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The Project

the project

Problem

HO perturbative QFT is a @ Develop graph
rather challenging field generators

requiring: ‘ .
clever ideas and new

@ import new ideas from
functional analysis into
EW physics to confront

the practical difficulties

9 3 9 3 there,

algorithms

A\

@ especially as concerns %
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Numerical evaluation

The road map for an NNLO process

@ A variety of important
processes will benefit
from NLO(NNLO)
computations

@ two-loop accuracy in
conjuction with
resummation

© Ideally, one would like a
fast and reliable

(general) NNLO program

Comple xity: n! growth
Different diagrams interfere

© tree level (obvious)

© 1L with finite 1L
renormalization

© 2L, but beware:

~

2 L renormalization is (much) %
more than ——e———

~
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Status:

Deliverab le now

Generation

Diagrams are generated &
manipulated by Graphshot
(Form 3.1)

Observables are computed
by LoopBack

No external

@ A Fortran 95 code has
been written (LoopBack)

@ with huge gains in CPU
time

@ array handling,
assignment overloading,
vector/recursive
functions, etc.
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Back to renormalization

tW O-|00p R (Awramik .... Weiglein)

Counter -terms Dogma

Not needed, but useful for @ {p:} are REAL

dealing with overlapping
divergencies

@ finite R € consistent
solution of R -equations

expansion

The relevant objects beyond
1L are dressed propagators

@ complex poles <—
dressing, but cutting
equations must be

verified %
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Dressed propagator s

Cutting equations & D propagator s

Problem

Use dressed propagators, @ 2L A in tree diagrams,
@ 1L Ain 1L diagrams,

—

Sane @ tree in 2L diagrams.

— Av .

Av = AT @ A satisfy the Kéllen -

Lehmann
representation.

cutting-equations and o only_ skeleton diagrams
unitarity of the S -matrix can are included %
be proven
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Dressed propagator s

Proof; Veltman

Ai(0?) = 6(po) [Av(p)] 2iReTyy (p).

while, for a stable particle, the pole term shows up as J

RH(pD) = 0(po) [Bv(p?)] 2iReTyy(p?) + 2w a(p? + m2).

ReXY,, — cutself-energy / repeat ad libidum

— contributions from cut lines € stable particles only O
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Loops with dressed propagator s

The consistent way with unstab le particles

Toy model with ¢ unstable:

g
L = oK) ¢?(X).

— A

Ny — 7‘1’,
1-As2oo

— A

Ay = —2_—,
1-Ag2g4

@ ImX s #0<«—3pcuth)
@ With D propagators only

a) and c) are retained,
buta) «— Ae, O(1L)




a) skeleton
PR NS

oy

.---‘

b) >3 insertion

<) skeleton

o>
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Loops with dressed propagator s

The consistent way with unstab le particles

1L FDwith 1L Ag
@ (g4) =
3 FD whith Ae(Su)

92
Z, = 167TZBO(—SM; m, m).

®



Diagrammatica
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New problems with comple x poles

Com ple X p0|eS (see also Denner Dittmaier @ 1L)

Problem

R - equations need Meyp ? define pole PO
OS PO are derived by fitting
lineshapes «— experiments My = Mgs COS Y,
rp - ros Sln w,
rOS
v = arctan ,
MOS
@ 1L we can use Mqs. Beyond 1L Gl <
o .
SV R |
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Change of strategy

comple x poles beyond 1L e

Solutions

@ 2L R - equations change consistently with an
their structure. order-by-order R, My —real
solutions of truncated R -

equatons

change of perspective: @ 1L

one considers Mys as IP
independent of s, and derive there is no problem with

Sp. @ 2L R - equations are cutting-equations and

written for real pgr and solved unitarity.

in terms of (among other %

things) experimental sp
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Number s, nothing more than numbers ...



The running of «

What's the running of a?

once again, problems

the role played by the @ UC should be linked to a
running of a has been crucial set of PO’s and data
in the development of should be presented in
precision tests of the SM. the language of PO’s

@ this language
popular wisdom <—resummation,
universal corrections are the against Gl
important ingredient, @ ~ M, itis easy to
non-universal ones should be perform a discrimination
made as small as possible relevant vs. irrelevant %
‘ terms, paying a very

little price to Gl
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Is there an a(s)?

IS it useful?

Why not? another solution

One (fuzzy) idea is to import. @ do the calculation in Ry,
from QCD the concept of MS @ select a ¢ - independent
couplings ) part of S,
@ perform resummation
while leaving the rest to
express th. predictions ensure independence
through MS couplings. Open when combined with
for criticism. V &B
@ The MS parameter @ the obvious criticism: it
seems unambiguos, violates uniqueness; %
@ however, it will violate ~then what? )
decoupling
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Ingredients for ap=

what we need for ags

fermion D 3 lepton non-perturbative O diagrams

generations, a perturbative where a light quark couple to

quark contribution, top or a photon, is related to

diagrams wh_ere light quarks Aapy(M2)

are coupled internally to

(i e QED and QCD contributions
to the light-quark part is
always subtracted

main equation %

|
Moo(0) = TEX(0) + Mgn(0) + MB3(0) + M (0).
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Results for am=

M

N U merICa| reSU |tS (see also Degrassi et al)
Definition
1
-1 -1 MSB
« s) = o~ ——1T1 0
MSB( ) A QQ ) u2=s

m; = 174.3GeV | M, = 150 GeV

V5 [GeV] M 120 160 200 500
one-loop 128.105 127.974 | 127.839 | 127.734 | 127.305
two-loop 128.042 127.967 | 127.891 | 127.831 | 127.586
% 0.22

mg =179.3GeV | M, = 150 GeV

one-loop 128.113 127.982 | 127.847 | 127.742 | 127.313
two-loop 128.048 127.980 | 127.911 | 127.857 | 127.636
% 0.25

m = 174.3GeV | M, = 300 GeV ]
Vs [GeV] M 120 160 200 500
one-loop 128.105 127.974 | 127.839 | 127.734 | 127.305
two-loop 128.041 127.914 | 127.784 | 127.683 | 127.266
% 0.03




The running of «
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£=1

a(s),

Fine points: LQ basis more comple x

-1 _ -1 1 ren
a(s) = a - p nQQ;@(t(S)
i
2 2 9?2 \" (n) 2
Dama = s MggieaP” =s nZ_l 1“2) M0Q;ed P
s & gZ n ™)
D = 2% =2 b3 ,
o HPEEDS () =2
12 (2 \"
Dzz = > 222 et = Zl (167(2) 27 et
=
(n) _ (n) 2 ~(n) 2
Iaziet = Tagied S MogiedP
(n) — (n) 2 o(n) 4 (n) 2
Y2zt = ZTxmied 25 T3giea TS MogieP
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afs), £&=1

Anatomy at 200 GeV

Definition
(6
— = 1+A
o(s) + Aa(s)
Aa value at 1/(s) = 200 GeV
ReEW —0.003578(8)

IMEW | 4+0.002156(8)
Rep QCD | —0.0005522(4)
Imp QCD | +0.0001178(3)
fin ren —0.0000977 — 0.0000998 |

Rea(s) | 0.0078782(2) é
Rea~1(s) | 126.933(4)




Infrared at two - loops

Vertices: enough for along talk

FD = integral representations

Theorem

/ de({X})% In <1+ g) or / de({x})% Lin (g)

where A, B are multivariate polynomials in the Feynman
parameters. Two - loop diagrams are always reducible to
combinations of integrals of this type where the usual
monomials that appear in the integral representation of Nielsen %
- Goncharov generalized polylogarithms are replaced by
multivariate polynomials of arbitrary degree.




Infrared at two - loops
[ ]

Examples

Examples

Solutions
-P 3 @ IR conf. classified

@ — IR residues and finite
part computed

m e @ suitable also for coll.
p1 regions

@ fully multi-scale

BST funct. rel. = h.o. transcendental functions Jé



Infrared at two - loops
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IR numerica

Results: just a sample

/5 [Gev] ReVok  [GeV 7] ImVox  [Gev 7]
our 400 5.1343(1) x 108 | 1.94009(8) x 10—3
DK 5.13445 x 108 1.94008 x 108
our 300 5.68801 x 10~ 8 —1.61218 x 10~ 8
DK 5.68801 x 108 —1.61218 x 108
our 200 9.36340 x 10~ 8 —2.84232 x 10~ 8
DK 9.36340 x 108 —2.84232 x 108
our 100 2.94726 x 101 —9.74218 x 10~ 8
DK 2.94726 x 10~7 —9.74218 x 108
V=1 [GevV] | ReVgy [Gev—7] ImVoy  [Gev 7]
our 100 —2.85709 x 107 | 0
DK —2.85709 x 10~7 | 0
our 200 —7.61695 x 108 | 0
DK —7.61695 x 108 | 0
our 300 —3.29938 x 10 % | 0
DK —3.29938 x 1078 | 0
our 400 —1.74228 x 108 | 0
DK —1.74228 x 1078 | 0

Table: Comparison with the results of Davydychev - Kalmykov Only

the infrared finite part is shown




Comple x poles: numerica
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Input: on-shell masses

Old fashioned one-loop

M:’S [GeVv] | 120 150 300
P 119.96GeV | 149.91GeV | 299.74GeV
T 5.62 MeV 7.00 MeV 7.90 GeV

7 and b-quark ]/\A

On-Shell Masses é
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Input: comple x poles

The current fashion

Sy = Mﬁ—iuH%
sh = M2—iM,Ty,

300 4 299.96 8.374
300 12 299.87 8.376
500 40 500.17 63.37
500 80 500.42 63.34

it's the imaginary part that matter s finally beyond mY=®(s,) é
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Comple x poles handling: more details

Comple x poles: details

svfm2+ﬂ(sv,m2,...) — sV:mzfl'I(l) (mz,mz...)Jr...
v A

You get complex pole (renorm. mass) an MS concept

A\

Improve : svfm2+n(sv,m2,{p},...)

Solution

|\

m?2 and {p} from R - equations m?, {p} = Ref (Svl ) Svp s s

No expansion for exp - dependent quantities — 2 L on second R-sheet (try it!)
R - equations — Bornin 2L ,1L inlL

(in principle) masses to complex poles in propagators
< prediction ifV & {Vy, Va, ...}
< consistency of QCifV € {Vi, Vo,...} Sy -expansion




R - equations: numerica

- equations: details

Definition
Ge 92 8G upy [1+°él)g+"']
Al (1+ Ag) §
vz = ) = L ko)

G —G 6((31) finite - 6(2) finite after 1L Ren.
Ge 1 2 (1)~
F Hw |:2(5C(;))2__25é)cé)

G = &{1 ﬁ”z

B 2) Ge ,uw
272

W




R - equations: numerica
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number s & renormalization |

The UV, IR finite remainder for G,

MPs [GeV] | 150 300 500

G;:;LZ 5(2)

2 s | 18:29% | 8.89% | —24.62%
G




number s & renormalization |1

R - equations: numerica

Playing with numbers in R - equations

X = x(1+a1x+a2xz) X = X+X2(b1+b2X)
G 1g g2 5 )
X = —_—, X = = (0)
272 1672 i, Y
a; = 6((31) + s
ay = s [68) + s } + 5((32) + s@ PT questionable —
MSS [GeV] 150 200 250 300 350
by X (%) +3.31 +0.13 —2.30 —4.84 —7.85]
by +12.28 | 40.47 —8.51 —17.95 | —29.07
b, X +0.25 —1.31 —1.38 —2.58 | ~o=q
by/b1 X (%) | +2.06 {2771 | +16.16 | +14.35 | +31.¢5

accidental 1L cancellation
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Conclusions

The road map for an NNLO calculation

@ We have created an independent integrated system which
@ uses FORM to generate
@ uses FORTRAN 95 to compute

@ Has a built-in Renormalization procedure
@ Can deal with multi-scale diagrams (also IR and coll.)
@ Is fully operative at two-loop level,

@ expanding & improving PO (two-leg) results
@ classifying & computing three-leg diagrams (d-by-d)

@ Is evolving towards PO / O (three-leg) (already implanted
in other projects) %

@ Yes, I'm slow; no hurry, no worry, I’'m going my way
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