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In a previous paper we have shown that an ideal gas of fundamental strings is not able to
sustain, by itself, a phase of isotropic inflation of the Universe. We show here that fundamental
strings can sustain, instead, a phase of anisotropic inflation accompanied by the contraction of a
sufficient number of internal dimensions. The conditions to be met for the existence of such a
solution to the Einstein and string equations are derived, and the possibility of a successful
resolution of the standard cosmological problems in the context of this model is discussed.

1. Introduction

It is well known that the classical problems of standard cosmology may be solved
by a primordial phase of accelerated expansion (inflation). Many inflation scenar-
ios, involving just the minimal number of spatial dimensions, have been proposed
with various degrees of success (see ref. [1] for a recent review). In most cases, a
large and positive cosmological constant (vacuum energy) is needed, during a long
enough period of time. Since present bounds on the cosmological constant are very
tight, one is faced with the problem of fine-tuning a potential so that the ratio of
vacuum energy density during and after inflation is enormously large.

In view of this problem it seems worthwhile to consider inflationary scenarios in
which no cosmological constant is actually required in order to drive inflation in
the three physical spatial dimensions. A possible mechanism of this kind is
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provided by the simultaneous contraction of some extra dimensions, as first
pointed out in some pioneer papers on Kaluza-Klein (KK) cosmology [2].

Consider indeed a cosmological manifold which is the direct product of a
(d + 1)-dimensional space-time and an n-dimensional space M,=M,,, ® M,.
We shall denote by D =d + n + 1 the total number of dimensions. Suppose that,
in the cosmic-time “gauge”, this space is described by the metric

G5 = diag(1, —R*(£)8,;, —r*(1)8,), (1.1)

where R(¢) and r(¢) are, respectively, the scale factors of M, and M,. (Conven-
tions: A,B=0,...,D—-1;i,j=1,....d; a,b=d+1,...,d+n.) In this metric,
the (0,0) component of the Einstein equations reads

d d>R  n d*r T
b — = =8y T~ —— |, (1.2)

where G, is the D-dimensional gravitational constant, and T is the trace of the
energy-momentum of the matter sources. It may be possible, therefore, to realize
an inflationary expansion in d dimensions (i.e. d°R/d¢? > 0) even if the righthand
side of eq. (1.2) is negative, provided the evolution of the other n dimensions is
characterized by a negative acceleration (d*r/dt? < 0).

The consistency, and the efficiency, of a mechanism of dynamical dimensional
reduction depends crucially, of course, on the number of dimensions and on the
equation of state characterizing the gravitational sources, as shown in detail by a
recent phenomenological discussion [3]. As possible models of sources compatible
with inflation during the decoupling of internal and external dimensions, the
examples so far considered include a relativistic gas of massless particles [2], a
perfect fluid with phenomenological equation of state [3-5], the antisymmetric
tensor of supergravity theories [6] and, more recently, scalar fields at finite
temperature [7].

The problem with KK cosmology is that there is no consistent quantum theory of
gravitational or gauge interactions in D >4. The only exception to this rule
appears to reside in string theory. Since string matter may behave differently from
point particles it seems worthwhile to reconsider these KK inflationary scenarios
within string theory. Also, in a realistic string unification theory, the scale of
compactification of the extra dimensions is expected to be not much different from
the string mass scale [8-10]. It may be possible, therefore, for the multidimensional
phase of our universe to be necessarily a “stringy” phase so that, as stressed in ref.
[8], dimensional reduction cannot be adequately described in the field theory limit,
but requires instead the direct application of string theory in non-trivial back-
grounds.
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In this paper we present a particular solution of the Einstein-plus-string equa-
tions, showing that it is possible to have a self-sustained string plus gravity system
which exhibits inflationary expansion of three-dimensional space, and simultane-
ous contraction of the other n dimensions, provided »n > 10.

This solution describes a phase dominated by unstable strings [11,12], i.e.
non-oscillating string configurations whose proper amplitude tends to evolve,
asymptotically, like the scale factor (while the co-moving amplitude becomes
“frozen”). Their effective pressure is negative in physical three-dimensional space,
and positive (but negligible) in internal space. With this source, the internal
dimensions contract with a negative acceleration, while the three-dimensional
spatial expansion turns out to be of the super-inflationary type [13], i.e. character-
ized by d°R/dt*>0 and dH/dt >0, where H=R™'dR/d¢ is the Hubble
parameter.

Consequently, the string energy density grows with R and approaches a singular-
ity in a finite (cosmic time) interval. However, this picture of the early universe
cannot be extended above a maximal density, where string and other quantum
corrections to the Einstein equations cannot be neglected, and where, in any case,
a transition to the standard, radiation-dominated scenario may be expected.
Nevertheless it seems possible, according to our mechanism, to obtain a significa-
tive inflation of the causal horizon of physical space-time already before reaching
these maximal (planckian) densities.

The content of the paper is as follows. In sect. 2, considering the equations of
motion for a string embedded in an isotropic Friedmann-Robertson—-Walker
(FRW) background, we review the general form of the leading-order solution valid,
in the large-R limit, in the case of inflationary expansion. In sect. 3 we present a
new approximate solution to the same string equations, valid in the small-R limit
for a negatively accelerated contraction (dR/dt <0, d’°R/dt? <0). In sect. 4 we
discuss the values of D and »n for which the Einstein and string equations can be
simultaneously and consistently satisfied by anisotropic configurations in which d
dimensions inflate, and the remaining n dimensions contract. The possibility that
this scenario, in the particular case of D =4 & 22 dimensions, may represent a
viable mechanism to solve at least some of the standard cosmological problems is
finally discussed in sect. 5.

2. Asymptotic string configurations in inflationary
expanding backgrounds

The equations of motion of a string, coupled to a D-dimensional background
metric G4, can be written [11, 14] (in the gauge in which the world-sheet metric is
conformally flat)

XA- X"+ A XE+ X P)(XC-XC)=0, (2.1)
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where I' is the Christoffel connection for the metric G, p5; a dot and a prime
denote, respectively, differentiation with respect to the world-sheet time and space
variables, 7 and . The variation of the action with respect to the world-sheet
metric provides, in addition, the two constraints [11, 14]

G p(XAXP+X"X®Y=0, G,zXXx"=0. (2.2)
AB

We are interested, in this section, in the case of a homogeneous and isotropic
cosmological background, with flat spatial sections, described in the cosmic time
gauge (X°=¢) by the FRW metric

G,p=diag(1l, —R*(1)8,), i,j=1,...,D~1 (2.3)

(see ref. [14] for a discussion of the fact that such a manifold does not provide a
conformally invariant o-model, at the quantum level, and hence it is not a
candidate string vacuum). The string equations and constraints thus become,
explicitly,

dR
NIN:ITNN Tkv |Ak:v~”Ou ANAV
Xi-X 2 IR X' —1'X") =0 2.5
:...T' Xt =1t "y — s .
R %A ) (2)
(2 72 2 7 i 2 10 z
2+ =R _CC + (XY, (2.6)
i =R2XX". (2.7)

Consider, in particular, an inflationary expanding background (dR/dt> 0,
d’R/dt? > 0), parametrized by the following scale factor:

R(t) = [k(1—a)(t.—1)] /"7, (2.8)

where a >0 and k,t_. are positive constant parameters. We have, in particular,
super-inflation (dH/d¢ > 0) for 0 <a <1, power-law inflation (d H/d¢ < 0) for
a>1, while de Sitter (i.e. exponential) inflation (dH/d¢=0) corresponds to
a=1. The R — « limit corresponds to ¢ — ¢, for super-inflation, and to ¢ — « in
the other cases.

For this vmnwmnocsa the mxwg solution to the m:_:m equations (2.4)—(2.7), in the

« Faa ama

e mrwinn le o avaund a canfionra-
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tion described by (7 < 0)
" (—kL7)' ™
,T) =1, — , .
0,7)=t, (1= (2.9)
MNNA v \A q.m\&:. 1+2 [
, — Al 4+ _ api
o,T (o) 201 = 2a) +7 T*B(o), (2.10)
where
L*=A4'4",  A'B'=0 (2.11)

and, by exploiting o reparametrization invariance, we have imposed the “gauge”

A'A" =0, which implies L' =0. This configuration, which depends on 2D — 4
arbitrary functions of o, represents the general solution of egs. (2.4)-(2.7), to
leading order in 7, as 7 goes to zero. (Note that, according to eq. (2.9), the scale
factor can be rewritten, in this approximation,

R(r)=(-kL7) ", (2.12)

so that the 7 — 0 limit corresponds indeed to R — «.)
In the case @ =1 (de Sitter), eq. (2.9) is to be replaced by [11]

t(o,7) =~k 'In(—kL7), (2.13)

while, for a = 3, eq. (2.10) is to be replaced by [11]
Xi(o,7) =A+ 372 [ B + A" In(~7)]. (2.14)

We also recall that the general solution for X, without the gauge-fixing condition

=0, has been reported in ref. [11].

It is important to stress that, for these string configurations, the world-sheet
time 7 turns out to be proportional, asymptotically, to the conformal time coordi-
nate 7 of the background manifold, defined by R = dt/dx. Indeed, from egs. (2.9)
and (2.12), f =RL, so that

n=7L. (2.15)
Moreover we note, for future reference, that for these configurations RX"" be-

haves asymptotically like R (as X‘— 0 for + — 0), and that the configurations are
characterized by the general properties

il > 1r|, X < |X"]. (2.16)
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As a consequence, their net contribution to the effective pressure of the
gravitational sources is negative. Indeed, by using the constraints (2.2), the string
energy—momentum tensor T48 obtained by varying the action with respect to the
background metric, i.e.

TAB(x) = [dodr(X4XP -X""X"P)8P(X —x)  (2.17)

1
7aV—G
can be shown to satisfy the identity [11]

7oV =G [GyT"(x) = G, TV(x)]
= 2 do dr6”(X ~x)|Goo(X")" + G, XX (2.18)

((a)! is the string tension, and G = det G,5). On the other hand, for a perfect
fluid in the FRW background (2.3), one has

Tw=p, T;=-pG,;=pR%,, (2.19)

where p and p are functions of the cosmic time only. According to eq. (2.16), the
equation of state of an ideal gas of strings described asymptotically by egs. (2.9)
and (2.10) can thus be approximated by [11]

p=—-p(D-1), (2.20)

which implies p <0.

3. Asymptotic string configurations in backgrounds
with accelerated contraction

Consider again a string coupled to the FRW metric (2.3), with a scale factor,
however, which parametrizes a negatively accelerated (d?R/d¢? < () contraction
(dR/dt <0), ie.

R(t) = [k(1=8)(t.— )]/, (3.1)
where 0 <8< 3 and r <t_.

In the small-R limit (i.e. t > 1), the exact solution to egs. (2.4)-(2.7) can be
expanded again as a power series in 7, around the following leading-order
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approximation (7 < 0):

(—kL7)'° -
t(o,7)=t.— K(1-5) ° (3.2)
.XAQ\J H.ARQV.TWQNURQ.V +qTS~wRva (3.3)
where
12(e) = [(1-28)B'BIK*] /T (3.4)
D! L A"+ 28 n\: 3.5
?T:NL teo (3:5)

and A, B' are arbitrary functions of & satistying the constraint A'B’ =0 (note
that, according to eq. (3.2), the 7 — 0 limit corresponds now to R — 0).

Since, for the general solution, only 2D — 4 arbitrary functions are required, we
can further restrict the leading-order approximation (3.2), (3.3) by imposing the
convenient gauge condition B'B’* = 0 (which implies, as before, L’ = 0). In any case
this approximate solution describes, in the R — 0 limit, string configurations with
shrinking proper amplitude, for which RX " behaves asymptotically like R, while
RX' behaves like R™'. These configurations may be regarded as unstable in the
sense of refs. [11, 14] since they are not oscillating in 7 as if the string oscillators
would develop, in the small-R regime, imaginary frequencies. Such configurations,
moreover, are characterized by the asymptotic properties

1> 1], 1X7] > X" (3.6)

which lead, in the perfect fluid approximation, to a radiation-like equation of state.
The identity (2.18) can indeed be rewritten as

7oV =G [GoT"(x) + G, T"(x)]
= 2 dodr8°(X - 2)|Gua( X) + G, X"x"]. (3.7)

For an ideal gas of strings satisfying approximately eq. (3.6) at small R we thus
have, after using eq. (2.19),

p=p(D-1) (3.8)

which is just the equation of state for a gas of massless particles.
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4. String-driven inflation and dimensional reduction

Consider now a D-dimensional anisotropic background, Mp =M, ® M,,
parametrized in the cosmic-time gauge by X 4= (¢, X', X*) and by the metric (1.1)
(we recall that i,j range from 1 to d, while a,b from d+1 to d+n). In this
background the stress tensor for a perfect fluid has the general form

T = &mw?, —pd/, Imm%v, (4.1)

where p, p,q are functions of ¢ only (we have called g the pressure in the
“internal” n-dimensional space M,). The Einstein equations,

ﬂ
m w m
=8wGp\T, — ——=9 PN
R, T bﬁ A D —2%4 v (4.2)

with a perfect fluid as source, become explicitly
d >R n d’r 87Gp

- PiD- + .

1dR d-1(dR\* n dRdr 8wG, ) | (44
-+ )= —=—2[p-p(1-n)—ng], (4
Rar R A& Rar ai " pozlempmm mnal (44)
1d%r n-1/(dr\? d dr dR Mw,z.Qbﬁ d+ald H_ 45
——+ — | +—=——=——[p- -1]. (4.
PTERENPE A&v R - poalprdrald=Dl (43)

We take, in particular, a perfect gas of strings as the dominant source of gravity.
According to the constraints (2.2), the string stress tensor must satisfy the identity

7oV~ G (GoT® = G;T" + Gas ™)
= |N\ dodr8P(X —x) Tg@a% + G, XX+ Q@%Qs_ , (4.6)

where T4 is given in eq. (2.17), and X“ satisfies the string equations (2.1) and
constraints (2.2), which in this background become, respectively,

. Q” L2 .2 dr .2 an2
P+ RO = ()] g [(29) —(xy] =0, @)
Xi-Xx" 2 R ixi—rxy =0 4.8
i_yriy Xi—t "y — , .
R &A ) (48)
X -X 2a X —t'X 0 4.9
“_X" 4+ —— (X —-1'X'"") =0, .
r &A ) (49)
P2+t = R0+ (x| + 2 + (] (4.10)
it = R2X'X" +r’X°X". (4.11)
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We look for consistent solutions to the coupled Einstein-string equations repre-
senting, asymptotically, an accelerated expansion of M, (dR/dt > 0, d’R/d¢?>> 0
for R — ), and an accelerated contraction of M, (dr/dt <0, d*r/d¢* <0 for
r — 0). Consequently we expect, as shown in sects. 2 and 3, a solution of the string
equations characterized by the asymptotic properties

l£] > 1t'], XY < X", 1Xe > |1 X" (4.12)
corresponding, according to eq. (4.6), to a perfect fluid with “equation of state”
p+pd—ng=0. (4.13)
By making the ansatz
q=1vp, (4.14)

where vy is a constant parameter, we can eliminate g and p from the Einstein
equations (4.3)-(4.5), and we find then the particular exact solution

R(t)=[k(t.-1)]®, r=R"c,

p=polk(t.=1)] ", (4.15)

where k and ¢_ are positive integration constants, p, is a positive constant which
can be expressed in terms of d, n, k, and

_ 2d-y(D-2)
€= \}Nul|N3|v AAHQV
2(d —
B (d=7) (4.17)

N d(d—1—-ny) —ne(d—y—ny)

This solution describes, in the ¢ — ¢, limit, inflationary expansion of M,, and
simultaneous contraction M,,, provided

e>0, B<0. (4.18)

(Note that the expansion is always of the super-inflationary type, since

muax
a7 AMHV >0 AA.HGV

for B <0.) Moreover, the solution is consistent with a positive energy density
provided
a +b(d—ne)
<
ne(l+e)—(d—ne)(d—1-ne)

0, (4.20)
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where
D—-4)(d—ny)—2n D—2n
(D= —omy o
d—ny d—ny

In order to discuss for which values of €, 8,y the string equations are satisfied,
when ¢ — t_, by configurations consistent with the assumed properties (4.12)-(4.14),
we consider separately the three possibilities {y]| =, 0 < {y| <% and y = 0. Such
possibilities define, respectively, a string gas with the asymptotic properties [p| < g,
[p] ~q and |p| > g, and correspond, respectively, to string configurations charac-
terized, in addition to eq. (4.12), by the following asymptotic behaviors:

[RX"| < |rX?|, (4.22)
[RX"] ~ |rX?|, (4.23)
[RX"'| > |rX | (4.24)

(recall egs. (4.1) and (2.17)). We also know, from our previous discussion of the
isotropic case, that RX’* behaves like R for R — o, while rX* behaves like r~"
for r > 0. The three cases above are thus consistent with the solution (4.15)
provided, respectively, e > 1, e =1 and € < 1.

In the first case, in which the internal pressure g tends to dominate, only the
trivial (flat space) solution is asymptotically consistent, since 8 — 0 for |y| — «. In
the second case in which ¥ is finite (and non-vanishing) the consistency condition
(4.23), which implies € = 1, fixes the value of y according to eq. (4.16):

3D—-4n -2

- = 425
y 5 (4.25)

The constraint g = yp, which can also be rewritten

G v\N‘nv — IQ..N:,\ A#N@v

a

is not compatible, however, with the general form of the leading solution to the
string equations; it can be satisfied only by a particular solution, determined by the
asymptotic condition

.2 ny .2
rA( Xy = |M>;C§ . (4.27)
For the last case (y =0, € <1) we can find instead a general solution which
satisfies the required properties. In this case the coefficients e and 8 become

2d 2(D —2n)
F= — ——— | QHIH||4<JI)|/» AhNWV
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and the conditions B <0, 0 <e < 1 imply

D<2n, 3D-4n-2<0, (4.29)

which are both fulfilled iff # > 3d + 1 (of course n,d > 0). For this background the
general form of the approximate solution to egs. (4.7)-(4.11), in the limit t —¢__ is
(to leading order in 7, 7 < 0) ©

1
_ [ _ 1/(0—-8)
t=t, »_ kL7(1-B)] A (4.30)
Xi=dit wqmb\%mi_\ws\:éﬁ (4.31)
X9 =A%+ \Mﬁmba + mnﬂa_1m+mmmv\:|.3u Ab wNv

where A4 and B are functions of o, L*=4"4" and, in the gauge L' =0,

1-B Do 1-8
1+87 1-B-2eB

A (4.33)

Moreover, A and B must satisfy the constraint

1-38 s
Tog |l P iy
1-B+2eB s s1g)
B Il 1 O3] Rt 7 C B

imposed by eq. (4.11).
In this approximation, the scale factor: can be rewritten in terms of 7 as

R=[-kLr(1-p)|*/"~B  ,_Rg-e (4.35)

and o:.m can easily check that, when the conditions (4.29) are satisfied, the
Eovwﬂ:mum (4.12) and (4.24), as well as the energy condition (4.20), and the
condition 1 — B + 2¢B > 0 required by eq. (4.32), are satisfied. The string configu-

nwsosm (4.30)-(4.32) lead then, in the perfect fluid approximation, to the equation
of state

p
EI[M, qg=0, (4.36)
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which can sustain the inflation-dimensional-reduction scenario of eq. (4.15). For a
manifold with D — n = 4, in particular, this happens, according to the dimensional
bound (4.29), provided n > 10.

We note, finally, that the proper amplitude of these string configurations,
x'=RX', x*=rX" grows in the external space, and shrinks in the internal one, as
7 — 0. In both cases, however, the time evolution of x tends to follow, asymptoti-
cally, that of the scale factor, so we may regard these strings as a generalization to
the anisotropic case of the unstable configurations recently discussed for isotropic
backgrounds [11,14]. In this sense we can say, therefore, that inflation, and the
asymptotic decoupling of internal and external dimensions (r — 0 for R — =), are
induced by unstable strings.

5. Discussion and conclusions

A gas of unstable strings, which can form and develop at large R in inflationary
expanding backgrounds, is characterized by an effective negative pressure. If the
expansion is isotropic, the pressure is not negative enough (at least in the perfect
fluid approximation) to sustain inflation by itself, as pointed out in a previous
paper [11].

It is possible, however, that unstable strings may sustain simultaneously inflation
and dimensional reduction, as discussed in sect. 4, provided the number of
contracting dimensions is large enough, i.e. n > 10 for D =4 + n. In this case, the
asymptotic evolution of an M, ® M, background is described in particular by these
scale factors (according to egs. (4.15) and (4.28))

NNuuﬁ\AANn.IN:GI:V\Q.TNEv \Hmkﬁnnlﬂv_m\ﬁ;.mxv. AMHV

The four-dimensional expansion is then of the super-inflationary type (d H /d¢ > 0),
while the internal contraction has, as expected, a negative acceleration (d*r/
de?2<0).

In order to discuss whether this model can provide, during the dimensional
decoupling, a significative amount of inflation, let us consider explicitly the
interesting case D =26 (i.e. B = — 3, e = ). In this case our solution (4.15) of the
Einstein equations implies

8wGop(t,— 1) =15/16, (5.2)

and, by denoting by “f”” and “i”” the end and the beginning of the phase dominated
by these unstable strings, we have the relations

-1/3 3
n_ (R ’ Pr_ Ry v (5.3)
R; ’ Pi R; .

1
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Let us assume, moreover, that the typical initial size of cau

, ove sally connected
regions, d, = (¢, — t;), coincides with the proper length of a typical

string, i.e.
t.—4=LR,. (54)

For the string solution (4.30) we have indeed te—t="5|7|LR, so that a larger size
d; VQW.F would imply |7;] > 1 (or, in conformal time, |n;| > L), in contrast with the
conditions required for the validity of our a imati i

ons pproximation, which
€xpansion in the 7 — 0 limit. epresent an

For mnI.sAAN — . the 1 .
. ¢k proper size d(t) of the particle horizon in four-dimen.
sional space grows like R, ur-dimen

, B
&3"»3\: de'R™Y(1) = Am;m ?oni_-mxcolxg_ u%s

(5.5)

_ 3 . . . .
(B ML., as 1s typical of inflationary backgrounds. The proper size /(t) of the
event horizon, on the contrary, shrinks as ¢ — te,

to—t

:;umt&:%m,_guﬁ 5

(5.6)

(typical behaviour of super-inflation only). As a consequence of this shrinking

unstable configurati . -
reached gurations may develop [11,12], until finally the Planck density is

py=pp=LyP (5.7)

at a Planck curvature scale

d’R

Rla7 =te—t;=Ly. (5.8)

aﬂmﬁ. we mcncOmm ﬂ.:mﬁ the whole scenario breaks down and the standard
adia M:n m<o_=.:o= begins. For a drastic solution of the horizon problem [1 16] one
may thus require that the final size of the particle horizon in four-dimensional

space, d;=d;(R;/R,) = LR,, be as large as t i 6
o o et/ R) = P g he present size d, ~ 109'L,,, rescaled

— =g Y _1n29
0R &oﬁv 10¥L,. (5.9)
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(Tp and T, are, respectively, the Planck temperature and the present temperature
of the cosmic microwave background, T ~ 10713 GeV.) .

With the four constraints (5.4), (5.7)-(5.9) the model is ooBEQo_w\NaQQEan.
Indeed, using egs. (5.7) and (5.8) one gets from eq. (5.2) G, =L%~?*. Moreover,
combining egs. (5.3) and (5.4),

8/11
P P
The condition (5.9) is thus satisfied provided
LR, > 10%L,. (5.11)

The requirement (5.9) is strong enough* to accomodate Ew ano:m values A.uw
the entropy S, and of the density parameter 0, [1]. To be viable, this scenario
needs four-dimensionally causally connected regions whose size, at the Planck
curvature scale, is very large in natural (planckian) units. However, wcow.mn
otherwise “unnaturally large” value is not put in by hand, but is E.o &Sma_om_
consequence of a previous super-inflationary expansion. Thus, the cmmﬂ.o difference
from conventional inflationary models is that the Planck era is the final state of
inflation rather than its ancestor.

It is true that the Universe has to be very large in its initial state (see eq. (5.11)),
as it is the case in the models of ref. [2]. However, unlike in ref. [2], in the context
of string theory a classical, low-curvature regime is naturally expected to n.uoo:.H
before the Planck era as a consequence of a symmetry (duality [17]) connecting it
to the present epoch. .

It should be noted, moreover, that a condition much less stringent than (5.9) is
required if one only wants to explain the homogeneity of the omewo Ewﬁo.é.w,\o
background. In such a case, in fact, one only needs the Ewmoa size of the <_m_c_.o
universe (d,), rescaled down at the time of last scattering .. of the cosmic
radiation [16] (at a temperature T, ~ 10*Tp), to be not Jarger than the E::.o_o
horizon at the time. Starting at the Planck scale with a causal region of size
d;=LR,, and assuming radiation-dominated evolution (i.e. R ~¢'/?) down t0 frc,
the homogeneity is thus explained provided

2
R Njo H_.mn N..m.
= —dy— =LR{— (5.12)
dyp=dog - <L 3 7

rec rec

(we have used the fact that in the standard decelerated scenario the particle

* A primordial inflation at the Planck scale cannot dilute, however, a possible monopole production
during the GUT phase transition.
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horizon grows like ¢, while the scale factor like T77'). Eq. (5.12) is satistied for
LR,> 10L, (5.13)

which implies, using eq. (5.10), LR, > 10%/"'L .

It seems, possible, therefore, to reproduce the desired amount of inflation if one
supposes that the universe, before the Planck era, was in a primordial phase
dominated by a classical gas of very massive fundamental strings (M, = LR;/a’ >
102M, if we impose, for example, the condition (5.11)). Note that although
initially these strings are closely packed (with an averaged (distance /size) ratio of
order (LR, /Ly)*~P/P~D < 1071), they only have a tiny energy density in Planck
units, namely (from eq. (5.3))

p; <10~ *pp (5.14)

(i.e. they are a highly diluted gas, from a gravitational point of view). This density
grew up to pp, after which some violent transition to local physics (“big bang”) led
to the standard scenario in which the density started to decrease.

This picture of the early universe fits well with the scenario described in ref. [17],
where it is suggested that, because of R <> R™! duality, a “stringy” phase before
the radiation-dominated expansion is to be expected, and in this phase the
temperature should grow (instead of decreasing with R), up to some maximal
value of order Tp.

The transition occurring at the Planck scale cannot be described, of course, in
the context of the model considered in this paper, since at 7= T, the Einstein
equations are no longer valid and moreover, because of the string Hagedorn
temperature, a complete thermodynamical treatment is certainly needed (see ref.
[18,19]; and also ref. [20] for a formal regularization procedure which avoids the
occurrence, in cosmological backgrounds, of curvatures larger than the Planck
one).

The physical interpretation of such a transition as a possible model for the big
bang was also previously suggested in ref. [21]. The growth of the density and of
the temperature during the string phase were obtained, however, by means of an
isotropic contraction of the whole universe (with all the spatial dimensions on the
same footing). In our model, on the contrary, the density and the energy scale (i.e.
the inverse of the curvature radius) grow together with the size of the particle
horizon, which is expanding in the physical four-dimensional space-time. We stress
that it is just because of this unconventional property of super-inflation that it
becomes possible for the universe to emerge at the Planck time with causally

connected regions whose size is much larger than the Planck length [see egs. (5.9)
and (5.13)].



380 M. Gasperini et al. / Inflation

In conclusion, we have shown that the dominance of unstable configurations, in
a multidimensional string phase, can drive an anisotropic evolution of the back-
ground and realize dynamically an effective decoupling between different spatial
dimensions. Unfortunately, this mechanism seems to be incapable of choosing, by
itself, both the preferred total dimensionality, and the number of contracting
dimensions. However, once these parameters are assigned, one has a model in
which the universe reaches the Planck density through a super-inflationary evolu-
tion and thus with horizons which may be large enough to avoid causality problems
after the transition to the standard scenario.
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