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0 Introduction of cosmology
@ Cosmic Microwave Background (CMB)
@ The ACDM model
@ Tensions between local and CMB measurements



M Cosmic Microwave Background (CMB)

Predicted in 1948 (Alpher, Herman): blackbody background radiation at T ~ 5 K.
Discovery (accidental): Penzias, Wilson 1964 — Nobel prize 1978

Observations: perfect black body spectrum at Toyp = 2.72548 + 0.00057 K [Fixsen,
2009] — CMB is a remnant of the Big Bang.

Anisotropies at the level of 1075: very high precision measurements are needed.
Improvement of the CMB experiments in 20 years:

COBE (1992) WMAP (2003) Planck (2013)
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[Planck Collaboration, 2015]

B Planck DR2 results - Temperature

Planck DR2 temperature auto-correlation power spectrum:
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B Cosmological parameters

General + Homogeneity ACDM model described

Relativity isotropy by 6 base parameters:
\ / wp = Qph? baryon density today;
Cosmological evolution we = Qch? CDM density today:

T optical depth to reionization;
0 angular scale of acoustic peaks;
ns tilt and

As amplitude of the power spectrum
of initial curvature perturbations.

Dark Matter

Other quantities can be studied:
Ho Hubble parameter today;

Dark Energy

og mean matter fluctuations at small
scales;

[Planck collaboration, 2015]



B Tension |: the Hubble parameter

68% CL error bars

Riess2011

Hubble parameter today: Efstathjou2013
v = Hod, with Hy = H(z = 0) Riesg2016

WMAP 9yr + ACT + SPT - ACDM
Planck2013 -- ACDM
Planck2015 - ACDM
= 2|
Planck2015 -- AGDM+N, ¢
o=
Planck2015 - ACDM+Q,

Local measurements: H(z = 0),
local and independent on
evolution (model independent,
but systematics?)

Planck2015 -- wCDM
§--wCDM__ |
CMB measurements 45 50 55 60 65 70 75 80 8 9
(probe z ~ 1100): Hy [Km s~ Mpc™]
Ho from the cosmological
evolution Using HST Cepheids:
[Efstathiou 2013] Hp = 72.5 + 2.5Km s~! Mpc™1!

(model dependent, well controlled [Riess et al., 2016] Ho = 73.24 + 1.74Km s~ Mpc?

systematics) (most recent)

(ACDM model - CMB data only)
[Planck 2013]: Hp = 67.3+ 1.2Km s~ Mpc~!

[Planck 2015]: Hp = 67.27 # 0.66 Km s~! Mpc~!



B Tension |: the Hubble parameter

68% CL error bars

Riess2011

Hubble parameter today: Efstathjou2013
v = Hod, with Hy = H(z = 0) Riesg2016

WMAP 9yr + ACT + SPT -- ACDM
Planck2013 - ACDM
Planck2015 -- ACDM

[ 2
Planck2015 + BAO -- ACDM+ N,
o=
Planck2015 + BAO - ACDM+(;
Planck2015 + BAO -- wCDM
—o

Local measurements: H(z = 0),
local and independent on
evolution (model independent,
but systematics?)

CMB measurements 45 50 55 60 65 70 75 80 8 9
(probe z ~ 1100): Hy [Km s~ Mpc™]
Ho from the cosmological

Using HST Cepheids:

evolution [Efstathiou 2013] Hp = 72.5 + 2.5 Km s~ ! Mpc~1
(model dependent, well controlled [Riess et al., 2016] Ho = 73.24 + 1.74Km s~ Mpc?
systematics) (most recent)

(ACDM model - CMB data only)
[Planck 2013]: Hp = 67.3+ 1.2Km s~ Mpc~!

[Planck 2015]: Hp = 67.27 # 0.66 Km s~! Mpc~!



B Tension Il: the matter distribution at small scales
Assuming ACDM model:

og: rms fluctuation in total matter (baryons + CDM + neutrinos) in gh—1 Mpc spheres, today;
Qm: total matter density today divided by the critical density

KiDS-450 (68% CL): CMB results (68% CL):
[Hildebrandt et al., 2016] [Planck 2015]
[ 05(2m)%5 = 0.408 + 0.021 J [ 05(2m)%5 = 0.466 + 0.013 J
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Similar results from Planck SZ and SPT clusters, CFHTLenS, DES 1yr, ...




B Tension Il: the matter distribution at small scales
Assuming ACDM model:

og: rms fluctuation in total matter (baryons + CDM + neutrinos) in gh—1 Mpc spheres, today;
Qm: total matter density today divided by the critical density

KiDS-450 (68% CL): CMB results (68% CL):
[Hildebrandt et al., 2016] (N 2.50 discrepancy!} [Planck 2015]

N J
[ 03(2m)*® = 0.408 + 0021 f———— 05(Qn)°® = 0466 + 0.013 ]

Similar results from Planck SZ and SPT clusters, CFHTLenS, DES 1yr, ...

Count of satellites galaxies of the Milky Way

Observed (classical + SDSS): Predicted (CDM only):
Ngay = 63 £ 13 Ngat >~ 160




B Tension Il: the matter distribution at small scales
Assuming ACDM model:

og: rms fluctuation in total matter (baryons + CDM + neutrinos) in gh—1 Mpc spheres, today;
Qm: total matter density today divided by the critical density

KiDS-450 (68% CL): CMB results (68% CL):
[Hildebrandt et al., 2016] (N 2.50 discrepancy!} [Planck 2015]

N J
[ 03(2m)*® = 0.408 + 0021 f———— 05(Qn)°® = 0466 + 0.013 ]

Similar results from Planck SZ and SPT clusters, CFHTLenS, DES 1yr, ...

Count of satellites galaxies of the Milky Way

Observed (classical + SDSS): Predicted (CDM only):
Ngay = 63 £ 13 Ngat >~ 160

Alert!

= is the nonlinear evolution well known?
see e.g. [Planck 2015 Results, papers XlII and XIV]

= are we taking into account all the astrophysical systematics?
[Joudaki et al., 2016] [Kitching et al., 2016]

= did we count all the satellite galaxies? (very difficult detection)




9 Light sterile neutrinos
@ Oscillations anomalies
@ Light sterile neutrino as a possible solution



M Neutrino Oscillations
.. . [Pontecorvo, 1958]
Analogous to CKM mixing for quarks: [Maki, Nakagawa, Sakata, 1962]

3
= Z Uaka (Oé = e,[l,,T)
k=1

vq flavour eigenstates, Uyx PMNS mixing matrix, v, mass eigenstates.

Current knowledge of the 3 active v mixing: [de Salas et al. (2017)]}
Am =m: — m,2 0 mixing angles

NO Normal Ordering, m; < mp < ms3

10: Inverted Ordering, m3 < my < m2

Am3, = (7.56 +0.19) - 107° &V?
|Am3,| = (2.55+0.04) 1073 eV? (NO)
= (2.4773%%). 1072 eV (10)

2

sin?(612) = 0.32179918 .
sin®(6013) = 0.0216f§‘§§§ (NO) ]
=0.0216190% (10) F L

sin?(fp3) = 0.40 — 0.48&0.56 — 0.62 (20, NO)
= 0.41 — 0.44&0.56 — 0.63 (20,10) '

8 25 3 5
Am) [107eV] |am3 [ 1107V s

CP violating phase dcp still unknown. Hint: §op ~ 3/277?



B Short Baseline (SBL) anomaly ISG et al., IPG 43 (2016) 033001]

errors in flux calculations?
deviations from 3-v description?

Problem: anomalies in SBL experiments = {
A short review:

LSND search for 7, — ¥e, with L/E = 0.4 + 1.5 m/MeV. Observed a 3.80
excess of U, events [Aguilar et al., 2001]

Reactor re-evaluation of the expected anti-neutrino flux = disappearance of
Ve events compared to predictions (~ 30) with L < 100 m
[Azabajan et al, 2012]

Gallium calibration of GALLEX and SAGE Gallium solar neutrino experiments
give a 2.70 anomaly (disappearance of v,) [Giunti, Laveder, 2011]

MiniBooNE (inconclusive) search for v, — v and ©, — e, with L/E = 0.2 + 2.6
m/MeV. No v, excess detected, but 7, excess observed at 2.8¢
[MiniBooNE Collaboration, 2013]

Possible explanation: [Sseé ZLSZL, 2017] J

Additional squared mass difference
Amg ~1 eVv?




[SG et al., JHEP 06 (2017) 135

M 3-+1 Neutrino Model 10 FweE
new AmgBL = 4 neutrinos! —_— ;G
w— 2
l kly
va with mg ~ 1 eV,
no weak interactions
{Iight sterile neutrino (LSZ/)J Ly
()
— 1 ]
3 (active) + 1 (sterile) mixing: S
341 3
Vo = Z UakVk (a =6 U, T, 5)
k=1
Vs is mainly vq:
5 ) 30
ms >~ my ~ \/Am41 = \/AmSBL — Ap
— Dis
. . —1 1 I
assuming mg > m; (i = 1,2,3) 10 - 10 102

§in*20,



. LS]/ hints from reactors7 [Dentler et al., 1709.04294]
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[No absolute flux, only ratios at different distances!]

blue, “bfpl”: green, “bfp2":
fit of reactor data fit of all disappearance data
Am3, ~ 3eV? Am3, ~ 1.7 eV?
sin2014 =~ 0.12 sin22014 ~ 0.06



e Light sterile neutrino and cosmology
@ As a relativistic particle
@ As a non-relativistic particle
@ Cosmological constraints on the light sterile neutrino



M (Relativistic) LSv in cosmology: AN.g

Radiation energy density p, in the early Universe:

7 [ 4\*3
pr= |1+ s (ﬁ) Negt | py = [1 4 0.2271 Negt] py

p~ photon energy density, 7/8 is for fermions, (4/11)4/3 due to photon reheating after neutrino decoupling

= Neg — all the radiation contribution not given by photons

rel

pu energy density for one active neutrino species, p®" energy density of LS when relativistic,

p neutrino momentum, fs(p) momentum distribution, T,, = (4/11)1/3 Ty



M (Relativistic) LSv in cosmology: AN.g

Radiation energy density p, in the early Universe:

7/ 4\Y3
pr= |1+ s (ﬁ) Negt | py = [1 4 0.2271 Negt] py

p~ photon energy density, 7/8 is for fermions, (4/11)4/3 due to photon reheating after neutrino decoupling

= Neg — all the radiation contribution not given by photons

" Neg ~ 1 correspond to a single family of active neutrino, in equilibrium
in the early Universe

= Active neutrinos: Neg = 3.046 [Mangano et al., 2005]
due to not instantaneous decoupling for the neutrinos

= + Non Standard Interactions: 3.040 < Neg < 3.059 [de Salas et al., 2016]

pu energy density for one active neutrino species, p:el energy density of LSv when relativistic,
p neutrino momentum, fs(p) momentum distribution, T,, = (4/11)1/3 Ty



M (Relativistic) LSv in cosmology: AN.g

Radiation energy density p, in the early Universe:

7/ 4\Y3
pr= |1+ s (ﬁ) Negt | py = [1 4 0.2271 Negt] py

p~ photon energy density, 7/8 is for fermions, (4/11)4/3 due to photon reheating after neutrino decoupling

= Neg — all the radiation contribution not given by photons

" Neg ~ 1 correspond to a single family of active neutrino, in equilibrium
in the early Universe

= Active neutrinos: Neg = 3.046 [Mangano et al., 2005]
due to not instantaneous decoupling for the neutrinos

+ Non Standard Interactions: 3.040 < Neg < 3.059 [de Salas et al., 2016]
additional LSv contributes with ANyg = Neg — 3.046:

rel 2 -1
7 1
Ps = [g% Ty4] ; / dp p3fs(p) [Acero et al., 2009]

energy density of LSv when relativistic,

ANgg =

v

pu energy density for one active neutrino species, p:el

p neutrino momentum, fs(p) momentum distribution, T,, = (4/11)1/3 Ty



B Additional Radiation in the Early Universe

pr = [1 4 0.2271N.g] p H? = 87Gp1/3

\ /

Nqst controls the expansion
rate H in the early Universe,
during radiation dominated phase

1

influence on

— .

Big Bang Nucleosynthesis: ’

production of light nuclei

1 1

expansion rate at
CMB decoupling

‘ matter-radiation equality

abundances today



B Additional Radiation: Effects on the CMB

Starting configuration:

RD: Radiation Dominated, MD: Matter Dominated, AD: Dark Energy Dominated; (1 + z) = a— L wi = pj

log p

Pr

RD :

MD

AD

PC
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3000

14+ zg=—=

ol v v . .
5 10 15 20 25 30 102 10°
Wm  Wm 1
wr wy 1+0.2271 Neg




B Additional Radiation: Effects on the CMB

If we increase Neg, all the other parameters fixed:

RD: Radiation Dominated, MD: Matter Dominated, AD: Dark Energy Dominated; (1 + z) = a_l; wij = pi/pc
6000 :

— ANg=0
= AN4=2

First p@eak increase
soof  due to early ISW

4000 -

log p

3000

D" [uK? |

2000

1000

—log(1+2) =log(a)

50152025 :;0 0 0
I3
At zcyg: higher H o« p, = smaller comoving sound horizon rs H-1
= decrease of the angular scale of the acoustic peaks 65 = rs/Dp

= shift of the peaks at higher ¢



B Additional Radiation: Effects on the CMB

If we increase Neg, plus wp, to fix ze:

RD: Radiation Dominated, MD: Matter Dominated, AD: Dark Energy Dominated; (1 + z) = a~ !
6000 :

P Wi = pi/pc
— AN4=0
— ANg=2
ANg=2,
w,, rescaled

5000

4000 -

3000

log p
DT [uK* |

2000

1000

—log(1+2) =log(a)

ol v v . .
5 10 15 20 25 30 102 10°

= Contribution from early ISW effect restored (first peak)
= different slope of the Sachs-Wolfe plateau, peak positions, envelope of

high-¢ peaks = due to later zp
S Coarbme | “Commely o Saib Nawimes 0 Cellider Pivees andl the Comes - @RA0AT 000 AR



B Additional Radiation: Effects on the CMB

If we increase Neg, plus wp,, wp to fix zog, za:

RD: Radiation Dominated, MD: Matter Dominated, AD: Dark Energy Dominated; (1 + z) = a~ !

Wi = pPi/PC
6000F — ANg=0
ANy=2
ANg=2,
5000 ~  w, rescaled
ANyg=2,
T w,,w, rescaled
4000+
QU 5
= !
k) &= 3000f
)

2000

1000

—log(1+2) =log(a)

51015 20 25 50 0 0
= peak positions recovered;
= slope of the Sachs-Wolfe plateau recovered,;

® peak amplitude not recovered!



B Additional Radiation: Effects on the

CMB

6000 * Lo ‘
If we compensate Neg > 3.046 AN5=0
rescaling also w¢ and wa: — ANg=2
5000} . AN 4=2,
larger expansion rate H — &, rescaled
000l 3T all times and AN =2,
— increased Silk damping W » @y fescaled
el at high multipoles.
== 3000f :
)

2000

1000

Nes—Ho correlation!




B (Non-relativistic) LSy in cosmology: mf and m.

ms ~ 1 eV — vg is non-relativistic today (T, oc 107% eV)
LSv density parameter today:

2_ Ps 2 h? mq 2
ws = Qsh® = —= h* = —— dpp fs(p) [Acero et al., 2009]
Pc Pc T

ps energy density of non-relativistic LSv, pc critical density and h reduced Hubble parameter

Alternatively:

mgff = 94.16V ws J [Planck 2013 Results, XVI]

The factor (94.1€V) is the same for the active neutrinos:

Wy,active = Z m[//(94-1 eV)

active

If fs(p) =S active(p): mgff =ms J




B (Non-relativistic) LSy in cosmology: mf and m.

ms ~ 1 eV — vg is non-relativistic today (T, oc 107% eV)
LSv density parameter today:

2_ Ps 2 h? mq 2
ws = Qsh® = —= h* = —— dpp fs(p) [Acero et al., 2009]
Pc Pc T

ps energy density of non-relativistic LSv, pc critical density and h reduced Hubble parameter

Alternatively:

mgff = 94.16V ws J [Planck 2013 Results, XVI]

The factor (94.1€V) is the same for the active neutrinos:

Wy,active = Z m[//(94-1 eV)

active

If fs(p) =S active(p): mgff =ms J

1
eP/Ts +1

Thermal production = fs(p) = = mgff = AN:é4msJ




M LSy thermalization

Using SBL best-fit parameters for the LSy (Am3Z, 6s):

[Hannestad et al., JCAP 1207 (2012) 025]

log (18m’l [eV"])

—4 -3.5 -3 2.5 -2 -15
s 2
logw(sm 295)

(colors coding ANeg)

1

0.8

0.6

0.4

0.2

Neff
3.5

[Mirizzi et al., PRD 86 (2012) 053009]

L=—10"*
L=0 1
L=—10"3
L;;1 0;2
10 10°

T (MeV)
(L: lepton asymmetry)

Unless L > O(1073), AN, =~ 1J

See also: [Saviano et al., PRD 87 (2013) 073006], [Hannestad et al., JCAP 08 (2015) 019]

[to be precise: AN is slightly smaller at CMB decoupling, when the LSv starts to be non-relativistic]




B Impact of non-cold species on the CMB
14 zqg = (wp + we)/wr

independent of m, WO = wg + w2 + Wl today
\ /

mass of species relativistic at recombination
affect late time evolution only




B Impact of non-cold species on the CMB

14 zqg = (wp + we)/wr . . . .
independent of m, Wy = wjp + we + wy, today
~. —
mass of species relativistic at recombination
affect late time evolution only ’
— T~
small effects on the SW plateau Effects on the early ISW effect
(cosmic variance, degeneracies...) AG >omy o
G (0.1 eV) °
14

12
10

effects on the position of peaks

s = rs(nLs)/Da(nes)
Zrec dz

~
~

Dy =
A o H(z)
(this effect can be com-

pensated reducing Hp)
\—{correlation m,,—HO] 200 400 600 800 10001200
“Neutrino Cosmoloii”,ﬂ Lesiouriues et al.

T

~78
=
T
&5

O N,




M Free-streaming - |

damping in the perturbations
due to free-streaming

Growth equation: § —|——= At Gnp O
\Hubble drag pressure gravity

Jeans scale: pressure=gravity
= 4t Gpnp
[ TV e+ 2 I

k < ky k > ky
growth of density perturbations no growth can occur

Non-cold relics =——=

neutrino free-streaming scale

/3 H(z) N my, Q
kes(z) = \/;m ~ 0.7 (1 ev> N : +M h/Mpc

p energy density of a given fluid ov,uv(z) v velocity dispersion
6 = 8p/p perturbation (single fluid) H = H(z) Hubble factor at redshift z
cs sound speed of the fluid h reduced Hubble factor today




M Free-streaming - |l

Damping occurs for all k 2 kn,J

knr: corresponding

[“Neutrino Cosmology”, Lesgourgues et al.]
to v non-relativistic transition

(fixed h, wWm, wp, WA)

1.05
P k T T T T T
Plot: Prm,>o(k) f
PmV:O(k) 0.95 |-
0.9
= top to bottom: m, =0.05 eV Z oss
tom, =05 eV E: 08
AP 8Q, Smy o,
"~ ~ — % 07
P Qum 0.01 eV 065 - m,=00501,015 .,050eV
oo 1(;'3 1c|)'2 1r;" 1(I)° 1:)‘
k (h/Mpc)

Expected constraints from future surveys:
= Planck CMB + DES: O'(m,j) ~ 0.04-0.06 eV [Font-Ribera et al., 2014]
= Planck CMB + Euclid: o(m,) ~ 0.03 €V [Audren et al., 2013]
'S. Gariazzo  “Cosmology and Sterile Neutrinos”  Collider Physics and the Cosmos - 09/10/17  21/34




B LSy constraints from cosmology
[Archidiacono et al., JCAP 08 (2016) 067]

CMB+local: [Planck Collaboration, 2015] 10 720
0.90 . — ACDM# N, TT
—  ACDM+N,g#+m,: TT+HST 72
0.87 08 | — ACDM#N_g+m,: TT+HST+BAO 704 I
084 696
o8 68.8 %
~
0.78 & 68.0 5
0.7 67.2 =
0.72 66.4
0.69 o80 16 24 32 40
066 m, [eV]
free ANeg
0.0 0.4 0.8 1.2 1.6 e AN = 1
M e [eV] dataset |10 eV] of
Negr < 3.7 (TT+lensing+BAO) (TT) Negr < 3.5 ms < 0.66 eV
mf < 0.52 v [ms < 5 eV] (+Ho) Neg < 3.9  m, <0.55 eV

(+BAO) Neg < 3.8 ms < 0.53 eV

BBN constraints: Neg = 2.90 + 0.22 (BBN+ Yp) [Peimbert et al., 2016]

Summary: ANgg = 1 from LSy incompatible with mg ~ 1 eV!J

TT=Planck 2015 TT + lowTEB All the constraints are at 20 CL



M Incomplete Thermalization

Active-sterile oscillations in the early Universe:

mixing parameters from SBL data = AN.g ~ 1
[Hannestad et al., 2012] [Mirizzi et al., 2012]

Many probes constrain AN.g < 1. Do we need
® a mechanism to suppress oscillations and full thermalization of vs?
= to compensate ANg = 1 with additional mechanisms in Cosmology?

Some ideas:
= large lepton asymmetry [Foot et al., 1995; Mirizzi et al., 2012; many more]

® new neutrino interactions [Bento et al., 2001; Dasgupta et al., 2014;
Hannestad et al., 2014; Saviano et al., 2014; many more]

= entropy production after neutrino decoupling [Ho et al., 2013]

= very low reheating temperature [Gelmini et al., 2004; Smirnov et al., 2006]

" time varying dark energy components [Giusarma et al., 2012]

= larger expansion rate at the time of vs production [Rehagen et al., 2014]



@ New sterile neutrino interaction with pseudoscalar mediator
@ Suppressing thermalization with hidden interactions
@ Cosmological constraints



[ i i Archidi , SG et al., JCAP 08 (2016) 067
Adding a new interaction [Archidiacono, SG et 2 (2016) 067]

Prevent LSv new (hidden) e.g.: new broken
thermalization? interaction! U(1) symmetry

Coupling confined pseudoscalar
to sterile sector mediator ¢

\

[ Lagrangian: £ ~ gs¢vsysv4 j__, v4 annihilation into ¢ at late

\ times (to avoid mass bounds)

coupling gs large enough to
prevent full vs thermalization

¢ must avoid
mass bounds itself

induced by ¢ i l

[ 1076 < g <1079 is fine j
[Archidiacono et al., PRD 91 (2015) 065021]
no vs production until
after v, decoupling

matter effect

—»[incomplete thermalization, Neg < 4}

S. Gariazzo “Cosmology and Sterile Neutrinos” Collider Physics and the Cosmos - 09/10/17 24 /34



B Constraints on the pseudoscalar interaction?

Particle physics constraints
on the pseudoscalar?

— \

fifth force constraints?

IceCube constraints on
secret interactions?
[loka et al., 2014] [Cherry et al., 2014] l
[Ng et al.,2014] [Cherry et al., 2016] pseudoscalar is spin coupling,
but unpolarized medium

¢ coupled to g+ IceCube flux made of
\ active flavor neutrinos don't apply

very small mixing with 14
and interaction rate with ¢
[cross section o< g2/s] SN energy loss <10-4

[Farzan, 2003] s ~
don't apply




[Archidiacono, SG et al., JCAP 08 (2016) 067]

M Results - |
Standard LSy model: Pseudoscalar model (PSE):
ACDM+N.g + mg Neg = 3.046 + Nguia
(ACDM params+free Nog and ms) Nauia: vs+¢ contributions

720

1.0,
N\ —  ACDM+Ngtm,: TT

— ACDM+N g+m, : TT+HST

| = ACDM+N_ +m,: TT+HST+BAO

N fluid

[ /s/ury] °rr
[odn/ ;/“Dﬂ °"

8% 0.8 6 24 32 0
m, [eV] my [eV]

3 4 6 8 10

= Problems with AN,g = 1?7 solved (incomplete thermalization due to
suppression of active-sterile oscillations in primordial plasma);

= mass bounds avoided
= large ms allowed and preference for ms ~ 4 eV;

= high values of Hy predicted by cosmology
= more compatible with local measurements.



[Archidiacono, SG et al., JCAP 08 (2016) 067]

M Results - Il

.
]

— PSE:TT
~ ACDM+1y,: TT 1.0
----- SBL

— PSE:TT
o ACDM+1y,: TT

+ ACDM+N,gtm,: TT
- Riess2016

0.8|

m, [eV] H, [km/s/Mpc]
= PSE: posterior on ms wider = PSE: very close to Riess2016

= preference for high SBL peaks? results (better than
(agreement with recent results by NCDM+Neg + ms)
[lceCube, 2016] and [MINOS, = ACDM+1vs: even higher Hy, but
2016)) from ANeg =1 and ms ~ 0.



[Archidiacono, SG et al., JCAP 08 (2016) 067]

M Results -

What about the og tension (matter perturbations at small scales)?

ACDM model: Pseudoscalar model:
—— ACDM: Planck15 lowTEB-+highiTT 704 ’ —— Pseudoscalar: Planck15 lowTEB-+highTT 82
W= ACDM: Planck15 lensing only W ACDM: Planck15 lensing only
[ ACDM: CFHTLenS only (ultra conservative) 696 [ ACDM: CFHTLenS only (ultra conservative) 80

68.0 ‘E 76 %
ey =
67.2
% 74 %
~ -~
664 > -
k] =]
65.6 .. B
70

0%z

= smaller €, today. Good?
= Also higher 0g = no improvement! The tension remains.

= due to higher Hp, not to reduced matter fluctuations.
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keV sterile neutrino effects [keV v white paper, JCAP 01 (2017) 025]

mgy =~ O(keV) non-relativistic at CMB decoupling

indistinguishable

r
its free-streaming affects small scales!
out Matier (WOM)
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Production in the early Universe [k ¥ white paper, JCAP 01 (2017) 025]

{N production in the early Universe?}

CannOt be Only through neutrino [decay Of heavier par‘hcles}
oscillations if they are copiously

produced in the early Universe

includin e.g. decoupling of

) \ ) inflatons or generic scalar fields
given mean number of active

neutrinos ng, py = MpynNg > pc
J =

. . OK also if N is not pro-
[OK if early decouplmg] { duced in the early Universe }

/ !
d|!ut|on of energy den- produced through oscillations,
sity piv to acceptable but never reaches equilibrium

values during expansion thanks to small mixing angle
S. Gariazzo “Cosmology and Sterile Neutrinos” Collider Physics and the Cosmos - 09/10/17 30/34




. Constraints B I [keV v white paper, JCAP 01 (2017) 025]

Interaction strength Sinz(z(-))
Tremaine-Gunn / Lyman-o

1
-
'S

1 2 5 10 50
Dark matter mass Mp, [keV]

[Tremaine-Gunn 1979]
phase space distribution
in galaxy cannot exceed

degenerate Fermi gas



. Constraints _ I [keV v white paper, JCAP 01 (2017) 025]

[y
o
1
-
o

[

°|
'
=

[y

°I
-
N

1
[
w

N decay responsible of X-ray line at 3.55 ke
lsee e.g. [Iakulbovsky 201|5]

1 2 5 10 50
Dark matter mass Mp, [keV]

l radiative decay N — v + I
with E, = B, = me,/2 % @”c;sf’_

[N = 1.38 x 107 #sin? 20 keV s—

[y
o

Interaction strength Sinz(z(-))
Tremaine-Gunn / Lyman-o

1
-
'S

[
(=]




[Schneider, JCAP 04 (2016) 059]

M Constraints - |l

assuming resonant production = in presence of large lepton asymmetry

7 10

\ M, (kev] IKE-+HIRES
l MW satellites galaxies]
N cannot be all the DM BOSS
from power spectrum measurements

obtained through Lyman-« observations




[keV v white paper, JCAP 01 (2017) 025]

M Constraints - I

T § < T T T T
3 ECHo ‘\7; s KATRIN
107 F (stat. limit, \'{z‘pef (stat. limit, 7
3yrs) SSE 3yrs)-—---1
E
L 3
8
~ 107%F & pemeel 0N
3 = .
Q = B e T T
(‘\lg (D ---------
.a | I
g Model—-dependent
9| '® structure formation
1077+ = bounds i
£ |scalar decay —— >
EH | Ly-a: my=2.3 keV)i
resonant :
(Ly—a: mp=2.3 keV),
10—12 ! S i . R . o
0.5 1 5 10 50

my [keV]
[Astrophysics bounds stronger than those at terrestrial experiments! I




Conclusions
Universe evolution explained well by ACDM model
cosmological constraints on standard particles (neutrinos) v~
tensions between cosmological and local measurements (Hp, og) X
unaccounted systematics or new physics ?
light (ms ~ 1 eV) sterile neutrino (LSv) 7
mixing — LSv thermalized in the early Universe
cosmological bounds disfavor a thermalized, ms ~ 1 €V neutrino X
if ANeg < 1, the LSv is allowed v/
new mechanisms suppress active-sterile oscillations in the early Universe ?
detectable by PTOLEMY 7 (depends on AN,g)
new hidden sterile neutrino-pseudoscalar (¢) interaction 7
light pseudoscalar to avoid mass bounds after LSy annihilation v
ANeg < 1 allowed by matter effects induced by ¢ v
LSv can reduce Ho and o tensions v 7
keV sterile neutrino 7
cannot be thermal production
effects at small scales (free-streaming!)
bounds from Ly-a, satellite galaxies, X-ray surveys, ...
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Thanks for the attention! )
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M 2017 update of global 3+1 fit
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[SG et al., JHEP 06 (2017) 135]
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