

Stefano Gariazzo

IFIC-CSIC, Valencia (ES)

gariazzo@ific.uv.es
http://ific.uv.es/~gariazzo/

Axions and the CMB

A short review of current constraints and future perspectives

27 October 2016 - Axions and IAXO in Spain - Zaragoza (ES)

- Cosmological Effects of Relativistic Species
 - Parameterization
 - Big Bang Nucleosynthesis
 - Cosmic Microwave Background
- Cosmological effects of warm massive species
 - Cosmic Microwave Background
 - Matter perturbations
- Axions in cosmology
 - Non-thermal production
 - Thermal production
- 4 Current constraints vs future perspectives
- Conclusions

- Cosmological Effects of Relativistic Species
 - Parameterization
 - Big Bang Nucleosynthesis
 - Cosmic Microwave Background
- Cosmological effects of warm massive species
 - Cosmic Microwave Background
 - Matter perturbations
- Axions in cosmology
 - Non-thermal production
 - Thermal production
- 4 Current constraints vs future perspectives
- 6 Conclusions

Relativistic species and radiation content: $\Delta N_{ m eff}$

Radiation energy density ρ_r in the early Universe:

$$\rho_r = \left[1 + \frac{7}{8} \left(\frac{4}{11}\right)^{4/3} N_{\mathrm{eff}}\right] \rho_{\gamma} = \left[1 + 0.2271 N_{\mathrm{eff}}\right] \rho_{\gamma}$$

 ρ_{γ} photon energy density, 7/8 is for fermions, $(4/11)^{4/3}$ due to photon reheating after neutrino decoupling

- lacksquare $N_{
 m eff}
 ightarrow$ all the radiation contribution not given by photons
- $\,\blacksquare\,\, \textit{N}_{\rm eff} \simeq 1$ correspond to a single family of active neutrino, in equilibrium in the early Universe
- lacktriangle Active neutrinos: $N_{
 m eff}=3.046$ [Mangano et al., 2005]
 - > 3 due to not instantaneous decoupling for the neutrinos
- ullet + Non Standard Interactions: $3.040 < N_{
 m eff} < 3.059$ [de Salas et al., 2016]
- additional species contribute with $\Delta N_{\rm eff} = N_{\rm eff} 3.046$:

Additional species may be:

light sterile neutrinos axions (thermally produced ones) (...insert your candidates here...)

S. Gariazzo "Axions and the CMB" Zaragoza - 27/10/16 1/19

Additional Radiation in the Early Universe

S. Gariazzo "Axions and the CMB" Zaragoza - 27/10/16 2/19

Additional radiation: Big Bang Nucleosynthesis (BBN)

"Axions and the CMB"

recombination emission lines in extragalactic H II regions (metal-poor: no star contamination) (extrapolate to zero-metallicity) systematics in describing

Measures?

solved including He $\lambda 10830$ emission line

H II regions! T, n_e degeneracy

Recent Y_p determinations:

 0.2449 ± 0.0040 [Aver et al., 2015] 0.2551 ± 0.0022 [Izotov et al., 2014] 0.2446 ± 0.0029 [Peimbert et al., 2016]

 $N_{\rm eff} = 2.90 \pm 0.22 \, (BBN + Y_p)$

translates in

[Peimbert et al., 2016] Zaragoza - 27/10/16

means higher Y_p

Additional Radiation: Effects on the CMB

S. Gariazzo

"Axions and the CMB"

- Cosmological Effects of Relativistic Species
 - Parameterization
 - Big Bang Nucleosynthesis
 - Cosmic Microwave Background
- 2 Cosmological effects of warm massive species
 - Cosmic Microwave Background
 - Matter perturbations
- 3 Axions in cosmology
 - Non-thermal production
 - Thermal production
- 4 Current constraints vs future perspectives
- Conclusions

Impact of non-cold species on the CMB

$$1 + z_{\rm eq} = (\omega_b + \omega_c)/\omega_r$$
 independent of m_ν
$$\omega_m^0 = \omega_b^0 + \omega_c^0 + \omega_\nu^0 \text{ today}$$

mass of species relativistic at recombination affect late time evolution only

small effects on the SW plateau (cosmic variance, degeneracies...)

effects on the position of peaks -

$$\theta_s = r_s(\eta_{LS})/D_A(\eta_{LS})$$

$$D_A = \int_0^{z_{rec}} \frac{dz}{H(z)}$$

(this effect can be compensated reducing H_0)

degeneracy $m_{\nu}-H_0$

Effects on the early ISW effect

["Neutrino Cosmology", Lesgourgues et al.

Free-streaming - I

Non-cold relics →

damping in the perturbations due to free-streaming

Growth equation:
$$\ddot{\delta} + 2H\dot{\delta} - c_s^2 k^2 \frac{\delta}{a^2} = 4\pi G_N \rho \delta$$

Hubble drag pressure gravity

$$k_J \equiv \sqrt{\frac{4\pi G_N \rho}{c_s^2 (1+z)^2}}$$

$$k < k_J$$
growth of density perturbations
$$k > k_J$$
no growth can occur

neutrino free-streaming scale

$$\left[k_{\mathsf{fs}}(z) \equiv \sqrt{rac{3}{2}} rac{ extsf{H}(z)}{(1+z)\sigma_{ extsf{v},
u}(z)} \simeq 0.7 \left(rac{m_{
u}}{1 \; \mathsf{eV}}
ight) \sqrt{rac{\Omega_{ extsf{M}}}{1+z}} h/\mathsf{Mpc}
ight]$$

 ρ energy density of a given fluid $\delta = \delta \rho / \rho$ perturbation (single fluid) $c_{\rm s}$ sound speed of the fluid

 $\sigma_{V,\nu}(z) \nu$ velocity dispersion

H = H(z) Hubble factor at redshift zh reduced Hubble factor today

h reduced Hubble factor today
"Axions and the CMB"

Damping occurs for all $k \gtrsim k_{\rm nr}$

 k_{nr} : corresponding to ν non-relativistic transition

Plot:
$$\frac{P_{m_{\nu}>0}(k)}{P_{m_{\nu}=0}(k)}$$

- ullet top to bottom: $m_
 u=0.05$ eV to $m_
 u=0.5$ eV

["Neutrino Cosmology", Lesgourgues et al.] (fixed h, ω_m , ω_b , ω_Λ)

Expected constraints from future surveys:

- Planck CMB + DES: $\sigma(m_{\nu}) \simeq 0.04$ –0.06 eV [Font-Ribera et al., 2014]
- Planck CMB + Euclid: $\sigma(m_{\nu}) \simeq 0.03$ eV [Audren et al., 2013]

- Cosmological Effects of Relativistic Species
 - Parameterization
 - Big Bang Nucleosynthesis
 - Cosmic Microwave Background
- Cosmological effects of warm massive species
 - Cosmic Microwave Background
 - Matter perturbations
- Axions in cosmology
 - Non-thermal production
 - Thermal production
- 4 Current constraints vs future perspectives
- Conclusions

Axions during the expansion - I

PQ SSB at
$$T \simeq f_{PQ}$$
 \longrightarrow $V(\vec{\phi}) = \lambda(|\vec{\phi}|^2 - f_{PQ}^2/2)^2$ the axion is related to Θ :
$$a = (f_{PQ}/N)\Theta$$
 after PQ SSB,
$$\Theta = \arg(\vec{\phi}) \text{ undetermined}$$
axion is massless for $T \gg \Lambda_{QCD}$ + low T : axion mass from QCD instanton effects
$$\text{axion is massless for}$$

$$f_{PQ} \gtrsim T \gtrsim \Lambda_{QCD}$$

$$m_{\pi} \text{ pion mass}$$

$$f_{\pi} = 93 \text{ MeV pion decay constant}$$

$$N \text{ color anomaly of the PO symmetry}$$

$$m_{\pi} \text{ pion mass}$$

$$f_{\pi} = 93 \text{ MeV pion decay constant}$$

$$N \text{ color anomaly of the PO symmetry}$$

PQ SSB = spontaneous symmetry breaking of PQ symmetry
S. Gariazzo "Axions and the CMB"

 $R=0.553\pm0.043$ up-to-down guark masses ratio

Axions during the expansion - II

Note: axion couplings $\propto 1/f_{PQ} \propto m_a$ lighter axions interact less! Axion production? thermal processes depends on interactions non-thermal processes decay of axionic string misalignment

see also: [D. Marsh, Phys.Rept. 643 (2016) 1-79]

10/19

S. Gariazzo "Axions and the CMB" Zaragoza - 27/10/16

CDM from misalignment of the initial Θ - I

stochastic processes at early times today, CP conservation

same probability for all the Θ values

 $\Theta = 0$

vacuum realignment must occur

at
$$T \simeq \Lambda_{QCD}$$
: $m_a \neq 0$ ———————— axion start to roll towards $\Theta = 0$

non thermal! zero-momentum condensate of axions \longleftarrow oscillations around $\Theta=0$

 $n_a = \rho_a/m_a \propto a^{-3} \longrightarrow$ number per comoving volume is conserved

S. Gariazzo 11/19 "Axions and the CMB" Zaragoza - 27/10/16

CDM from misalignment of the initial Θ - II

initial angle? \longrightarrow energy density depends on initial Θ_1 value

[Kolb&Turner]

full calculation:

S. Gariazzo

for
$$\langle ar{\Theta}_1
angle = \mathcal{O}(1)$$
, axions can be all the DM if $m_a \gtrsim 10^{-5}$ eV

did inflation $\xrightarrow{\text{yes}}$ all the universe is within \rightarrow same Θ_1

 $\Omega_a h^2 = 0.13 \cdot 10^{\pm 0.4} \Lambda_{200}^{-0.7} f(\bar{\Theta}_1) \bar{\Theta}_1^2 (m_a/10^{-5} \text{ eV})^{-1.18}$

Zaragoza - 27/10/16

measure $\Omega_a h^2$, m_a to obtain Θ_1 !

"Axions and the CMB"

[Di Valentino et al.,PRD 90 (2014) 043534] – including axionic string decay contribution
$$\Omega_a h^2 = 0.119 \pm 0.003 = \Omega_{cdm} h^2$$
 and $m_a = 81.5 \pm 1.6 \,\mu\text{eV}$ (CMB only)

 $\Lambda_{200} = \Lambda_{QCD}/200$ MeV $\tilde{\Theta}_1 \ll H$ initial value of Θ $f(\tilde{\Theta}_1)$ from anharmonic effects $10^{\pm 0.4}$ from theoretical uncertainties

Constraints - I

thermal axion behavior is similar to massive neutrinos

degeneracy
$$\sum m_{\nu} - m_{a}$$

but different contributions to $\Delta N_{
m eff}$

$$(\Delta N_{eff,a}$$
 depends on $m_a)$

not complete degeneracy

Stronger constraint: $m_a < 0.529 \text{ eV } (95\%)$

Constraints - II [Di Valentino et al., PRD 91 (2015) 123505]

- Cosmological Effects of Relativistic Species
 - Parameterization
 - Big Bang Nucleosynthesis
 - Cosmic Microwave Background
- 2 Cosmological effects of warm massive species
 - Cosmic Microwave Background
 - Matter perturbations
- Axions in cosmology
 - Non-thermal production
 - Thermal production
- 4 Current constraints vs future perspectives
- Conclusions

[Planck Collaboration, 2015]

$$M_{
u} < 0.72 \; {
m eV} \; {\scriptscriptstyle ({
m PlanckTT+lowP})}$$

$$\ll M_{
u} < 0.49 \; {
m eV} \; {
m (PlanckTTTEEE+lowP)}$$

$$6 M_{
u} < 0.17 \text{ eV}_{\text{(+BAO)}}$$

$$M_{\nu}$$
 < 0.12 eV (+Lyman- α)

[Palanque-Delabrouille et al., 2015]

$$N_{
m eff} = 3.13 \pm 0.32$$
 (PlanckTT+lowP)

$$N_{\text{eff}} = 3.13 \pm 0.32 \text{ (PlanckTT+lowP)}$$

$$N_{\text{eff}} = 2.99 \pm 0.20 \text{ (PlanckTTTEEE+lowP)}$$

 $N_{\rm eff} = 3.04 \pm 0.18 \; (+BAO)$

Note:

LiteBird launch > 2024 Core launch > 2028

future

need more precision: use more detectors ($\mathcal{O}(10^4)$) to measure more modes

$$68\% \\ \sigma(\textit{M}_{\nu}) = 0.140 \text{ eV}$$
 (LiteBird alone) $\sigma(\textit{M}_{\nu}) = 0.045 \text{ eV}$ (Core alone)

$$\sigma(\textit{N}_{
m eff}) = 0.20$$
 (LiteBird alone) $\sigma(\textit{N}_{
m eff}) = 0.051$ (Core alone)

Meanwhile: stage III experiments, baloon experiments...

 $M_{ij} = \sum m_{ij}$

S. Gariazzo

"Axions and the CMB"

Zaragoza - 27/10/16

16/19

Large scale structures surveys

gravitational lensing scattering of CMB measurements can be used CMB photons during their path to reconstruct lensing potential

problem! lensing reconstructed from CMB (T,E) in 2σ tension with lensing potential from CMB trispectrum

solution: use cross-correlation with high-z galaxy surveys

```
to remove lensing and obtain primordial CMB (LSST, DESI, Euclid, ...)
            present
                                                   future
```

$$\sigma(M_
u) = 0.048 \; {
m eV} \; {
m (LiteBird+LSST)}$$
 $\sigma(M_
u) = 0.034 \; {
m eV} \; {
m (Core+LSST)}$

$$\langle M_{\nu} < 0.49 \text{ eV} \rangle = 0.034 \text{ eV} \rangle = 0.021 \text{ eV}$$

$$M_
u < 0.17$$
 eV $_{(+BAO)}$ $\sigma(M_
u) = 0.021$ eV $_{(Core+DESI)}$ $\sigma(M_
u) = 0.016$ eV $_{(Core+DESI+E)}$ $\sigma(M_
u) = 0.016$ eV $_{(Core+DESI+E)}$

$$N_{
m eff} = 3.13 \pm 0.32$$
 (PlanckTTT+lowP) $\sigma(N_{
m eff}) = 0.086$ (LiteBird+LSST) $\sigma(N_{
m eff}) = 0.036$ (Core+LSST) $\sigma(N_{
m eff}) = 0.036$ (Core+LSST)

[Palanque-Delabrouille et al., 2015]
$$N_{\rm eff} = 3.13 \pm 0.32 \; {}_{\rm (PlanckTT+lowP)} \qquad \qquad \sigma(N_{\rm eff}) = 0.086 \; {}_{\rm (LiteBird+LSST)}$$

 $\sigma(\textit{M}_{\nu}) = 0.016 \; ext{eV} \; ext{(Core+DESI+Euclid)}$ $M_{
u} < 0.12 \ {
m eV}_{\ {
m (+Lyman-}lpha)}$ [Palanque-Delabrouille et al., 2015]

 $\sigma(N_{
m eff}) = 0.035$ (Core+DESI)

 $N_{\rm eff} = 3.04 \pm 0.18 \; (+BAO)$

 $M_{\nu} = \Sigma m_{\nu}$

S. Gariazzo "Axions and the CMB"

18/19

And for the axions?

Euclid-like experiments will be able to detect a thermal axion

S. Gariazzo "Axions and the CMB" Zaragoza - 27/10/16

- Cosmological Effects of Relativistic Species
 - Parameterization
 - Big Bang Nucleosynthesis
 - Cosmic Microwave Background
- 2 Cosmological effects of warm massive species
 - Cosmic Microwave Background
 - Matter perturbations
- Axions in cosmology
 - Non-thermal production
 - Thermal production
- 4 Current constraints vs future perspectives
- Conclusions

Conclusions

- axions may influence universe evolution
- different behavior depending on production mechanism
- non-thermal production (misalignment, axionic string decay)
 - cold dark matter
 - can be all the dark matter
- thermal production
 - hot dark matter
 - similar to neutrinos
 - influence on BBN, CMB, large scale structures
 - possible solution to σ_8 problem ?
- more knowledge from future experiments
 - $lue{}$ CMB ightarrow stronger constraints on $N_{
 m eff}$
 - exclude thermal axions ?
 - large scale structures to put stronger constraints on the mass
 - lacktriangle measure thermal axion mass provided that $m_a \gtrsim 0.1$ eV
 - lacktriangle but such thermal axion cannot exist if $\Delta N_{
 m eff} \lesssim 0.2$

Thank you for the attention

S. Gariazzo "Axions and the CMB" Zaragoza - 27/10/16 19/19