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Kinematic interpretation of string instability 
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The unstable regime in which the string oscillating modes develop imaginary frequencies is shown to be characterized, kine- 
matically, by a positive relative acceleration among the different points of the string. Instability occurs when this acceleration, 
induced by the background curvature, is large enough to make the extension of the corresponding causally connected region 
smaller than the string maximal size. This kinematic characterization is applied, in particular, to discuss string instability in a 
static and spherically symmetric gravitational background. 

1. Introduction 

Recent studies [ 1,2] o f  the string in cosmological 
backgrounds have pointed out the possible emerg- 
ence of  instabilities, whenever the time evolution o f  
the background is of  the inflationary type. Indeed, by 
expanding the exact solution of  the string equations 
around the geodesic motion of  the center of  mass, and 
considering the proper amplitude of  the first order 
fluctuations, one finds for their Fourier components 
g:, the equation [2 ] 

n 2 1 d2R'~ i d2z~ + ~ ) z . = O  (1) 
dt 2 atom 2 R 

where R is the background scale factor, t is the cosmic 
time (proportional to the world-sheet t ime),  m and 
( a , ) - z  are the string mass and the usual string ten- 
sion. If  the acceleration d 2 R / d t  2 is positive (i.e. in- 
flationary) and large enough, the oscillators develop 
imaginary frequencies and their proper amplitudes 
start to grow like the scale factor, while the comoving 
amplitudes become "frozen".  The geodesic approxi- 
mation turns out to break down [2 ] and one is led, 
asymptotically, to a highly unstable regime which re- 
quires, for its systematic description, a different ap- 
proximation scheme based on the proportionality o f  
the world-sheet and conformal times [ 3 ]. 

The main purpose of  this paper is to present a ki- 
nematic interpretation of  this instability, showing that 

instability is not a peculiar feature of  inflationary 
backgrounds only, but of  any physical situation in 
which effective repulsive forces tend to induce a pos- 
itive relative acceleration between different points of  
the string. 

It will be shown, in fact, that instability occurs when 
two ends of  a string become causally disconnected 
because of  the Rindler horizon associated to their rel- 
ative acceleration. This interpretation thus explains 
[4] why a ' m ,  which defines the "maximal"  size of  
the string, is the physical length required to charac- 
terize the onset of  instability. 

By using the previous definition it becomes possi- 
ble, for any given external field, to predict instability 
a priori (i.e. without explicit reference to the string 
equations),  only by means of  a kinematic analysis. In 
this paper such a possibility will be applied, in partic- 
ular, to the case of  radially falling strings, in the field 
of  a static and spherically symmetric source. 

2. Cosmological instability and its kinematic 
interpretation 

Let us recall, first of  all, how instability arises in 
cosmological backgrounds. In the gauge in which the 
world-sheet metric is conformally fiat, the equations 
o f  motion of  a string, coupled to an external gravita- 
tional field, can be written as 
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xA- -x"A+I~cA(J (R+X'~ ) ( J (C- -x 'C ' )=O.  (2.1) 

[Conventions: A, B . . . . .  0, 1, ..., D -  1 and i ,j ,  ...= 1, 
..., D -  1; a dot and a prime denote, respectively, dif- 
ferentiation with respect to the world-sheet time and 
space variables, r and a, and F i s  the Christoffel con- 
nection for the background metric GAe(X). ] By ex- 
panding the exact solution around a geodesic, i.e. by 
putting [ 1 ] 

XA(a, r ) = q A ( r ) + q A ( a ,  r ) ,  (2.2) 

where 

OA + F~cfl ( q)O~sO<=O , (2.3) 

one obtains for the first order fluctuations r/A the li- 
nearized equations [ 1 ] 

i]A -- q"A + 2FBcA ( q ) qB~C + ?I D ODFBcA ( q ) flA(IC=O . 

(2.4) 

Consider in particular a (spatially flat) Fr iedman- 
Robertson-Walker geometry, described (in the 
cosmic time gauge X ° = t )  by the metric 

GAr~ =diag(  1, -R2( t ) j+j )  (2.5) 

and choose the geodesic field of  an observer at rest in 
the comoving frame, i.e. i t"=odmOg. In this case, eq. 
(2.4) for the fluctuations along any spatial direction, 
r/, can be written as 

k~ 
/ ~ - r / " ' +  2 ~ 0 = 0 .  (2.6) 

We can now perform a Fourier expansion, 

r/A(a, r ) =  Y" r/~(r) e i"~ (2.7) 
n 

and define a "proper" amplitude Z~ = Rq~. By using 
the proportionality of r and qO we are thus led to eq. 
( 1.1 ), which shows that instability occurs, for a given 
background R (t), provided [ 2 ] 

( ~ ' m ) 2 d Z R  
- -  > 1 .  ( 2 . 8 )  

R dt 2 

This instability condition has a simple kinematic 
interpretation in terms of the relative acceleration 
between two ends of a string, induced by the external 
gravitational field. Consider in fact a string embed- 
ded in a curved background. In the absence of forces 
other than gravity, the string will be free falling. Dif- 

ferent points of the string, however, will fall along 
different geodesics. Consider then the local free fall- 
ing frame of one end (A) of the string: in this frame, 
the other end (B), at a proper distance 2 from A, will 
have an acceleration, relative to A, given by the equa- 
tion of geodesic deviation (see chapter 11 ofref. [ 5] ), 
i.e. 

a A= -R~czf lz~uCu +~ , (2.9) 

where z A is the spacelike separation vector, zAzA 
= - - 2  2, U A is the geodesic velocity field, uAu~= 1, 
zAuA=O, and RA~c~ is the curvature tensor of the 
background manifold. 

This acceleration defines, as usual, a local Rindler 
horizon (see chapter 6 of ref. [5] ) at a proper dis- 
tance d=  (--aAaA) -~/2 from the accelerated point 
(B). If  the relative acceleration (2.9) is negative for 
all the points of the string, then the whole string will 
be always inside the causal horizon (see fig. la) .  But 
if the relative acceleration is positive it may be pos- 
sible, for sufficiently large values of l al,  that A and 
B become causally disconnected because of the Rin- 
dler horizon interposed between them (see figs. lb 
and lc). This happens for 2>d.  

For the background metric (2.5), and for two 
comoving geodesics (uA=fi~) with proper spatial 
separation ). oriented, for example, along the X ~ di- 
rection, z A= ' A (+./R)gi ,  the non-vanishing compo- 
nent of their relative acceleration (2.9) is 

2 d2R 
a ' =  R ---5 d T '  (2.10) 

This acceleration is positive only for inflationary, 
backgrounds (d 2R/dt2> 0); for such backgrounds, 
the 2 > d condition becomes 

2 2 d2R 
~- dt--- ~ > 1 , (2.11) 

which, for 2 = a '  m, corresponds exactly to the insta- 
bility condition (2.8). 

Thesc kinematic arguments suggest that instability 
may be interpreted, classically, as a consequence of 
the fact that the various parts of the string become 
causally disconnccted, because of the kinematic ho- 
rizons induced by the background field. Since the ex- 
tension of the causally allowed rcgion decreases as the 
relative acceleration grows, the critical acceleration 
a~ (i.e. the minimal  background curvaturc) corre- 
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Fig. 1. The hyperbolic path of  one end of  the string (B) in the local free falling frame of the other end (A), and the associated Rindler 
horizon (represented by dashed lines). If the relative acceleration (induccd by the background curvature) is negative, then the two 
points A and B are always inside the causal horizon (a). Instability requires a positive relative acceleration (b),  and occurs when the 
horizon distance d=  HB is smaller than the length of  the string ). = AB (c). 

sponding to the instability onset is thus fixed by the 
string maximal  size (i.e. by the string tension ) and is 
given by 

ac= ( ~ ' m ) - ' .  (2.12) 

3. Another example 

According to the previous discussion, we should 
expect the possible emergence of instability only when 
the background field induces an effective local rcpul- 
sion, which tends to move apart from each other the 
various points of the string. This is confirmed by the 
following example. 

Consider a static and spherically symmetric back- 
ground, parametrized by polar coordinates X A = (T, 
R, @, q~), with metric 

GAB =diag(e ~, --e - ' ,  --R 2, - R  2 sin26 ~) , (3.1) 

where v is a function of the radial coordinate only 
(henceforth we shall restrict the discussion, for sim- 
plicity, to D=4) .  Expand around a radial geodesic 
qA= (t, r, 0, 0), such that 

?lA=cEm(k e - ' ,  v / ~ - - - ~ ,  0, 0) (3.2) 

[k is a dimensionless intcgration constant, u= v(r) ] 

and consider, in particular, eq. (2.4) for the angular 
fluctuations rl(Z): 

O (-~)-t/'(2} +2 -? f/(2)=0. (3.3) 
r 

By Fourier expanding, and by putting r/~2)= (oCm/ 
r)7.~ 2), we obtain 

- r ] " "  = 0 .  (3.4) 

Angular instability may thus occur, provided i:/r> 1, 
that is, by using the geodesic equation (2.3), provided 

o~'2m 2 d 
e ' >  1 . (3.5) 

2r dr 

Note that for a Schwarzschild field ( e ' =  1 - 2GM/  
r) angular instability is clearly impossible (/:/ 
r= - G M / r  3 is always negative). It may become pos- 
sible, however, in the field of a charged black hole: 
indeed, in a Rcissner-Nordstrrm metric, 

Q2 
e ' =  1 - 2GMr + r -5- '  (3.6) 

cq. (3.5) is satisfied, for a radially falling string, as 
soon as the string penetrates the spherical region de- 
fined by 

r4+ ( r G M -  Q2) (o¢,m)2 <0 (3.7) 
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[in agreement with the well known repulsive charac- 
ter, at short distances, of the metric (3.6) ]. 

Let us check now that the instability condition 
(3.5) is exactly equivalent to the requirement that 
the relative acceleration between two free falling 
points, with radial geodesic velocity 

uA= (k e-~, x / k - - e  , 0, 0) (3.8) 

and spatial separation Izl = 2 = a ' m  along the X (2) 
direction, i.e. 

ZA= (0, O, ;t/r, 0) (3.9) 

be large enough to make them causally disconnected. 
According to eq. (2.9) the relative acceleration be- 

tween two such points is, in fact, 

aA= 0 , 0 , - 2 r 2 ~ r r e  ,0  . (3.10) 

If a ~2) is positive, their proper distance 2= (--GAR 
×zAzB) ~/2 may be larger than the distance of the 
Rindler horizon associated to the acceleration (3.10). 
This happens for ).( - GA~aAa ~) 1/2> l, namely 

)2 d 
2 r d r e ~ > l ,  (3.11) 

in agreement with the instability condition (3.5) (for 
;t = c~' m),  independently obtained from the previous 
analysis of the string equations. 

4. Radial instability in the Sehwarzsehiid field 

In a Schwarzschild field, the angular acceleration 
a (2) between two radial geodesics is always negative 
and, as a consequence, instability for the angular 
fluctuations 17 (2) is forbidden. The situation is differ- 
ent, however, in the case of two free falling points with 
a non-zero separation along the radial direction (be- 
cause of the gravitational attraction we expect in fact, 
for extended bodies, a tendency to be stretched 
radially). 

Indeed, consider again the radial geodesic field 
(3.8), and two free falling points with proper sepa- 
ration ). oriented along the radial direction. By im- 
posing ZAuA=O and (--ZAZA)~/2=2 we get, in the 
background (3.1), 

zA=J.(e-vx/-k2--e u, k, 0, 0) . (4.1) 

For these two points the radial component of their 
relative acceleration, according to (2.9), is then 

2 d 2 e" ,  (4.2) a ~ l ) = - k  ~gr 2 

which, for a Schwarzschild field, is always positive. 
According to our previous kinematic interpretation 
we can thus predict, for a string falling in a 
Schwarzschild black hole, the possible occurrence of 
radial instability (even without explicit analysis of  
the r/C ~ ) fluctuation equation). 

It is interesting, in particular, to compute the crit- 
ical radius rc below which instability will develop (i.e. 
the ends of the string will become causally discon- 
nected). The full acceleration vector, for the radial 
separation (4.1), is given by 

a A = -  2dZe~ ( e - " x / k 2 - ~ ,  k, 0, 0) (4.3) 
2 dr 2 

and defines a Rindler horizon at a distance 

2_d2e, -1 
d=(--aAaA)-l /2= 2 dr 2 " (4.4) 

In the Schwarzschild case the instability condition 
).> d thus becomes r<r~, where (for 2=  c~'m) 

rc= ( 2GMa'2m 2 ) 1/3 (4.5) 

For sources of macroscopic mass M, this critical 
radius is much smaller than the Schwarzschild radius 
r~= 2GM; it is, however, possible, in principle, to have 
r~ ~ r~ for black holes of very small mass. The occur- 
rence of a string unstable regime, therefore, could be 
important both for the last stages of black hole evap- 
oration, and for the conjectured string-black-hole 
transition [ 6 ]. 

5. Concluding remarks 

In this paper I have pointed out a possible kine- 
matic characterization of string instability. It has been 
shown that instability appears whenever the relative 
acceleration between two ends of a string, induced by 
the background curvature, is positive and large 
enough to make them causally disconnected. The 
critical value of the acceleration required for the in- 
stability onset is thus fixed by the string tension, ac- 
cording to eq. (2.12 ). 
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This kinematic approach provides a useful tool for 
determining if. and in which limit, instability may 
develop, without solving explicitly the string equa- 
tions. For example, by using the fact that eq. (2.10) 
remains unchanged if the cosmological background 
has a non-vanishing (constant)  spatial curvature, we 
may prcdict instability, according to (2.11 ), even for 
strings in closed (or negatively curved) inflationary 
models. In refs. [ 1-3 ], on the contrary, instability was 
deduccd only for the spatially flat case. 

For strings minimally coupled to a gravitational 
background, like in this paper, the induced accelera- 
tion among the points of  the string is given by the 
equation of  geodesic deviation (2.9). However, thc 
kinematic interpretation of  instability holds in gen- 
eral even if the ends of  the string are accelerated by 
external interactions other than gravity. Indeed, for 
the case of  a string with charge + q  on its ends, 
embedded in a background electric field E, it has been 
shown [7] that instability occurs for E >  l /qa' .  In 
this case the acceleration is a=qE/m, so that the in- 
stability condition again can be interpreted kinemat- 
ically as a>a~, with the same a¢ ofeq.  (2.12). 

Finally, it should be stressed that this kinematic 
approach to instability is expected to apply, in gen- 
eral, not only to strings but also to extended bodies 
of  arbitrary dimensions. Indeed, there is a corre- 

sponding instability for p-branes when they arc 
embedded, for example, in inflationary gcometrics 
[ 8 ]. In such a case the instability condition is diffcr- 
ent, because o f  effects due to the world-volume cur- 
vature, which tends to incrcase the relative accelera- 
tion of  the ends of  the branc. But in the limit in which 
this curvature is neglected, one exactly recovers the 
same instability condition as in the string case. 
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