

Stefano Gariazzo

IFIC, Valencia (ES) CSIC – Universitat de Valencia

Horizon 2020 European Union funding for Research & Innovation gariazzo@ific.uv.es
http://ific.uv.es/~gariazzo/

Autostati di massa dei neutrini e il loro ordine: un approccio Bayesiano

Basato su JCAP 03 (2018) 011

05/04/2018 - Incontri Fisica Alte Energie - Milano (IT)

Elementi di statistica Bayesiana

- II teorema di Bayes
- Comparare modelli in statistica Bayesiana

2 Applicazioni all'ordine delle masse dei neutrini

- II problema
- Parametrizzazioni e ordine
- Comparazione di modelli

3 Conclusioni

- 1 Elementi di statistica Bayesiana
 - II teorema di Bayes
 - Comparare modelli in statistica Bayesiana

- 2 Applicazioni all'ordine delle masse dei neutrini
 - Il problema
 - Parametrizzazioni e ordine
 - Comparazione di modelli

3 Conclusion

su cosa si fonda la statistica Bayesiana?

data un'ipotesi H, i dati d, e qualche informazione I (assunta come vera):

Teorema di Bayes:
$$p(H|d,I) = \frac{p(d|H,I) p(H|I)}{p(d|I)}$$

su cosa si fonda la statistica Bayesiana?

data un'ipotesi H, i dati d, e qualche informazione I (assunta come vera): $\pi(\theta)$

Teorema di Bayes:

$$p(H|d,I) = \frac{p(d|H,I) p(H|I)}{p(d|I)}$$

Probabilità a priori:
cosa sapevamo prima

su cosa si fonda la statistica Bayesiana?

data un'ipotesi H, i dati d, e qualche informazione I (assunta come vera): $\pi(\theta)$

p(θ)
Probabilità
a posteriori:
cosa sapremo
dopo

Teorema di Bayes:
$$p(H|d,I) = \frac{p(d|H,I) p(H|I)}{p(d|I)}$$

Probabilità a priori:

su cosa si fonda la statistica Bayesiana?

data un'ipotesi H, i dati d, e qualche informazione I (assunta come vera): $\pi(\theta)$

p(θ)
Probabilità
a posteriori:
cosa sapremo
dopo

Teorema di Bayes:

$$p(H|d,I) = \frac{p(d|H,I) p(H|I)}{p(d|I)}$$

Probabilità a priori: cosa sapevamo prima

Likelihood: $\mathcal{L}(\theta)$

fondata sui dati, assumendo H vera

su cosa si fonda la statistica Bayesiana?

data un'ipotesi H, i dati d, e qualche informazione I (assunta come vera): $\pi(\theta)$

p(θ)
Probabilità
a posteriori:
cosa sapremo
dopo

Teorema di Bayes:
$$p(H|d,I) = \frac{p(d|H,I) p(H|I)}{p(d|I)}$$

Evidenza Bayesiana:

$$p(d|I) \equiv \sum_{H} p(d|H,I) p(H|I)$$

Probabilità a priori: cosa sapevamo prima

Likelihood: $\mathcal{L}(\theta)$

fondata sui dati, assumendo H vera

su cosa si fonda la statistica Bayesiana?

data un'ipotesi H, i dati d, e qualche informazione I (assunta come vera): $\pi(\theta)$

p(θ)
Probabilità
a posteriori:
cosa sapremo
dopo

Teorema di Bayes:
$$p(H|d,I) = \frac{p(d|H,I) p(H|I)}{p(d|I)}$$

Evidenza Bayesiana:

$$p(d|I) \equiv \sum_{II} p(d|H,I) p(H|I)$$

Probabilità a priori: cosa sapevamo prima

Likelihood: $\mathcal{L}(\theta)$

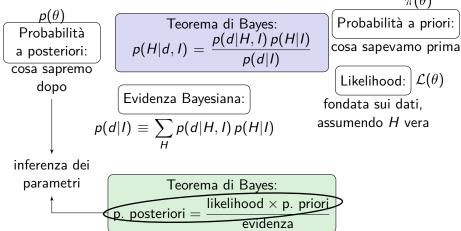
fondata sui dati, assumendo *H* vera

Teorema di Bayes:

$$p. \ posteriori = \frac{likelihood \times p. \ priori}{evidenza}$$

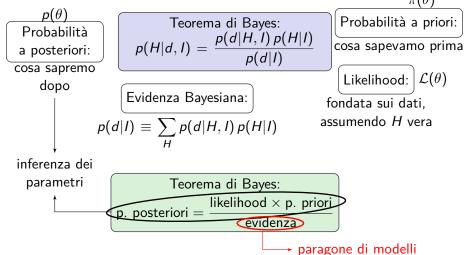
su cosa si fonda la statistica Bayesiana?

data un'ipotesi H, i dati d, e qualche informazione I (assunta come vera): $\pi(\theta)$



su cosa si fonda la statistica Bayesiana?

data un'ipotesi H, i dati d, e qualche informazione I (assunta come vera): $\pi(\theta)$



"Evidenza Bayesiana"

$$p(d|\mathcal{M}) = \frac{Z}{Z} = \sum_{H} p(d|H, I) p(H|I)$$

somma su diverse ipotesi (discrete) (sempre assumendo *I* vera)

"Evidenza Bayesiana"

$$p(d|\mathcal{M}) = \frac{Z}{Z} = \int_{\Omega_{\mathcal{M}}} p(d|\theta, \mathcal{M}) \, p(\theta|\mathcal{M}) \, d\theta$$

integrale sulle ipotesi (continue) = valori dei parametri nel modello $\mathcal M$ (considerando $\mathcal M$ corretto)

"Evidenza Bayesiana"

$$p(d|\mathcal{M}) = \frac{Z}{Z} = \int_{\Omega_{\mathcal{M}}} p(d|\theta, \mathcal{M}) \, p(\theta|\mathcal{M}) \, d\theta$$

integrale sulle ipotesi (continue) = valori dei parametri nel modello $\mathcal M$ (considerando $\mathcal M$ corretto)

Cosa succede se abbiamo diversi modelli \mathcal{M}_i ?

usare Z_i per comparare i modelli

"Evidenza Bayesiana"

$$p(d|\mathcal{M}) = \frac{Z}{Z} = \int_{\Omega_{\mathcal{M}}} p(d|\theta, \mathcal{M}) p(\theta|\mathcal{M}) d\theta$$

integrale sulle ipotesi (continue) = valori dei parametri nel modello $\mathcal M$ (considerando $\mathcal M$ corretto)

Cosa succede se abbiamo diversi modelli \mathcal{M}_i ?

usare Z_i per comparare i modelli

P. a posteriori del modello:

$$p(\mathcal{M}_i|d) \propto p(\mathcal{M}_i) Z_i$$

$$p(\mathcal{M}_i) \text{ p. a priori del modello}$$

costante di proporzionalità dipende solo dai dati

Fattore di Bayes

È migliore \mathcal{M}_1 o \mathcal{M}_2 ?

$$\left[\frac{p(\mathcal{M}_1|d)}{p(\mathcal{M}_2|d)} = B_{1,2} \frac{p(\mathcal{M}_1)}{p(\mathcal{M}_2)}\right]$$

Fattore di Bayes:

$$B_{1,2} = \frac{Z_1}{Z_2} \quad \Rightarrow \quad \ln B_{1,2} = \ln Z_1 - \ln Z_2$$

Fattore di Bayes

È migliore \mathcal{M}_1 o \mathcal{M}_2 ?

$$\boxed{\frac{p(\mathcal{M}_1|d)}{p(\mathcal{M}_2|d)} = B_{1,2} \frac{p(\mathcal{M}_1)}{p(\mathcal{M}_2)}}$$

Fattore di Bayes:

$$B_{1,2} = \frac{Z_1}{Z_2} \quad \Rightarrow \quad \ln B_{1,2} = \ln Z_1 - \ln Z_2$$

se p. a priori sono uguali $[p(\mathcal{M}_1) = p(\mathcal{M}_2)]$, $B_{1,2}$ determina il modello preferito:

$$B_{1,2}>1 \; (\ln B_{1,2}>0)$$
 $B_{1,2}<1 \; (\ln B_{1,2}<0)$ $\mathcal{M}_2 \; ext{preferito}$

Preferenza per il modello migliore:

$$(|B_{1,2}|:1)$$

rilevanza del segnale secondo la scala di Jeffreys:

$ \operatorname{In} B_{1,2} $	Preferenza	probabilità	rilevanza
< 1.0	≲ 3 : 1	< 0.750	inconclusiva
$\in [1.0, 2.5]$	(3-12):1	< 0.923	debole
\in [2.5, 5.0]	(12-150):1	< 0.993	moderata
> 5.0	> 150 : 1	> 0.993	forte

Preferenza & rilevanza sempre valide

probabilità corretta solo in caso di due modelli con uguale p. a priori (per esempio, ordine delle masse dei neutrini: normale O inverso)

Rasoio di Occam

Cosa ci insegna il paragone di modelli in statistica Bayesiana?

modello con più parametri — fit migliore (di solito)

veramente servono tutti i parametri?

il fattore di Bayes penalizza i modelli più complessi del necessario!

Rasoio di Occam

Cosa ci insegna il paragone di modelli in statistica Bayesiana?

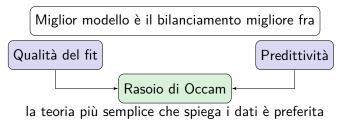
e se usiamo gli stessi parametri ma cambimo la loro p. a priori?

Evidenza bayesiana dipende da p. a priori!

Fattore di Bayes penalizza p. a priori più estese del necessario!

Rasoio di Occam

Cosa ci insegna il paragone di modelli in statistica Bayesiana?



e se usiamo gli stessi parametri ma cambimo la loro p. a priori? Evidenza bayesiana dipende da p. a priori!

Fattore di Bayes penalizza p. a priori più estese del necessario!

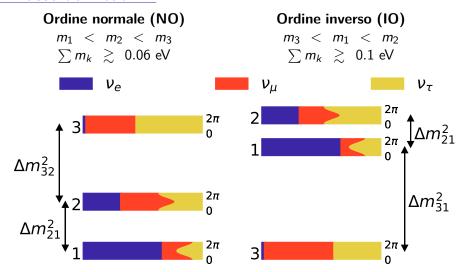
Fattore di Bayes NON penalizza i modelli in cui ci sono parametri non vincolati dai dati

- Elementi di statistica Bayesiana
 - II teorema di Bayes
 - Comparare modelli in statistica Bayesiana

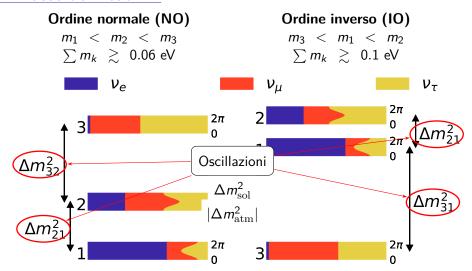
- 2 Applicazioni all'ordine delle masse dei neutrini
 - II problema
 - Parametrizzazioni e ordine
 - Comparazione di modelli

3 Conclusion

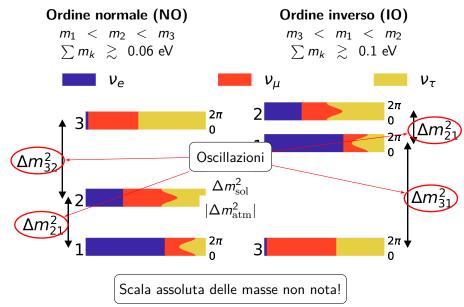
Masse dei neutrini



Masse dei neutrini



Masse dei neutrini



Si può determinare l'ordine delle masse ponendo limiti su $\sum m_k$?

Limiti sulla scala assoluta delle masse dei neutrini

Effetti dei neutrini sullo spettro del decadimento β

Mainz/Troitsk:
$$m_{
u_e} \lesssim 2$$
 eV

Katrin (atteso):
$$m_{
u_e} \lesssim 0.2$$
 eV

$$m_{
u_e}^2 = \sum_k |U_{ek}|^2 \, m_k^2$$

Limiti sulla scala assoluta delle masse dei neutrini

Effetti dei neutrini sullo spettro del decadimento β

Mainz/Troitsk:
$$m_{\nu_e}\lesssim 2$$
 eV $m_{\nu_e}^2=\sum_k |U_{ek}|^2 m_k^2$ Katrin (atteso): $m_{\nu_e}\lesssim 0.2$ eV

(se il neutrino è particella di Majorana)

Limiti dal doppio decadimento β senza neutrini

Misura
$$T_{1/2}^{0
u}$$
, converti in m_{etaeta} usando $m_e/m_{etaeta}={\cal M}'^
u\sqrt{G_{0
u}\,T_{1/2}^{0
u}}$

e infine
$$m_{etaeta}=\left|\sum_{k} {
m e}^{ilpha_k} \, U_{{
m e}k}^2 \, m_k
ight|_{lpha_k {
m fasi di Majorana}}$$

Limiti sulla scala assoluta delle masse dei neutrini

Effetti dei neutrini sullo spettro del decadimento β

Mainz/Troitsk:
$$m_{\nu_e}\lesssim 2$$
 eV $m_{\nu_e}^2=\sum_k |U_{ek}|^2 m_k^2$ Katrin (atteso): $m_{\nu_e}\lesssim 0.2$ eV

(se il neutrino è particella di Majorana)

Limiti dal doppio decadimento β senza neutrini

Misura
$$T_{1/2}^{0\nu}$$
, converti in $m_{\beta\beta}$ usando $m_e/m_{\beta\beta}=\mathcal{M}'^{\nu}\sqrt{G_{0\nu}T_{1/2}^{0\nu}}$ e infine $m_{\beta\beta}=\left|\sum_k e^{i\alpha_k} U_{ek}^2 m_k\right|$ m_e massa elettrone, $G_{0\nu}$ spazio fasi, \mathcal{M}'^{ν} elemento di matric

Limiti cosmologici attraverso l'effetto delle masse dei neutrini

 \Rightarrow radiazione cosmica di fondo (CMB) ed espansione dell'universo

Al momento $\sum_k m_k \lesssim 0.1 X$ eV, misure di singole m_k in futuro?

Cosa possiamo ricavare dai dati odierni?

- [Hannestad, Schwetz, 2016]: preferenza estremamente debole (2:1, 3:2) per NO (cosmologia + fit di oscillazioni [Bergstrom et al., 2015]) approccio bayesiano;
- [Gerbino et al, 2016]: preferenza estremamente debole (up to 3:2) per NO (solo cosmologia), approccio bayesiano;
- [Simpson et al., 2017]: forte preferenza per NO (limiti cosmologici su $\sum m_{\nu}$ + misure di Δm_{21}^2 e $|\Delta m_{31}^2|$) approccio bayesiano;
- 4 [Schwetz et al., 2017], "Comment on [Simpson et al., 2017]": effetto di p. a priori?
- [Capozzi et al., 2017]: preferenza a 2σ per NO (cosmologia + fit di oscillazioni [Capozzi et al., 2016, aggiornamento 2017]) approccio frequentista;
- [Caldwell et al., 2017] indicazione molto debole per NO (cosmologia $+ \beta\beta 0\nu$ + fit di oscillazioni [Esteban et al., 2016] riadattato) approccio bayesiano;
- 7 [Wang, Xia, 2017]: Fattore di Bayes NO vs IO non informativo (solo cosmologia).

Cosa possiamo ricavare dai dati odierni?

- [Hannestad, Schwetz, 2016]: preferenza estremamente debole (2:1, 3:2) per NO (cosmologia + fit di oscillazioni [Bergstrom et al., 2015]) approccio bayesiano;
- Gerbino et al, 2016]: preferenza estremamente debole (up to 3:2) per NO (solo cosmologia), approccio bayesiano;
- [Simpson et al., 2017]: forte preferenza per NO (limiti cosmologici su $\sum m_{\nu}$ + misure di Δm_{21}^2 e $|\Delta m_{31}^2|$) approccio bayesiano;
- 4 [Schwetz et al., 2017], "Comment on [Simpson et al., 2017]": effetto di p. a priori?
- 5 [Capozzi et al., 2017]: preferenza a 2σ per NO (cosmologia + fit di oscillazioni [Capozzi et al., 2016, aggiornamento 2017]) approccio frequentista;
- [Caldwell et al., 2017] indicazione molto debole per NO (cosmologia $+ \beta\beta 0\nu$ + fit di oscillazioni [Esteban et al., 2016] riadattato) approccio bayesiano;
- 7 [Wang, Xia, 2017]: Fattore di Bayes NO vs IO non informativo (solo cosmologia).

Parametrizzazioni, p. a priori e dati

[SG et al., JCAP 03 (2018) 011]

Oscillazioni di neutrini

$$\chi^2 = -2\log\mathcal{L}_{\mathrm{osc}}$$
 dal fit globale [de Salas et al, 2017]

Oscillazioni

Parametro	p. a priori		
$\sin^2 \theta_{12}$	0.1 - 0.6		
$\sin^2 heta_{13}$	0.00 - 0.06		
$\sin^2 heta_{23}$	0.25 - 0.75		

Masse: vedi oltre!

Parametrizzazioni, p. a priori e dati

Dati $\beta\beta0\nu$

Likelihood approssimate come in [Caldwell et al, 2017], usando [Gerda, 2017] (Ge), [KamLAND-Zen, 2016], [EXO-200, 2014] (Xe)

[SG et al., JCAP 03 (2018) 011]

Oscillazioni di neutrini

$$\chi^2 = -2 \log \mathcal{L}_{
m osc}$$
 dal fit globale [de Salas et al, 2017]

etaeta 0 u		Oscillazioni		
Parametro	p. a priori	Parametro	p. a priori	
α_2	$0-2\pi$	$\sin^2 \theta_{12}$	0.1 - 0.6	
$lpha_3$	$0 - 2\pi$	$\sin^2 \theta_{13}$	0.00 - 0.06	
$\mathcal{M}^{0 u}_{^{76}Ge}$	4.07 - 4.87	$\sin^2 \theta_{23}$	0.25 - 0.75	
$\mathcal{M}_{136}^{0\nu}$	2.74 - 3.45		•	

Masse: vedi oltre!

Parametrizzazioni, p. a priori e dati

Dati cosmologici

Dati $\beta\beta$ 0 ν

Dati completi CMB (temperatura, polarizzazione) di [Planck, 2015], con modello ACDM come base

Likelihood approssimate come in [Caldwell et al, 2017], usando [Gerda, 2017] (Ge), [KamLAND-Zen, 2016],

[EXO-200, 2014] (Xe)

Parametro

[SG et al., JCAP 03 (2018) 011]

Oscillazioni di neutrini

$$\chi^2 = -2 \log \mathcal{L}_{
m osc}$$
 dal fit globale [de Salas et al, 2017]

Oscillazioni

p. a priori

0.1 - 0.6

0.00 - 0.06

0.25 - 0.75

Parametro

 $\sin^2\theta_{12}$

 $\sin^2 \theta_{13}$

 $\sin^2\theta_{23}$

Cosmologia				
Parametro	p. a priori			
ω_b	0.019 - 0.025			
ω_c	0.095 - 0.145			
Θ_s	1.03 - 1.05			
au	0.01 - 0.4			
n _s	0.885 - 1.04			
$\log(10^{10}A_s)$	2.5 - 3.7			

 $\begin{vmatrix} \alpha_2 & 0 - 2\pi \\ \alpha_3 & 0 - 2\pi \\ \mathcal{M}_{76\,Ge}^{0\nu} & 4.07 - 4.87 \\ \mathcal{M}_{136\,\chi_e}^{0\nu} & 2.74 - 3.45 \end{vmatrix}$

 $\beta\beta0\nu$

p. a priori

Masse: vedi oltre!

[SG et al., JCAP 03 (2018) 011]

[Simpson et al, 2017]

[Caldwell et al, 2017]

usando
$$m_1$$
, m_2 , m_3 (A)

usando
$$m_{ ext{lightest}}, \, \Delta m_{21}^2, \, |\Delta m_{31}^2| \, \left(\mathsf{B}\right)$$

intuizione dice: (B) è più vicino a osservabili! Meglio di (A)?

P. a priori deve essere lineare o logaritmica in m_k ($m_{\rm lightest}$)?

I dati possono dire chi è meglio, (A) o (B), lineare o log?

Parametrizzare le masse dei neutrini

[Simpson et al, 2017]

[Caldwell et al, 2017]

usando
$$m_1$$
, m_2 , m_3 (A)

usando
$$m_{ ext{lightest}},\ \Delta m_{21}^2,\ |\Delta m_{31}^2|\ (\mathsf{B})$$

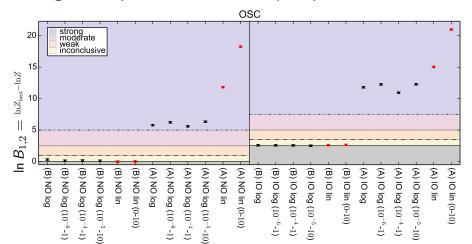
intuizione dice: (B) è più vicino a osservabili! Meglio di (A)?

P. a priori deve essere lineare o logaritmica in m_k ($m_{lightest}$)?

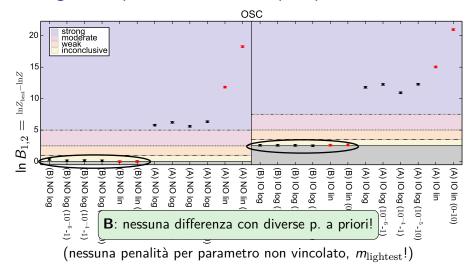
I dati possono dire chi è meglio, (A) o (B), lineare o log?

Caso A		Caso B			
Parameter	P. priori	Intervallo	Parametro	P. priori	Intervallo
	lineare	$0-1$ $10^{-5}-1$	/->/	lineare	0 – 1
m_1/eV	log	$10^{-5} - 1$	$m_{ m lightest}/{ m eV}$	log	$10^{-5} - 1$
m ₂ /eV	lineare	$0-1$ $10^{-5}-1$	$\Delta m_{21}^2/\text{eV}^2$	lineare	$5 \times 10^{-5} - 10^{-4}$
111 <u>2</u> / ev	log	$10^{-5} - 1$	Δπ ₂₁ /εν	IIIIeare	3 × 10 - 10
m ₃ /eV	lineare	$0-1$ $10^{-5}-1$	$ \Delta m_{31}^2 /{\rm eV}^2$	lineare	$1.5 \times 10^{-3} - 3.5 \times 10^{-3}$
1113/ CV	log	$10^{-5} - 1$	\(\Delta \tau_{31} \) / ev	illicarc	1.5 × 10

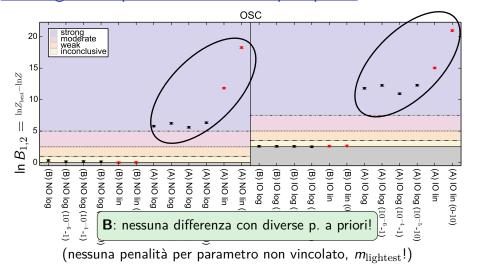
Paragoni fra parametrizzazioni e p. a priori al., JCAP 03 (2018) 011]



Paragoni fra parametrizzazioni e p. a priori



Paragoni fra parametrizzazioni e p. a priori al., JCAP 03 (2018) 011]

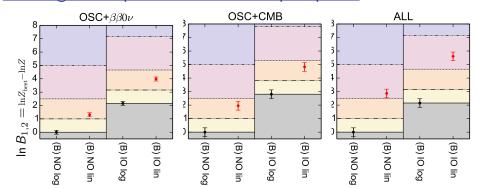


A: sempre fortemente sfavorito!

(molto spazio parametri "sprecato", no parametri non vincolati!)

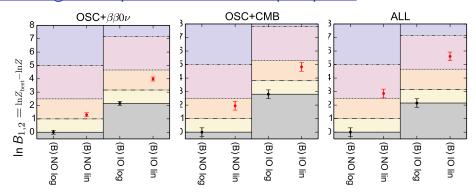
S. Gariazzo

Paragoni fra parametrizzazioni e p. a priori al., JCAP 03 (2018) 011]



compariamo lineare vs logaritmico

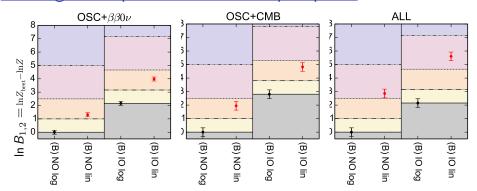
Paragoni fra parametrizzazioni e p. a priori



compariamo lineare vs logaritmico

log è debolmente/moderatamente più efficiente

Paragoni fra parametrizzazioni e p. a priori

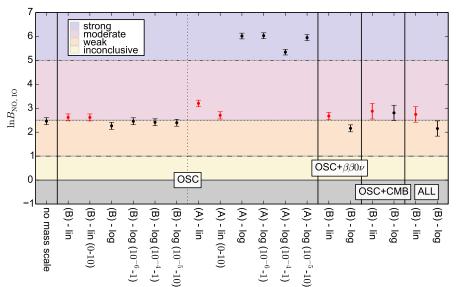


compariamo lineare vs logaritmico

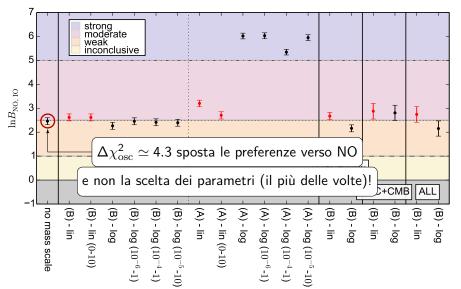
log è debolmente/moderatamente più efficiente

per riassumere: caso B, log è meglio!

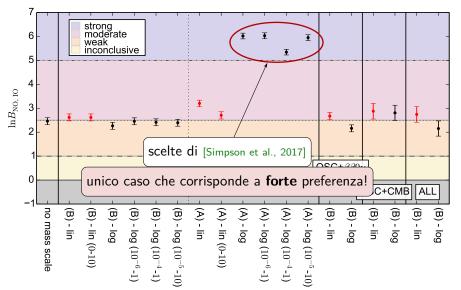
Paragoni fra NO e IO



Paragoni fra NO e IO



Paragoni fra NO e IO



- 1 Elementi di statistica Bayesiana
 - II teorema di Bayes
 - Comparare modelli in statistica Bayesiana

- 2 Applicazioni all'ordine delle masse dei neutrini
 - Il problema
 - Parametrizzazioni e ordine
 - Comparazione di modelli

3 Conclusioni

Conclusioni

Comparazione bayesiana di modelli
attraverso evidenza bayesiana/fattore di Bayes
per test robusti di parametrizzazioni
usando i dati

Attenzione alle scelte di p. a priori

(o di altre scelte soggettive)

che possono influenzare i risultati

i dati preferiscono moderatamente l'ordine normale vs inverso per le masse dei neutrini

Conclusioni

Comparazione bayesiana di modelli attraverso evidenza bayesiana/fattore di Bayes per test robusti di parametrizzazioni usando i dati

Attenzione alle scelte di p. a priori

(o di altre scelte soggettive)

che possono influenzare i risultati

i dati preferiscono moderatamente l'ordine normale vs inverso per le masse dei neutrini

Grazie per l'attenzione!