The SBL prior imposes the presence of an additional neutrino with mass of about 1 eV: the tail at ANqg ~ 0
Furthermore, small m®?

eff

and large m$" is suppressed when including the prior on ms.

is suppressed and the

permitted zone in the m®-Ng plane changes significantly (Fig. |5) when including the SBL prior.
Tension between Planck data and Hy prior (yet discussed in [8, 9]).

Tension between SBL prior and Hy prior:

e SBL prior = massive vy, small ANg.

e H prior = massless relativistic additional degrees of freedom, high ANqg.

Considering SBL prior, m®® > 0 at 99% CL with all the cosmological data sets included (Fig. @, left).

Considering SBL prior and all the cosmological data sets, Nog < 4 at 99% CL. For the DW scenario, Neg > 3.046

at 99% CL, while for the thermal scenario this is true only at 95% CL (Fig. [0, right).

neutrinos (Neg < 4).

These limits suggest
that an additional neutrino with my ~ 1 eV should exist and account as part of the radiation component of
the universe at CMB time (Neg > 3.046), but it cannot be thermalized at the same temperature of the SM

Figure 5: Admitted regions in the plane mgﬁ—Neﬂc.
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Figure 4: Thermal scenario
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