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Recently proposed extensions of target-space duality and Narain transformations can be used to generate highly non-trivial 
conformal string backgrounds out of (almost) trivial ones. The example of"inverting" and "boosting" a flat, Milne-type cosmo- 
logical metric is worked out in detail. Analogously, starting from Rindler's metric, one can generate a sort of 3D black hole. 

1. Introduction 

Target-space duality is the statement [ 1,2 ] that two (more generally a finite number  of )  apparently different 
string theories actually coincide after a suitable relabelling of  states and operators. Thus, for instance, a closed 
string moving on a circle of  radius R is equivalent to one moving on a circle of  radius ec ' /R .  This is known as R 
duality. 

The study of  classical propagation in non-trivial (generally anisotropic)cosmological  backgrounds [3] has 
recently suggested [4] a generalization of  R duality to the discrete group of  inversion o f  the scale factor(s)  
defining these geometries. This group was termed in ref. [4] scale-factor-duality (SFD).  SFD transformations 
where shown to be a symmetry not only of  classical string motions but also of  the (lowest-order) string-modified 
Einste in-Fr iedmann equations with or without classical stringy sources [4,5 ]. A characteristic feature [4,5 ] of  
the SFD transformations is that they involve, in a non-trivial way, the dilaton field, explaining why SFD is 
violated [ 4 ] by the usual Einste in-Friedmann equations. 

Parallel work [ 6 ] on the recently constructed 2D black hole (BH) conformal backgrounds [ 7] has also em- 
ployed "dual i ty" transformations to relate different BHs to one another. As emphasized in ref. [4 ], SFD (and 
its analog for BH) is not a symmetry of  the theory. SFD (or BHD)-related solutions are usually inequivalent, 
making the use of  the term duality somewhat inappropriate. Given a classical solution SFD simply allows to 
construct other classical solutions very much in analogy with the action of  Narain 's  O(d,  d) group [8 ] on static 
compactifications in closed string theory. However, unlike in Narain 's  case, by allowing for time dependence in 
the spatial part of  the metric, SFD is non-trivial even for open strings or in the absence of  compactification. 

The analogy (and difference) with Narain 's  work was made even more compelling when SFD was later ex- 
tended [9 ] to a full continuous non-compact  O (d, d) group ( d =  D -  1 being the number  of  spatial dimensions),  
i.e., precisely to Narain 's  group. As in ref. [ 8 ], this enlarged group necessarily brings in the " torsion" field B o 
even when originally absent. 

It was also argued in ref. [ 9 ] that there is a "Nara in"  group associated with any canonical transformation 
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which preserves the cr-reparametrization constraint. Only subgroups that are unitarily implementable (i.e. which 
preserve the spectrum), however, lead to equivalent string theories, while, in general, one obtains from the 
action of the group other (inequivalent) classical solutions. Consequently, while the nature of Narain's group is 
rather stable, that of the spectrum-preserving subgroup depends on the details of the model (open or closed 
strings, compact or non-compact target space, etc. ). 

It is then clear how to generalize further SFD to the case in which the original solution is independent of any 
number n of coordinates. The canonical transformations of ref. [9] acting on those n coordinates generate an 
O (n, n ) "Narain" group. This straightforward extension was explicitly pointed out by Sen [ 10], who also gave 
string-field-theory arguments for O (n, n) to be preserved to all orders in c~', possibly with some higher order 
modification [ 4,5,10 ]. 

In the following we shall refer to the elements of the O(d, d) group as dynamical Narain transformations 
(DNT).  In order to label physically inequivalent solutions one has to divide this group by the "gauge subgroup", 
i.e. by all those transformations that leave the theory physically unchanged. One thus arrives [9 ] at a set of 
"gauge invariant" parameters labelling inequivalent conformal backgrounds precisely as in Narain's work [ 8 ]. 
In the absence of compactification there are just d ( d -  1 ) /2  such parameters [9 ], which appear to belong [ 10 ] 
to an O(d)®O(d)/O(d) coset space. 

In this note DNT will be used in a somewhat unexpected direction, i.e. in order to generate out of almost 
trivial (in particular flat) space-time metrics some highly non-trivial conformal backgrounds, consisting of a 
non-flat metric and of non-trivial dilaton and antisymmetric-tensor backgrounds. To the extent that a flat metric 
(with horizons) is an exact solution of the conditions of conformal invariance and that DNT are valid at all 
orders [ 10 ], this method provides new exact conformal string theories, whose possible physical relevance is still 
to be investigated. 

Since we only wish to illustrate here the general ideas, we shall mainly limit our attention to the simple case 
of applying DNT to "Milne's" metric Almost identical considerations would apply (after replacing time with 
one space coordinate) to Rindler's metric. This would lead to a new class of "black holes" living in 2+  1 
dimensions. 

We shall first discuss the Rindler and Milne metrics, showing how they emerge as limiting cases of the SL(2, F~) / 
U(1)  Wess-Zumino-Witten (WZW) models as used in ref. [7]. Next we shall discuss their (SFD-related) 
inverse metrics, showing their non-triviality. We shall finally use the "boosts" of O(d, d) to generate out of 
Milne and of its inverse a one-parameter family of solutions which interpolates smoothly between the two. We 
shall compute various properties of  the solutions, showing in particular how the presence of a non-trivial Bij 
appears to avoid the generic curvature singularities found to occur in torsion-free cosmological backgrounds. 

2. Minkowski, Rindler, Milne and their duals 

Recent work on 2D black holes [ 7 ] has brought up the very likely existence of new conformal backgrounds 
corresponding to highly non-trivial geometries. These models are based on level k, gauged, SL(2, F~)/U(1 ) 
WZW theory and live in a target space consisting of two non-trivial coordinates and ofdl extra "passive dimen- 
sions" which simply make up for the critical value of the central charge. One has 

d ~ = 2 4 - 6 / ( k - 2 ) ,  d , = 2 / ( k - 2 ) ,  (2.1) 

for bosonic or fermionic strings, respectively. 
9 While for k =  z the model is genuinely two-dimensional, for k ~  one is back to critical dimensions. Perhaps 

surprisingly, however, the k~oo  limit does not lead necessarily to the trivial (and obviously conformal) Min- 
kowski metric. Starting from the BH solutions of ref. [7 ], or from the cosmological solutions of ref. [4], one 
arrives at line elements of the form 
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ds2= - ( a + b x  I )2dt2+dx~ + ~ dx 2 , (2.2a) 
J 

ds2= -dl2-{ - (a+bt)2d.Vl + y~ dx27, (2.2b) 
J 

respectively. The dilaton, on the other hand, does go to a constant as k--+oo. 
For b = 0  this is just the line element for Minkowski space-t ime which, in the absence of  compactification, is 

a fixed point of  DNT  (model by the gauge group).  Any DNT acting on Minkowski's metric (plus possibly a 
constant B) is equivalent [9 ] to a general coordinate transformation (GCT)  combined with a B-gauge trans- 
formation. On the other hand, for b ~ 0, the parameter a can be gauged to 0, while b itself can be gauged to any 
chosen value (we shall set a =  0 in the following). 

Although these two metrics do not look like Minkowski, they are completely flat and can be brought globally 
to Minkowski 's form by a GCT. The corresponding transformations are singular, however. They are given re- 
spectively by 

X~ =x~ coshb t ,  T=x~ s inhb t ,  (2.3a) 

X ~ = t s i n h b x ~ ,  T=tcoshbxl.  (2.3b) 

The above transformations clearly map the whole t-x~ plane into regions of  the T-X~ planes, i.e. into the 
regions I Xl I > I TI and I Xl I < I TI, respectively. We thus recognize, in the above two metrics, a parametrization 
of  Rindler's (accelerated observer) and Milne's (flat space-t ime with linear scale factor) causally distinct por- 
tions of  the Minkowski plane. The complete flatness of  these sectors ( ~+ and~ Z/+, respectively) readily explains 
why these, like the full Minkowski manifold, represent exact conformal backgrounds in the critical number  of  
dimensions. 

One of  the main points of  this work is to show that, in spite of  their "triviality", ,~ and ,// are not, unlike 
Minkowski, fixed points of  DNT. In other words, DNT do not commute with (singular) GCT in the sense that 
they transform GCT-related into GCT-unrelated backgrounds. 

This can immediately be checked for the discrete SFD subgroup [4 -6 ]  which inverts the metric (besides 
changing the dilaton).  The new,  7/ and the new dilaton ~are  simply given by 

dg2= - d t 2 +  (bt) -2dx~ -t- 2 dx~, ~=  - 2  In b t +cons t an t .  (2.4) 
f 

For t < 0,,  7/_ belongs to the class of  Bianchi I type anisotropic, "superinflationary" metrics considered e.g. in 
refs. [3,4],  and describing the expansion of  some spatial dimensions from initial flatness at t=  - o r  to a final 
state of  arbitrarily large curvature. It is straightforward to check that ,  7/ is not flat. We can easily compute e.g. 
the scalar curvature of ,  7/obtaining 

/~=4t  -2 (2.5) 

As was the case with the generic (torsion-free) cosmological solution of  ref. [4 ], (2.5) too exhibits a curva- 
ture singularity at a finite value o f  t (the "big bang") .  Similarly, the BH solution dual to Rindler would exhibit 
a curvature singularity a x~ =0 .  

As far as the thermal properties of  these backgrounds are concerned, it is well known [ 1 1 ] that one can 
associate a temperature ha/27r with hyperbolic observers (whose world-lines span the Rindler sectors/~'+ ) hav- 
ing uniform acceleration a. For the Milne sectors a thermal interpretation is not as clear as in Rindler's case. 
However, if one considers particle production in ,// , one finds a Planck spectrum in the longitudinal momen-  
tum, at a proper temperature [ 12 ] 

kT=h/2~zltl (2.6) 
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(otherwise stated, the conformal vacuum in Milne coordinates is in a thermal state with respect to the Min- 
kowski vacuum [ 13 ] ). 

The dual (superinflationary) metric of ,,,7/_, on the other hand, is characterized by the existence of an event 
horizon at a proper distance 

dE= l l t l  (2.7) 

from a co-moving observer placed at the origin. The horizon moves away from the observer with an acceleration 
a= 1 ~2dE. Analogy, with de Sitter (see also ref. [ 14]) suggests thus a dual temperature kT ~ - h/4ZME, i.e. an 
identical temperature for ~//_ and ~,//_. In such a case the superinflationary phase of increasing curvature and 
effective density of ~/_ corresponds to a growing background temperature (in agreement with recently sug- 
gested "pre-big-bang" scenarios [ 3,4,15 ] ). By contrast, Giveon [ 6 ] argued for duality related (i.e. inverse) 
temperatures for duality-related BHs. 

3. A one-parameter family of "boosted" backgrounds 

What happens if we apply to ,.# or to ,7/ the full O (d, d) group? Obviously, some of these transformations 
will just give "gauge" equivalent backgrounds. Others will be related to each other by trivial rotations in the 
( d -  1 )-dimensional space orthogonal to the direction (called & ) in which the original metrics live. The only 
genuinely new backgrounds turn out to be generated by "boosts" (in the sense of O(d, d), of course) which 
connect the originally non-trivial direction xi to a second direction which we identify with x2. The background 
obtained this way thus lives in 2 + 1 dimensions. This (abelian) boost subgroup is defined by the O (d, d) matrix 

£ 2 ( ~ ) = ~  c l  2 1  1-Cs l+c-S 1_ , c=coshT,  s=s inhT,  (3.1) 

\ l + c  s l - c ~  

which depends on the boost parameter ~, with 0 < y < oo. The boosted backgrounds are then given by [ 9 ] 

M(~) = . Q T ( y ) M . Q ( y )  , 

where the 2d× 2d matrix M is given by [ 2] 

G l - G - ' B  
M= BG_~ G - B G  ~B]' (3.2) 

and G, B stand for the d×  d spatial parts of the metric and torsion [ 9 ]. After some straightforward algebra one 
finally arrives at the following expressions for the boosted metric, torsion (in the two non-trivial spatial dimen- 
sions) and dilation: 

f ( c - 1 ) + ( c + l ) b 2 t  s( l+b2t  2) 
( c + l ) + ( c - 1 ) b 2 t  2 

GCT)=l__sCl+b2 t2 )  
[ ( c +  1)+  ( c -  l)b2t 2 1 

0 ~ - s ( l+b2 t2 )  "1 
( c + l ) +  ( c -  l)bZt 2 

B ( y ) =  s(l+b2t_ ) 
~ ( C_~ ~) ~ ( ~  ~ -) b 2 t 2 0 

~(7) = - I n [  1 +tanh2(7/2)b2t 2 ] . (3.3) 

Similar results hold for the boosted version of,J/l. They are simply obtained by replacing bt with (bt)-  
everywhere. 
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We have calculated with a computer  program all sort of  GCT tenors pertaining to the boosted backgrounds, 
rechecking most o f  them analytically. The outcome of  the exercise is shown in table 1 for the background (3.3). 
We have explicitly checked that all one-loop fl-functions vanish, a property that, according to ref. [ 10 ], should 
continue to hold at higher orders. 

Note that all curvature components  depend on t through two parameters: the boost )~ and the scale b. The 
results are expressed in terms o fb  and of  the combinat ion 

f l=b t a n h ( 7 / 2 ) .  (3.4) 

While the generic tensor components  depend both on b and on fl, all genuine scalars (R, H 2 2 Ru, ,  etc.) only 
depend on the latter. 

This is in accordance with the parameter counting of  refs. [ 9,10] which predicts a single "gauge invariant" 
parameter  for d =  2 (which is the effective number  o f  dimensions since d -  2 dimensions are completely inert). 

The properties of ,  7/(7) can be similarly computed. One finds that they can be obtained from those reported 
in table 1 via the replacements 

c- -* -c ,  s - , - s  ~ t a n h ( y / 2 ) - , c o t h ( y / 2 ) .  (3.5) 

Comparing the properties of , / / (7)  with those,  7/(7) we realize that these two families o f  backgrounds are now 
connected smoothly to one another through the boost. While for 7= 0 the two metrics are completely different, 
one being flat and the other being curved and singular, the two backgrounds look more and more similar as 7 is 
increased, until they coincide at infinite boost. 

If, as we should, we just look at scalars under GCT, we see that, in a b-7 plane, they are gauge orbits relating 
equivalent backgrounds, those with the same value of  the "physical" parameter (fl for ~#(7) or a similarly 
defined/7 for ,  7/(7) ). The situation is illustrated in fig. 1, where the lower half of  the figure refers to , # (7 )  and 
the upper half  t o ,  77/(7). In the middle the gauge orbits meet and the two families of  backgrounds go into each 
other. Thus there is a single parameter describing physically inequivalent backgrounds and smoothly interpolat- 
ing between , / / a n d ,  7/. 

Actually, all scalars take the form 

R , = ( f l ) P f , ( z ) ,  z = f l t ,  (3.6) 

Table  1 
N o n - v a n i s h i n g  t en so r  c o m p o n e n t s  f o r . . # ( 7 ) .  

R °_ 2f12(fl 2t2-2) 
( 1 +f12t2)  2 

RJL - (1 +f12t2)2 ( l - f l 2 / b 2 ) /  

R =  ~2(4/~2t2-- 10) 
( l + fl212) 2 

2f12{f12/~,2 + [1 + ( 2 - f 1 4 / b 4 ) b 2 t  2 ] I 
R,~ = -  (1 + f i e & ) 3  

2fl 2 [ 1 + (2 -- ]~2/b2 )b2t  z ] 
R I 2 = R 2 1  = -- b ( l  + f12t2) 3 

Riz12 = b 2  ( l - f12 /b2)Zf1212  
( I ..~_fl212) 4 

R2020-- (1 +f12t2) 2 

2 2 4 f 1 4 t 4 - 4 f l  212+ 1 1 
R u , ' ~ = 4 f l  ( l + f 1 2 & ) 4  

R?=-R~= 2#Vb 1 
( 1 -f12/b2) (1 +f12t2) 

~ ( 1 -  f12(l+b2t2) ~ 
R~=-  ( l+~ ~ ) \ b2(l-p~/t,~)l 

2/? 2 
R22 ~ - ( l +fl212) 2 

2 f14 t4 -6 f12 t2  + 9 2 4 
R . . . . .  4fl (1 +f12t2) 4 

f12 [ f12 /b2+  ( 3 - 2 f 1 4 / b  4)b2t  2 ] 
R m l °  = -- (1 + f12t2) 3 

f13 [1 + ( 3 - 2 f 1 2 / b 2 ) b 2 t  2] 
/~ Io20 - b ( 1 + f l 2 1 2 )  3 
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Fig. 1. Gauge orbits in the b-tanh (7/2 ) plane are shown as solid lines, lower half for,//, upper half,"7/. The two sectors join smoothly at 
~--,oo (dotted line). The vertical line marked by.//o denotes Minkowski space-time. 
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Fig. 2. Plots of curvature scalars as a function of the "scaling vari- 
able" z defined in (3.6). Curves (a), (b) and (c) refer to 
R~,,~/4,82 4, R 2 , /4 f l4 ,  R / 2 f l  2, respectively. 

where  p~ is the d i m e n s i o n a l i t y  of  Ri. The  f u n c t i o n s f  (z)  are plot ted in fig. 2 for the scalar curva ture  as well as 
2 2 2 for Ricci and  R i e m a n n  squared.  We note  that  the E u l e r - G a u s s - B o n n e t  c o m b i n a t i o n  R u , ~ - 4 R , ,  + R  van-  

ishes identical ly.  All o f  t hem go to zero at large z an d  show some s t ructure  at small  z, bu t  have no s ingular i ty  on  
the real axis. The  curva tu re  s ingular i ty  at t = 0  in ,7 / i s  now seen as t h e / / - * ~  l imi t  of  (3 .6)  which,  ins tead  of  
be ing  p la in  inf ini te ,  yields a func t ion  of  t with a singulari ty.  In  general,  as shown in fig. 2, the m a x i m u m  of  if]  
(for  the scalar curva ture  ) occurs at z = 0 an d  has the value 

IRI = l O f t  2 . (3 .7)  

We shall conc lude  with the descr ip t ion  of  some general  proper ty  of  the boosted metrics.  For  f ini te  fl our  
cosmological  so lut ions  have nowhere  curva ture  singulari t ies .  This  is not  in con t rad ic t ion  with general  results 
since, in all cases, a non- t r iv ia l  to rs ion  ( H = d B )  genera ted  by the boost  - together  with the d i la t ion  - leads to 
v io la t ions  of  the s t rong energy c o n d i t i o n  [ 1 6 ]. This  might  suggest a crucial  role for the an t i symmet r i c  tensor  
no t  only in evad ing  the no-ha i r  conjec ture  [ 1 7 ] (see also ref. [ 1 8 ] for the case of  str ingy black holes) ,  bu t  also 
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in avoiding the initial  singulari ty and in allowing solutions which, being well defined at all t imes, allow for 
cosmologies "going through" the big bang. 

Moreover,  a nonvanishing B is source of  shear in the x~-x2 plane. Considering a congruence of  co-moving 
geodesics u" in ,  # ( 7 )  we find that  the squared strength (a,,)-~ of  the shear tensor [ 16] (which represents an 
i nvar iant  measure o f  the anisot ropy magni tude)  is given by 

2 1 -t-1~212-t-fl4[ 4 (3.8)  v 
~7,, = 3t 2 ( 1 -Jr- f l212)  2 

The shear is rapidly decaying away from the origin, but  diverges in the t - , 0  limit.  This represents a singularity 
of  the geodesic congruence (which may occur even in flat space - t ime) ,  but not a singularity of  the space- t ime  
structure, as the curvature  invariants  are bounded.  Indeed,  if  we consider  the rate-of-change HI of  the relative 
distance between two neighbouring co-moving observers along the xl direct ion (i.e. the analog of  the Hubble  
pa ramete r  o f i so t rop ic  cosmologies) ,  we find for,  # ( 7 )  (in the gauge b =  1 ) 

4ct 
H ~ - = - G , , n ' n " + ~ O =  ( c 2 _ l ) ( l + t 4 ) + 2 t 2 ( c 2 + l )  , (3.9)  

which is regular at t = 0  (here n" is a uni tary vector  along x~, n ' u ,  =0,  n ' n ,  = I, and 0=  V,u"  is the volume 
expansion [ 16 ] ). 

Note that ~ff(7) describes contract ion for t < 0  and expansion for t > 0 ,  just  like the Milne metric.  Unlike 
Milne, however,  one finds superinflat ion (H~ > 0, /~/1 > O) immedia te ly  after the origin, while at large posi t ive t 
the expansion is decelerated (for the boosted b a c k g r o u n d , / / ( ? )  the expansion factor has, of  course, the opposi te  

sign,/~1 = - - H I  ). 
This seems to indicate  a role for the an t i symmetr ic  field also as a source of  anisotropic  superinflat ion.  The 

possible use of  DNT-genera ted  torsion in the a t tempt  of  constructing some "s t r ingy"  cosmological  scenario, 
describing the evolut ion from a flat init ial  state through a highly curved (p lanckian)  inflat ionary phase down 
to present, decelerated universe [ 3,4,15 ], will be discussed elsewhere, 

While this work was being writ ten we received a prepr int  by Sen [ 19 ] whose content  and conclusions overlap 
to some extent with ours. 
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