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o Fromtheanalytical structue of EWNNLOs
Qo to their numericalevaluation

what else, but the inevitable!
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EW

What about EW? NLO for vy
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— 3, complex W-boson mass
---- 3, real W-boson mass é
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Synopsis

From PO to RO
from gg — H to pp — gg(— H) + X

QCD, light Higgs EW < 2008

@ approximate

NLO K-fact.
NNLO K-fact.

1.7-19 @ incomplete
20-22

Q

@ divergent

Remaining sources of large corrections? é
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GraphShot package

@ A FORM code to generate and manipulate the amplitudes
in the SM J

The path to Feynman amplitudes - - - Jé
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GraphShot package

@ A FORM code to generate and manipulate the amplitudes
in the SM ’

@ Alink to FORTRAN libraries for numerical computation J

@ Authors: S. Actis, A. Ferroglia, G. Passarino, M. Passera,
C. Sturm, S. Uccirati ’

The path to Feynman amplitudes - - - J%
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Reduction

Generating the Amplitude: reduction

v

Recursive Reduction

Generic child topologies of the V# parent topology. The five-line V¢
diagram is obtained by removing one line of the V# diagram; the seccond
line contains the child topologies of V¢ (V*#, §¢ and B x B). The third line
contains the topologics S, B x A and 7, obtained by removing one line
from the diagrams above. The arrows indicate the correspondences between
parent and child topologies.
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Permutations

Generating the Ampitude

group diagrams into families, paying attention to permutation of
external legs

P2 P1
P2 P2 P2 P2

°
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Loops

Rooting

mapping onto a standard rooting for loop momenta
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Identities

Symmetry

apply symmetries to identify identical objects
my P1 ms p2
_p mz _p my
my mp
ms mz
P2 P1

g1 — —qx—P ,
g2 — —Qq1—P é



List-of-diagrams: all what is needed
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Poles & Logs

All-you-can-do-analytic

rule-of-the-game
Adelante Numerics, cum judicio

@ UV poles, of course

@ beware, overlapping
divergencies

Cancellations, if any, enforced analytically é
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Poles & Logs

All-you-can-do-analytic

rule-of-the-game
Adelante Numerics, cum judicio

@ UV poles, of course

@ beware, overlapping
divergencies

Cancellations, if any, enforced analytically é

@ IR poles, of course
@ Collinear logs, of course
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Coll I

Extracting Collinear divergencies

Coefficients of collinear logarithms are integrals of one-loop
functions

m.
P2 p2
Ms Ma m2 [t Ms
—P = In —/dy —P M, + finite pagt
T im s Jo y
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Coll Il

Extracting Collinear divergencies

Sometimes the answer is explicit

P2

m .- 2 ”2 2 ”
i m2 m s m m
P = n o Iy (—) In— +1In—
P M
=~ ; S s 2\Mm2 S S

T [us() 25 i)

M?2 s o
In?le (Mz)} + finite part é
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General results |

Coll. behavior of arbitrary two-loop q -scalar, UV-finite diagrams

+ coll. fin.

(1-2z)p
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General results Il

Generalization to tensor integrals
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Theorem Il

General results Il

W= —PZ/MZ, Iw — |n(l _ w)
M

[P +2P2qrpr—4(qup1)?] —<_ ¥,
M

= 2<1l+Twlw)LL’ +2{1+1+Tw|‘” (Iw1)+Li2(w)] (L+L)

H
Vdc

P2 +zp1

- 2/1dz [(1-z)P?L+ (P?+2q-p2)L]
0




uv

Extracting Ultraviolet divergencies

ms 2 [1]= q%"'m% ) )
UM i R
mi T T HRIBEEL - ey

TN X 5] = (qo-+P Y-+

1
= Ce/OdX /d53(Y1,Y2aY3)[X (1 —x)]"/2 (1 —yy)/? v 1=

The single pole can always be expressed in terms of 1L.

, M ms 2
V' — m3 (r: m3 % + finite part
m3
2 P1



Tools

WSTI

Checks

Off-shell WSTIs involving special sources

contracted sources — black circles

physical ones — gray boxes
Y

g g
H H H
O----- + 0----- OWWD + 0----- X =
, "A'O ”»
g Y W
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IPS

Finite Renormalization

AP = A ® (1+FR) + Al

M
m2 = M2 [1+ G\};V Rex M (M )}, B—W,H,
GeM

o ReZ(l)(M )}

02832t = 4rna,

02,7 = 2(v2G6M2)H2[1- Gg';v m(M2)]. é
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Singularities

@ FD have a complicated analytical structure )
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EW thresholds
[ ]

oo S

Singularities

@ FD have a complicated analytical structure

@ A frequently encountered singular behavior is associated
with the so-called normal thresholds: the leading Landau
singularities of self-energy-like diagrams

@ which can appear, in more complicated diagrams, as
sub-leading singularities.
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Bubbles

1/ -behavior
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Bubbles II

Origin of 1/

@ (1-loop diagrams) ® (H wave-function FR)

W o 7
H Q H
"

@ (1-loop diagrams) ® (W mass FR)

5
w
W( ) H
X mmen W
\ g

@ Pure 2-loop diagrams
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Coulomb

Logarithmic singularities

Remnant of
— Coulomb —
singularity




Part IV

Impetuoso



Complex poles

Solutions

RM scheme - none

where masses are the real on-shell ones; it gives the extension
of the generalized minimal subtraction scheme up to two loop
level.




Complex poles

Solutions

RM scheme - none

where masses are the real on-shell ones; it gives the extension
of the generalized minimal subtraction scheme up to two loop
level.

>

MCM scheme - minimal

@ start by removing the Relabel in those terms that, coming
from finite renormalization, violate WSTIs.

@ split the amplitude

ANLO _ Z TSR ALogIn (756\, - i0> + AReEM; %

i=W,Z
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MCM

Solutions

MCM scheme - minimal

@ After proving that all coefficients, gauge-parameter
independent by construction, satisfy the WST identities, we
minimally modify the amplitude introducing the
complex-mass scheme of for the divergent terms.

GeM?2 )
1+ an 2ReZ (M2)

Ges
2 ) Fow (1) /.
- [1 - 21/2 72 (s )] ’ %
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MCM I

Solutions

A nice feature of the MCM scheme is its simplicity

MCM scheme - minimal

The MCM, however, does not deal with cusps associated with
the crossing of normal thresholds.
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MCM Il

Solutions

A nice feature of the MCM scheme is its simplicity

MCM scheme - minimal

The MCM, however, does not deal with cusps associated with
the crossing of normal thresholds.

>

MCM scheme - minimal

@ The large and artificial effects arising around normal
thresholds in the MCM scheme (or in RM scheme) are
aesthetically unattractive.

@ In addition, they represent a concrete problem in assessing %
the impact of two-loop EW corrections on processes
relevant for the LHC.
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CM

Solutions

CM scheme - complete

@ The procedure described for the divergent terms has been
extended to the remainder Argm. In particular, all two-loop
diagrams have been computed with complex masses for
the internal vector bosons.
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CM

Solutions

CM scheme - complete

@ The procedure described for the divergent terms has been
extended to the remainder Argm. In particular, all two-loop
diagrams have been computed with complex masses for
the internal vector bosons.

>

CM scheme - complete

@ In the full CM setup, the real parts of the W and Z
self-energies induced by one-loop renormalization of the
masses and the couplings have to be traded for the
associated complex expressions.
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Results

EW on gluon-gluon fusion

8 Ww 12z tt

3

EW, total

Sy [%0]
)

/2L ;

N U APEPE R i R R A
100 150 200 250 300 350 400 450 500
M, [GeV]




Results
[ le]

Decay

EW on decay (v7)
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Comparison |

Comparing

Sy [%0]
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EW, light ferm.
EW, light ferm., Fig.2 of first paper of Ref.[27]
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Comparison Il

Comparing

10— wWw zz
: BEW‘ total, CM
8 : //; BEW, total, MCM
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More Results

EW on K-factors - uncertainty

We introduce two options for including NLO electroweak
corrections

@ CF (Complete Factorization):
oGy = 0 (14 5:(M2)) Gy;
@ PF (Partial Factorization):

o0 Gy — o0 [Gy + a2(1B)oe(M2) GV |, é
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LHC

EW on K-factors - LHC

K factor

2-7 T T _\
pp - H+ X Vs =14 TeV
MRST 2002
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Tevatron

EW on K-factors - Tevatron

pp - H+X Vs =1.96 TeV
3.8

MRST 2002
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Hic sunt leones

Conclusions

(% ] Towardsa systemati®FT with unstablepatrticles,
(=~ 10 kilohour- project)

Qo Whenappliedto pp — gg + X — H + X resultsshow
thatthe EW scalingfactor for the crosssectionis
between-4% and+6%

(100GeV < M,, < 500 GeV),

(%) withoutincongruentarge EW effects,
(% ] therebyshowingthat only a completémplementation
of the computationabcdhemekeepstwo-loop
correctionsundercontol. %
Q Selogra por repeticon/ meterel cosopor dentio / en

gueest la cosasagrata
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