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We present cosmological solutions for a graviton-plus-dilaton system coupled to a perfect fluid source, including quadratic 
curvature corrections. We show that, even in the absence of  a dilaton self-interaction potential, isotropic superinflation (/:/> 0 ) 
can be realized for a wide range of  equations of  state, which includes in particular the ordinary cases of  dust  matter  and radiation. 
It is found that in this context inflation can be produced more efficiently than in previous superinflationary models based on the 
contraction of  internal dimensions. 

It is known that there are difficulties for inflation 
in string-derived gravity models when quadratic cur- 
vature corrections are included [1,2]. The dilaton 
coupling, in particular, removes the maximally sym- 
metric de Sitter solution permitted in its absence [ 3 ], 
unless an effective potential for the dilaton self-inter- 
actions is introduced [2] and suitably fine-tuned. 
Without such potential, exact solutions representing 
both power-law (/:/< 0 ) and super (/:/> 0) inflation- 
ary expansion are also forbidden. 

In this paper we show that if the graviton-dilaton 
system is coupled to a phenomenological perfect fluid 
source, these difficulties are removed for a wide range 
of the fluid equation of state. For conformally cou- 
pled matter we find, in particular, that exact solu- 
tions representing superinflation are allowed pro- 
vided, in four dimensions, - 2  <~p/p<0.45; even a 
larger p/p spectrum is compatible with inflation, 
moreover, if dilaton and matter sources are 
decoupled. 

The scalar-tensor model of gravity we shall con- 
sider is described by the D-dimensional action den- 
sity [ 1,2,4,5] 

1 
L =  

16~rG 
- - -  [ R ~ b ^  *( Vo ^ lib) - ½ ~ ^  *DO 

--~2f((b)Rab ^RCd /', *( V~ ^ Vb,', Vc^ V~)I 

+ L ( M , q ) ) ,  (1) 

where L(M,  (~) represents the contribution of all the 
effective matter sources (including their possible 
coupling to the dilaton ~), V a is the vielbein one- 
form, Rab (~o) the curvature two-form, an asterisk de- 
notes the Hodge dual map and ~ the Lorentz exterior 
covariant derivative. The quadratic curvature cor- 
rection is given in the form of the Euler-Gauss-Bon- 
net combination, which guarantees the absence of 
ghosts [ 6 ] and appears naturally in supersymmetric 
strings for the supercompletion of the multiplet with 
the Lorentz-Chern-Simons term [7]. Finally, in a 
string-derived model, 2-~ is the string tension and 
[1,2,4,8,9] 

f (~ )  =exp[  - ~ x / 2 / ( D - 2 )  ] .  (2) 

Note that we are working in the so-called Einstein 
frame, in which the scalar field is decoupled from the 
Einstein part of the action. The background field 
equations of a corresponding (sigma-model) string 
effective action, which exhibits a Brans-Dicke-like 
coupling of the dilaton to the Einstein lagrangian, can 
be recovered by a conformal rescaling and by an ap- 
propriate redefinition [8 ] of the metric and of the 
scalar field. Note also that we have not included in 
( 1 ) a possible Lorentz-Chern-Simons correction, as 
it is known [ 4 ] that its contribution to the field equa- 
tions is exactly vanishing for isotropic manifolds such 
as the cosmological solutions we shall consider in this 
paper. 
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The variation of ( 1 ) with respect to 0 provides the 
dilaton equation of motion 

~ * ~ O = ~ 2 f ' R a b h g ~ d A * ( V a b c d )  8 L ( M ,  0) , (3) 

where a prime on f denotes differentiation with re- 
spect to 0 (conventions: V~b~... = Va A II6 A V~ A ... ). In 
the absence of  matter sources (and of a dilaton po- 
tential), one thus immediately sees that a maximally 
symmetric de Sitter manifold, Rab=.4V ab, with con- 
stant dilaton field, 0 =  00, could be allowed as a solu- 
tion only if (f')~=~o =0,  which is not the case for the 
exponential coupling function (2) of string theory 
[ 1,2 ]. For such a coupling function, an allowed so- 
lution would seem to be an isotropic Friedman-Rob- 
ertson-Walker (FRW) manifold 

gu, =diag(  1, - a 2 ( t ) 5 o ) ,  (4) 

with power-law evolving scale factor, a ~  t '~. In this 
case, eq. (3) is indeed solved by 

0=0o - l n ( k t )  2 (5) 

(k is an arbitrary constant fixing the time scale of 
units). However, the condition one obtains on ot from 
eq. (3) is not compatible, if L(M, 0 ) = 0 ,  with the 
other two gravitational equations following from the 
action ( 1 ). 

When matter sources are included, a de Sitter so- 
lution in general is still forbidden (unless the matter 
contribution is in the form of a cosmological con- 
stant), while power-law solutions become possible. 
To illustrate this possibility, we shall first derive the 
gravitational equations by varying the action ( 1 ) in 
the most convenient first order formalism, in which 
the vielbein V and the Lorentz connection to are 
treated as independent variables. The V-variation 
gives 

R '~b ̂  *(Vabk) - -  lJ . f (o)Rab A g c a ^  *(Vabcdk) 

=0k(0) + 16nGOk(M, O ) ,  (6) 

where Ok are the canonical stress-energy ( D - 1  )- 
forms, derived respectively from the dilaton kinetic 
term and the matter part of the action (note that 0 is 
dimensionless with our conventions). Moreover, by 
performing the to-variation, we get the torsion 
equation 

Rc  ^ *(Vab~) -- 1 2 ~ f  ^ ROe^ *(Vabca) 

-- ¼2fR ca ̂  R k ̂  *(Va~cek) = 0 ,  (7) 

where Re= ~ V  c is the torsion two-form (we are as- 
suming no w-dependence in the matter lagrangian). 

In order to combine these two equations in a sin- 
gle, second-order expression, we now separate the to- 
tal connection 09 into the riemannian part, cO, and the 
contortion one-form K, i.e., 

0.) ab  = cO ab  - -  Kab , ( 8 ) 

where ~va--dVaat-co~ A vb=o.  The torsion and 
curvature thus become 

R a =  - K g  ^ V b , 

Rab ( to ) = ~ a b _  ~Kab W Ka ^ K~b , 

(9) 

(10) 

where ~ a b  is the usual riemannian curvature. The so- 
lution of eq. (7) gives for K, to first order in 2 (we 
are indeed considering the 12R ab  [ •< 1 limit in which 
higher than quadratic curvature corrections to our 
action ( 1 ) have been neglected) 

Kab ^ V ca 2 f '  
B 

( D - 3 ) !  2 ( D - 4 ) !  
- -  R c t a o b ] o ^  V a . (11) 

By inserting the total curvature (10) into eq. (6) we 
get finally, again to first order in 2 (henceforth we 
shall omit explicitly the bar symbol, but curvature and 
covariant derivative are both referred, always, to the 
riemannian connection c0) 

R aS ̂  * (Vabk) 

+ ½2 [ f ' ( ~ 0 b ¢ )  + f " 0 b ¢ ~ 0 ]  ^ R ac ̂  *( Vabck ) 

-- l,~fl~ab A R cd ̂  *(Vabcdk) 

=Ok(O) + 16nGOk(M, O) • (12) 

In four dimensions, the last term in the left-hand 
side of eq. (12) does not contribute and we are led, 
in the explicit tensor notation, to the following gen- 
eralized Einstein equations: 
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- 20,¢e, R J f u ~ +  20'~0~R,~ . 

=OuO~-½0,0'~fiu~+16nGTU~(M,O) (13)  

(conventions: Gu~ is the Einstein tensor, and 0 u -  = Vu¢ 
denotes the Riemann eovariant derivative).  They are 
in perfect agreement  (modulo  different definit ions) 
with the set o f  gravitational equations first derived 
by Wetterich [ 5 ] f rom the four-dimensional  version 
of  the action ( 1 ), and recently re-considered in ref. 
[4].  

We now assume a perfect fluid model  of  source, 
with equation of  state p =  ~,p, and with a coupling to 
the dilaton field described by the phenomenologicai  
parameter  e, namely 

Tu"(M, 0)  = T j  exp(  - eO) , (14)  

where 

Tu"=diag(p ,  - P ~ / )  • ( 15 ) 

The dilaton equation (3) becomes, in tensor notation, 

m ! t 2 2 2 VuV 0 - 8 2 f  (R~,,,,~B-4Ru,,+R ) 

- 16~zGE(p- 3p) e x p ( - e 0 )  . 

We have, in particular, e = 0 for a fully decoupled di- 
l a ton-mat te r  system, while e = - x/½ ( D -  2) if  the 
coupling is obtained through a conformal  transfor- 
mation,  starting f rom a source lagrangian which is 
decoupled in the Brans-Dicke  frame, defined by an 
"unrescaled" sigma-model  metric [2,8 ]. 

We shall concentrate,  in the following discussion, 
on the phenomenologically interesting D = 4 case. For 
a string-derived model we have thus f (O)  = exp ( - 0),  
and the coupled gravi ton-di la ton equations can be 
solved exactly by the FRW ansatz (4) ,  with 0 given 
by eq. ( 5 ), and with 

a( t )  = (kt)  '~, p ( t )  =po(kt )  -2(~+~) , (16)  

provided the constant parameters  Po, 0o, a are fixed 
by 

2 4 B o t 4 - 2 4 B a 3 - 4 8 o t + 1 6 = - 4 A e ( 1 - 3 7 )  , (17) 

1 2 B c e 3 + 1 2 a 2 ( 1 - 2 B ) - 4 = A ,  (18) 

8 B a 3 + 1 2 a 2 ( l + B ) - 8 a ( l + B ) + 4 = - T A .  (19) 

We have defined 

A = 32zcGpo k - 2 exp ( - e0o ) , 

B = 2k ~ exp ( - 0o) (20) 

[the first condition (17) follows from the dilaton 
equation, while the other two conditions correspond, 
respectively, to the t ime and space components  of  the 
gravitational equation (13) ]. Note that, in the B ~ 0  
limit, these equations are solved by 7= - 1 and a =  1 
(in agreement  with results of  ref. [2] ). This solution 
corresponds, in the conformally t ransformed Brans-  
Dicke frame, to a flat metric and a linearly evolving 
dilaton, which is well known to satisfy, to all orders, 
the sigma-model background field equations [10] 
(indeed, if  we neglect the Gauss-Bonnet  correction, 
our action ( 1 ) is directly related by a conformal re- 
scaling to the low-energy string effective action [ 11 ] ). 

When k > 0 ,  t > 0  and a >  1, the scale factor (16) 
describes the t ime evolution of  a power-law inflating 
FRW model, i.e., ~'>0, / : /<0,  where H = f i / a  (for 
0 < a < 1 one gets the decelerated expansion of  stan- 
dard cosmology).  On the other hand, eq. (16)  can 
also correspond to an expanding superinflationary 
model  (in the terminology of  ref. [ 12] ), character- 
ized by d > 0 , / / >  0 and a curvature singularity at t = 0, 
provided k < 0, t < 0 and a < 0. In order to see whether 
inflationary solutions (of  both types) are possible, for 
realistic values of  y in the range - 1 ~<7~< l, we first 
note that a physically acceptable solution must sat- 
isfy the constraints A > 0 (posit ive energy density) 
and B >  0 (positive string tension). By combining eqs. 
(18) ,  (19) ,  we get from these two conditions an al- 
lowed region in the (a ,  7) plane ( independent  of  e), 
which is shown in fig. 1. We see that both positive 
and negative values of  a are possible, however, power- 
inflation ( a  > 0) is only allowed for y < - ~, while su- 
perinflation ( a < 0 )  for ),> ~. Remarkably  enough, 
decelerated expansion, 0 < a < 1, is always excluded. 

For any assigned value of  7 and e, the correspond- 
ing value of  ce is fixed by eqs. ( 1 7 ) - ( 1 9 ) ,  whose 
combinat ion gives 
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Fig. 1. The allowed part of the (a, y) plane (hatched region), 
fixed by the conditions A>0 and B>0 [see eqs. (18), (19)]. 
The vertical line corresponds to y= - 5, the two horizontal lines 
correspond to a =  10.2631 and a =  -0.212 565 respectively. 

9 ( l + 7 ) a s + a 4 1 6 e ( 1 - 3 y ) -  1 5 - 9 y ]  

+a3[-66e(1-3y) + 21+15y] 

+ a 2 1 2 2 e ( 1 - 3 y ) + l l - 3 9 y ]  

+ a [ - 6 E ( 1 - 3 y ) - 1 8 + 1 2 ~ ]  

- 4 E ( 1 - 3 7 ) + 4  

= 0 .  (21)  

We shall consider, in particular,  the two limiting cases 
corresponding to decoupled ( e = 0)  and  conformally 
coupled (c = - 1 ) matter .  For  these two cases we f ind 
that  there are no solutions o f  eq. (21 ) representing 
power-law inflat ion ( a  > 1 ), and falling inside the al- 
lowed sector o f  the ( a ,  7) plane. This si tuat ion is il- 
lustrated in fig. 2. Superinflat ion,  however,  is possi- 
ble, and the solutions ofeq .  (21 ) with a < 0, included 
inside the allowed region, are plot ted in fig. 3. 

Two remarks are in order. The first is that  super- 
inflat ion is always allowed for - ] ~ 7 < 1, and  then, 
in part icular,  also for a convent ional  perfect gas with 
posit ive pressure, 0~<p~<-~p. The second is that, for 
conformal  coupling (c = - 1 ), the inflat ion becomes 
faster as 7 is growing. Even if, in this case, l a l  £0 .8 ,  
this model  of  superinflation is thus more efficient than 
previous Ka luza -K le in  models  in which the super- 
inflat ionary expansion of  three spatial  d imensions  
was induced by the s imultaneous contract ion of  a 
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Fig. 2. Solutions of eq. (21) describing power-law inflation for 
~=0 (dashed curve) and E= - 1 (dot-dashed curve). The area 
below the solid curve is excluded by the requirement of positive 
energy density. 
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Fig. 3. Superinflationary solutions obtained from eq. (21) for 
¢=0 (dashed curve) and ¢= - 1 (dot-dashed curve). The physi- 
cally allowed solutions are contained in the area below the solid 
c u r v e .  

large number  of  internal  d imensions  [ 13-18 ]. (In- 
deed, a = - 0 . 3 5 8  in ref. [16] ,  l a l  ~< l / x / 3  in refs. 
[ 14,17 ], and I oz I ~ ½ in ref. [ 18 ], where the l imit ing 
values correspond to a number  of  internal  d imen-  
sions approaching infinity.) Values of  I a I even larger 
than 1 are obtained,  moreover ,  i f  d i la ton and mat ter  
sources are decoupled (~ = 0) .  The possible impact  
of  this model  on the dynamics  o f  a realistic inflat ion- 
ary scenario will be discussed elsewhere. 

In conclusion, we have shown that  a sca lar - tensor  
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model  of  gravity, with Gauss -Bonne t  corrections,  
with a perfect fluid as a phenomenological  source, and 
with a "str ing-inspired" grav i ton-d i la ton  mixing, can 
provide  a mechanism to realize the isotropic super- 
inflationary expansion of  the whole space, without the 
contract ion o f  some internal  d imens ion  ( isot ropic  
superinflation was recently found [ 19,20 ] also for the 
s igma-model  metr ic  of  the tree-level string effective 
action, neglecting, however,  quadra t ic  and  higher 
curvature  correct ions) .  Such a mechanism does not  
necessarily require the presence o f  negative mat te r  
pressure, nor  the vacuum cont r ibu t ion  o f  a cosmo- 
logical constant  term. In the E = - 1 case, superinfla-  
t ion corresponds indeed to a phase of  constant  en- 
ergy densi ty P=Po [see eq. ( 1 6 ) ] ,  but  with an 
equat ion o f  state different  f rom the de Sit ter  one, as 

7 # - - 1 .  
It may be interest ing to note, finally, that  the su- 

per inf la t ionary expansion o f  our solut ion g~,~ be- 
comes a de Sitter-like exponent ia l  inflat ion when 
t ransla ted into the metr ic  ~ corresponding to the 
Brans -Dicke  form of  the action. The two metr ics  are 
indeed related, in four d imensions ,  by the conformal  
t ransformat ion  [8] ~; ,~=exp(0)gu~,  or, in terms o f  
the scale factors, a(7)=exP(½0)a(t), where dr'/ 
d t=exp(½O)  is the relat ion between the cosmic t ime 
coordinates  of  the two frames. One thus obtains  

~(7) =exp(½0o)  exp (/~T) , (22)  

where / ~ = k ( I c ~ l + l )  e x p ( - ½ 0 o )  is the constant  
Hubble expansion rate in the g frame and - oo ~< ~'~< 
(the curvature  singularity at t = 0 is removed  ). How- 
ever, as previously stressed, in the presence o f  higher 
curvature  correct ions this conformal ly  t rans formed 
Brans -Dicke  metr ic  differs (because o f  field redefi-  
ni t ions [ 8 ] ) f rom the s igma-model  metr ic  appear ing 
directly in the act ion o f  a tree-level string effective 
theory. 

One of  us (M.G . )  is very grateful to N. Sanchez 
and G. Veneziano for useful discussions on inflat ion 
in sca la r - tensor  and other  s tr ing-derived models  o f  
gravity. 
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