$ββ_{0ν}$ Decay Phenomenology Carlo Giunti

INFN, Sezione di Torino, and Dipartimento di Fisica Teorica, Università di Torino giunti@to.infn.it

IPPP Workshop, 21-23 April 2004, Grey College, Durham, UK

- \rightsquigarrow Experimental Evidences of ν Oscillations \Rightarrow 3- ν Mixing. [Pascoli]
- \rightsquigarrow Tritium β Decay and Cosmological Limit on Neutrino Masses. [Pascoli]
- → Majorana Neutrino Mass $\Leftrightarrow \beta \beta_{0\nu}$ Decay. [Hirsch, Pascoli]
- \rightsquigarrow The Problem of $\mathcal{M}_{0\nu}$. [Simkovic, Vergados, Suhonen, Kortelainen]
- → Experimental Status and Perspectives. [Avignone, Thomas, Zuber]
- \rightsquigarrow Neutrino Oscillations Bounds for $\beta\beta_{0\nu}$ Decay. [Hirsch, Pascoli]
- → Beyond Neutrino Mass. [Hirsch, Pilaftsis]

Experimental Evidences of Neutrino Oscillations

Solar $ \nu_e \rightarrow \nu_{\mu}, \nu_{\tau} $ Reactor $ \bar{\nu}_e $ disappeara	Homestake, Kamiokande, GALLEX, SAGE, GNO, Super-Kamiokande, SNO (KamLAND)	$ \left\{ \begin{array}{l} \Delta m_{SUN}^{2\text{best-fit}} = 6.9 \times 10^{-5} \\ 5.4 \times 10^{-5} < \Delta m_{SUN}^{2} < 9.4 \times 10^{-5} \\ \left[eV^{2} \right] \qquad (99.73\% \text{ C.L.}) \\ \end{array} \right. $ [Maltoni, Schwetz, Tortola, Valle, PRD 68 (2003) 113010]
Atmospheric	(Kamiokande, IMB, Super- Kamiokande, MACRO, SOUDAN 2 or (K2K)	$\Rightarrow \begin{cases} \Delta m_{ATM}^{2 \text{ best-fit}} = 2.6 \times 10^{-3} \\ 1.4 \times 10^{-3} < \Delta m_{ATM}^{2} < 5.1 \times 10^{-3} \\ \text{[eV}^{2]} \qquad (99.73\% \text{ C.L.}) \end{cases}$ [Fogli, Lisi, Marrone, Montanino, PRD 67 (2003) 093006]

Three-Neutrino Mixing

SOLAR AND ATMOSPHERIC V OSCILLATIONS ARE PRACTICALLY DECOUPLED!

see also [Palo Verde, PRD 64 (2001) 112001]

TWO-NEUTRINO SOLAR and ATMOSPHERIC ν OSCILLATIONS ARE OK! $\sin^2 \vartheta_{\rm SUN} = \frac{|U_{e2}|^2}{1 - |U_{e3}|^2} \simeq |U_{e2}|^2 \quad \sin^2 \vartheta_{\rm ATM} = |U_{\mu3}|^2$ [Bilenky, Giunti, PLB 444 (1998) 379] [Guo, Xing, PRD 67 (2003) 053002]

Standard Parameterization of Mixing Matrix for Majorana Neutrinos

$$U = R_{23} W_{13} R_{12} D(\lambda)$$

$$= \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13}e^{-i\delta_{13}} \\ 0 & 1 & 0 \\ -s_{13}e^{i\delta_{13}} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & e^{i\lambda_{21}} & 0 \\ 0 & 0 & e^{i\lambda_{31}} \end{pmatrix}$$
$$\vartheta_{23} \simeq \vartheta_{\text{ATM}} \qquad \vartheta_{13} = \vartheta_{\text{CHOOZ}} \qquad \vartheta_{12} = \vartheta_{\text{SUN}}$$

$$= \begin{pmatrix} c_{12}c_{13} & s_{12}c_{13} & s_{13}e^{-i\delta_{13}} \\ -s_{12}c_{23} - c_{12}s_{23}s_{13}e^{i\delta_{13}} & c_{12}c_{23} - s_{12}s_{23}s_{13}e^{i\delta_{13}} & s_{23}c_{13} \\ s_{12}s_{23} - c_{12}c_{23}s_{13}e^{i\delta_{13}} & -c_{12}s_{23} - s_{12}c_{23}s_{13}e^{i\delta_{13}} & c_{23}c_{13} \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & e^{i\lambda_{21}} & 0 \\ 0 & 0 & e^{i\lambda_{31}} \end{pmatrix}$$

$$= \begin{pmatrix} c_{12}c_{13} & s_{12}c_{13}e^{i\lambda_{21}} & s_{13}e^{i(\lambda_{31}-\delta_{13})} \\ -s_{12}c_{23} - c_{12}s_{23}s_{13}e^{i\delta_{13}} & c_{12}c_{23}e^{i\lambda_{21}} - s_{12}s_{23}s_{13}e^{i(\lambda_{21}+\delta_{13})} & s_{23}c_{13}e^{i\lambda_{31}} \\ s_{12}s_{23} - c_{12}c_{23}s_{13}e^{i\delta_{13}} & -c_{12}s_{23}e^{i\lambda_{21}} - s_{12}c_{23}s_{13}e^{i(\lambda_{21}+\delta_{13})} & c_{23}c_{13}e^{i\lambda_{31}} \end{pmatrix}$$

$$\delta_{13} \neq 0 \quad \text{or} \quad \lambda_{21} \neq 0, \ \frac{\pi}{2} \quad \text{or} \quad \lambda_{31} \neq 0, \ \frac{\pi}{2} \quad \Rightarrow \quad CP \,\mathcal{L}^{CC} CP^{-1} \neq \mathcal{L}^{CC} \quad \Leftrightarrow \quad CP \text{ violation}$$

Bilarge Mixing

$$\sin^2 \vartheta_{\text{SUN}} = \frac{|U_{e2}|^2}{1 - |U_{e3}|^2} \qquad \sin^2 \vartheta_{\text{ATM}} = |U_{\mu3}|^2 \qquad \sin^2 \vartheta_{\text{CHOOZ}} = |U_{e3}|^2$$

$$\tan^2 \vartheta_{\text{SUN}}^{\text{best-fit}} = 0.43$$
 $0.30 < \tan^2 \vartheta_{\text{SUN}} < 0.64$ (99.73% C.L.)

[Maltoni, Schwetz, Tortola, Valle, hep-ph/0309130]

$$\sin^2 2\vartheta_{\text{ATM}}^{\text{best-fit}} = 1$$
 $\sin^2 2\vartheta_{\text{ATM}} > 0.86$ (99.73% C.L.)

[Fogli, Lisi, Marrone, Montanino, PRD 67 (2003) 093006]

 $\sin^2 2\vartheta_{CHOOZ}^{\text{best-fit}} = 0$

$$\sin^2 2\vartheta_{\text{CHOOZ}} < 5 \times 10^{-2}$$
 (99.73% C.L.)

[Fogli et al., PRD 66 (2002) 093008]

	0.84	0.55	0.00		(0.76 - 0.88)	0.47 - 0.62	0.00 - 0.22
$U_{\rm bf} \simeq$	-0.39	0.59	0.71	$ U \simeq$	0.09 - 0.62	0.29 - 0.79	0.55 - 0.85
	0.39	-0.59	0.71)		(0.11 – 0.62	0.32 - 0.80	0.51 – 0.83)

Absolute Scale of Neutrino Masses

Tritium β **Decay**

if experiment is not sensitive to masses $(m_k \ll Q - T) \implies$ effective mass

$$m_{\beta}^2 = \sum_k |U_{ek}|^2 m_k^2$$

 $K^{2} = (Q-T)^{2} \sum_{k} |U_{ek}|^{2} \sqrt{1 - \frac{m_{k}^{2}}{(Q-T)^{2}}} \simeq (Q-T)^{2} \sum_{k} |U_{ek}|^{2} \left[1 - \frac{1}{2} \frac{m_{k}^{2}}{(Q-T)^{2}}\right]$ $= (Q-T)^{2} \left[1 - \frac{1}{2} \frac{m_{\beta}^{2}}{(Q-T)^{2}}\right] \simeq (Q-T) \sqrt{(Q-T)^{2} - m_{\beta}^{2}}$

 $m_{\nu_e} < 2.2 \,\mathrm{eV}$ (95% C.L.) $\implies m_{\beta} < 2.2 \,\mathrm{eV}$ (95% C.L.)

Cosmological Limit on Neutrino Masses

neutrinos are in equilibrium in the primeval plasma through weak interaction reactions $\nu \bar{\nu} \leftrightarrows e^+ e^ \stackrel{(-)}{\nu e} \leftrightarrows \stackrel{(-)}{\nu e} \smile \stackrel{(-)}{\nu N} \swarrow \stackrel{(-)}{\nu N} \bigvee \nu e^n \leftrightarrows pe^ \bar{\nu}_e p \leftrightarrows ne^+$ $n \leftrightarrows pe^- \bar{\nu}_e$ weak interactions freeze out $\Gamma_{\text{weak}} = N\sigma v \sim G_{\text{F}}^2 T^5 \sim T^2 / M_P \sim \sqrt{G_N T^4} \sim \sqrt{G_N \rho} \sim H \implies T_{\text{dec}} \sim 1 \,\text{MeV}$ neutrino decouplina Relic Neutrinos: $T_{\nu} = \left(\frac{4}{11}\right)^{\frac{1}{3}} T_{\gamma} \simeq 1.945 \,\mathrm{K} \Longrightarrow k \,T_{\nu} \simeq 1.676 \times 10^{-4} \,\mathrm{eV}$ $(T_{\gamma} = 2.725 \pm 0.001 \,\mathrm{K})$ number density: $n_f = \frac{3}{4} \frac{\zeta(3)}{\pi^2} g_f T_f^3 \Longrightarrow n_{\nu_k, \bar{\nu}_k} \simeq 0.1827 T_{\nu}^3 \simeq 112 \,\mathrm{cm}^{-3}$ density contribution: $\Omega_k = \frac{n_{\nu_k, \bar{\nu}_k} m_k}{\Omega_c} \simeq \frac{1}{h^2} \frac{m_k}{94.14 \text{ eV}} \Longrightarrow \left| \Omega_{\nu} h^2 = \frac{\sum_k m_k}{94.14 \text{ eV}} \right| \quad \left(\rho_c = \frac{3H^2}{8\pi G_N} \right)$ [Gershtein, Zeldovich, JETP Lett. 4 (1966) 120] [Cowsik, McClelland, PRL 29 (1972) 669]

very weak assumptions:
$$h \leq 1$$
, $\Omega_{\nu} \leq 1 \implies \sum_{k} m_{k} \leq 94 \text{ eV}$
reasonable assumptions: $h \leq 0.8$, $\Omega_{\nu} \leq 0.1 \implies \sum_{k} m_{k} \leq 6 \text{ eV}$

massive neutrinos = hot dark matter relativistic at matter-radiation equality $(<math>z_{eq} \sim 3000$) when structures start to form

last CMB Scattering (recombination) $z_{\rm rec} \sim 1300, T_{\rm rec} \sim 3700 \,{\rm K} \sim 0.3 \,{\rm eV}$

galaxy formation at $z_{\rm gal} \sim 6.8$

Power Spectrum of Density Fluctuations

Power Spectrum for $n=1 \ \Lambda CDM$ and $\Lambda CHDM$

[Primack, Gross, astro-ph/0007165]

hot dark matter prevents early galaxy formation

small scale suppression

$$\frac{\Delta P(k)}{P(k)} \approx -8 \frac{\Omega_{\nu}}{\Omega_m} \approx -0.8 \left(\frac{\sum_k m_k}{1 \text{ eV}}\right) \left(\frac{0.1}{\Omega_m h^2}\right)$$

for
$$k \gtrsim k_{\rm nr} \approx 0.026 \sqrt{\frac{m_{\nu}}{1 \, {\rm eV}}} \sqrt{\Omega_m} h \, {\rm Mpc}^{-1}$$

[Hu, Eisenstein, Tegmark, PRL 80 (1998) 5255]

[Tegmark, Zaldarriaga, Phys. Rev. D66 (2002) 103508]

[SDSS, astro-ph/0310725]

CMB (WMAP, CBI, ACBAR) + LSS (2dFGRS, L- α) + HST + SN-Ia

[WMAP, astro-ph/0302207, astro-ph/0302209]

Hannestad [astro-ph/0303076]

$$\sum_{k} m_{k} < 1.01 \text{ eV} \quad (95\% \text{ confidence}) \qquad [WMAP+CBI+2dFGRS+HST+SN-Ia]$$

$$\sum_{k} m_{k} < 1.20 \text{ eV} \quad (95\% \text{ confidence}) \qquad [WMAP+CBI+2dFGRS]$$

$$\sum_{k} m_{k} < 2.12 \text{ eV} \quad (95\% \text{ confidence}) \qquad [WMAP+2dFGRS]$$

Elgaroy and Lahav [astro-ph/0303089]

$$\sum_{k} m_k < 1.1 \,\text{eV} \quad (95\% \text{ confidence}) \quad [WMAP+2dFGRS+HST]$$

WMAP + SDSS [astro-ph/0310723]

 $h \approx 0.70^{+0.04}_{-0.03}$ $\Omega_m \approx 0.30 \pm 0.04$ (1 σ) $\sum m_{\nu_k} < 1.7 \,\text{eV}$ (95% confidence)

Majorana Neutrino Mass?

known natural explanations $\begin{cases} \star & \text{See-Saw Mechanism} \\ \star & \text{5-D Non-Renormalizable Effective Operator} \end{cases}$

- both imply $\begin{cases} \star & \text{Majorana } \nu \text{ masses} \Longleftrightarrow |\Delta L| = 2 \Longleftrightarrow \beta \beta_{0\nu} \text{ decay} \\ \star & \text{see-saw type relation } m_{\nu} \sim \frac{\mathcal{M}_{EW}^2}{\mathcal{M}} \\ \star & \text{new high energy scale } \mathcal{M} \end{cases}$

Majorana neutrino masses provide the most accessible window on New Physics Beyond the Standard Model

In Neutrino Oscillations Dirac ~ Majorana

Evolution of Amplitudes: $\frac{d\nu_{\alpha}}{dt} = \frac{1}{2F} \left(UM^2 U^{\dagger} + 2EV \right)_{\alpha\beta} \nu_{\beta}$ difference: $\begin{cases} Dirac: U^{(D)} \\ Maiorana: U^{(M)} = U^{(D)}D(\lambda) \end{cases}$ $D(\lambda) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & e^{i\lambda_{21}} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \end{pmatrix} \implies D^{\dagger} = D^{-1}$ $M^{2} = \begin{pmatrix} m_{1}^{2} & 0 & \cdots & 0 \\ 0 & m_{2}^{2} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & m^{2} \end{pmatrix} \implies DM^{2} = M^{2}D \implies DM^{2}D^{\dagger} = M^{2}$

 $U^{(M)}M^2(U^{(M)})^{\dagger} = U^{(D)}DM^2D^{\dagger}(U^{(D)})^{\dagger} = U^{(D)}M^2(U^{(D)})^{\dagger}$

Neutrinoless Double- β **Decay:** $\Delta L = 2$

Two-Neutrino Double- β **Decay:** $\Delta L = 0$

$$\mathcal{N}(A, Z) \rightarrow \mathcal{N}(A, Z+2) + e^- + e^- + \bar{\nu}_e + \bar{\nu}_e$$

 $(T_{1/2}^{2\nu})^{-1} = G_{2\nu} |\mathcal{M}_{2\nu}|^2$

second order weak interaction process

in the Standard Model

u

d

Majorana Neutrino Mass $\Leftrightarrow \beta \beta_{0\nu}$ **Decay**

[Hirsch]

cancellations with other diagrams are very unlikely (unstable under perturbations)

The Problem of Nuclear Matrix Elements

[Simkovic, Vergados, Suhonen, Kortelainen]

Theoretically evaluated $\beta\beta(0\nu)$ half-lives (units of 10²⁸ years for $\langle m_{\nu} \rangle = 10$ meV).

Isotope	[10]	[11]	[12]	[13]	[14]	[15]
⁴⁸ Ca	3.18	8.83		-		2.5
⁷⁶ Ge	1.7	17.7	14.0	2.33	3.2	3.6
⁸² Se	0.58	2.4	5.6	0.6	0.8	1.5
¹⁰⁰ Mo	11 1	-	1.0	1.28	0.3	3.9
¹¹⁶ Cd		1000	-	0.48	0.78	4.7
¹³⁰ Te	0.15	5.8	0.7	0.5	0.9	0.85
¹³⁶ Xe	-	12.1	3.3	2.2	5.3	1.8
¹⁵⁰ Nd	-			0.025	0.05	
160 Gd	-	-	2. 	0.85	3. 3	-

[Cremonesi, NPB P.S. 118 (2003) 287]

about factor of 3 discrepancies \implies estimated uncertainty

QRPA calculation of $\mathcal{M}_{0\nu}$

[Simkovic]

uncertainties much smaller than the traditional factor of ~ 3

Hirsch Comment on Matrix Element Uncertainty

- **\star** in QRPA calculations g_{pp} is the most important parameter
- **\star** increasing g_{pp} reduces both $\beta\beta_{2\nu}$ and $\beta\beta_{0\nu}$ matrix elements
- **\star** if $\beta\beta_{2\nu}$ half life is known, g_{pp} can be fitted

[Rodin, Faessler, Simkovic, Vogel, PRC 68 (2003) 044302]

3 different nuclear Hamiltonians

3 different model spaces

 $\mathcal{M}_{0\nu}^{\text{QRPA}} = 2.68 \pm 0.06$ $\mathcal{M}_{0\nu}^{\text{RQRPA}} = 2.40 \pm 0.07$

[Muto, PLB 391 (1997) 243] $\mathcal{M}_{0\nu}^{QRPA} = 4.5 \qquad \mathcal{M}_{0\nu}^{RQRPA} = 3.8 \qquad \mathcal{M}_{0\nu}^{EQRPA} = 3.9$ $\frac{\mathcal{M}_{0\nu}^{\text{Rodin-Faessler-Simkovic-Vogel}}{\mathcal{M}_{0\nu}^{\text{Muto}}} \sim \frac{1}{2}$

- ★ Rodin-Faessler-Simkovic-Vogel uncertainties seem too optimistic
- \star but factor of ~ 3 uncertainty maybe too pessimistic
- ★ necessary to exclude old or unreliable calculations
- ★ experts should join, select the best calculations and estimate uncertainty

Vergados: important to improve shell model and QRPA calculations to reach (hopefully) convergence

Suhonen: use available β^{\pm} decay data of intermediate nucleus to constrain and test models

important to test and constrain model with all available data

Kortelainen: possible test with μ capture

no method can guarantee rightness of matrix element, but important to increase confidence

 $\beta\beta_{0\nu}$ Decay Experiments

[Avignone]

sensitivity: signal equal to background fluctuations

 $\Gamma_{1/2}^{0\nu} N_{\beta\beta} T \epsilon \sim \sqrt{B \Delta E M T}$

$$T_{1/2}^{0\nu} \sim \frac{N_{\beta\beta} T \epsilon}{\sqrt{B \Delta E M T}} \propto \epsilon \sqrt{\frac{M T}{B \Delta E}}$$

large efficiency ϵ large mass Mlong time Tlow background rate Bsmall energy resolution ΔE

Best limits for $\beta\beta_{0\nu}$ **Decay**

$$(T_{1/2}^{0\nu})^{-1} = G_{0\nu} \, |\mathcal{M}_{0\nu}|^2 \, |m_{\beta\beta}|^2$$

RQRPA calculation of $\mathcal{M}_{0\nu}$

[Rodin, Faessler, Simkovic, Vogel, PRC 68 (2003) 044302] [Bilenky, Faessler, Simkovic, hep-ph/0402250]

Nucleus	$G_{0\nu} \left[10^{-25} \mathrm{y}^{-1} \mathrm{eV}^{-2} \right]$	$ \mathcal{M}_{0\nu} $
⁷⁶ Ge	0.30	2.40
¹⁰⁰ Mo	2.19	1.16
¹³⁰ Te	2.12	1.29

Heidelberg-Moscow (76Ge)

[EPJA 12 (2001) 147]

 $T_{1/2}^{0\nu} > 1.9 \times 10^{25} \,\mathrm{y}$ (90% C.L.) $\implies |m_{\beta\beta}| < 0.55 \,\mathrm{eV}$ (90% C.L.)

IGEX (⁷⁶Ge)

[PRD 65 (2002) 092007]

 $T_{1/2}^{0\nu} > 1.57 \times 10^{25} \,\mathrm{y}$ (90% C.L.)

 $|m_{\beta\beta}| < 0.61 \,\mathrm{eV}$ (90% C.L.)

Best reported results on $\beta\beta$ processes. Limits are at 90% C.L. except when noted. $\beta\beta(2\nu)$ results are averaged over different experiments. The effective neutrino mass limits and ranges are those deduced by the authors $(\langle m_{\nu} \rangle)$ or according to Table 1 $(\langle m_{\nu}^{\dagger} \rangle)$.

Isotope	$T_{1/2}^{2\nu}$ (y)	$T_{1/2}^{0\nu}(y)$	$\langle m_{\nu} \rangle ~({\rm eV})$	$\langle m_{ u}^{\dagger} angle ~({ m eV})$
⁴⁸ Ca	$(4.2 \pm 1.2) \times 10^{19}$ [16]	$> 9.5 \times 10^{21} (76\%) [17]$	< 8.3	< 16 - 30
⁷⁶ Ge	$(1.3 \pm 0.1) \times 10^{21}[37, 18]$	$> 1.9 \times 10^{25}[37]$	< 0.35	< 0.3 - 1
		$> 1.6 imes 10^{25}$ [19,38]	< 0.33 - 1.35	
⁸² Se	$(9.2 \pm 1.0) \times 10^{19} [20,21]$	$> 2.7 \times 10^{22} (68\%) [20]$	< 5	< 4.6 - 14.4
⁹⁶ Zr	$(1.4^{+3.5}_{-0.5}) \times 10^{19}[22,23]$			
¹⁰⁰ Mo	$(8.0 \pm 0.6) \times 10^{18} [24 - 26]$	$> 5.5 \times 10^{22} [27]$	< 2.1	< 2.3 - 8.4
¹¹⁶ Cd	$(3.2 \pm 0.3) \times 10^{19} [28 - 30]$	$> 7 \times 10^{22}$ [29]	< 2.6	< 2.6 - 8.2
$^{128,130}{ m Te}$		Geoch. ratio[31]	< 1.1 - 1.5	
¹²⁸ Te	$(7.2 \pm 0.3) \times 10^{24}$ [31,32]	$> 7.7 \times 10^{24}$ [31]	< 1.1 - 1.5	
¹³⁰ Te	$(2.7 \pm 0.1) \times 10^{21}[31]$	$> 2.08 \times 10^{23}$	< 0.9 - 2.0	< 0.85 - 5.3
¹³⁶ Xe	$> 8.1 \times 10^{20}[33]$	$> 4.4 imes 10^{23}$ [34]	< 1.8 - 5.2	< 2 - 5.2
¹⁵⁰ Nd	$7.0^{+11.8}_{-0.3} \times 10^{18}$ [25,35]	$> 1.2 \times 10^{21}$ [25]	< 3	< 4.6 - 6.5
238U(3)	$(2.0 \pm 0.6) \times 10^{21} [36]$			a

[Cremonesi, NPB P.S. 118 (2003) 287]

Indication of $\beta\beta_{0\nu}$ Decay in Heidelberg-Moscow Experiment

[Klapdor-Kleingrothaus, Dietz, Harney, Krivosheina, Mod. Phys. Lett. A16 (2001) 2409] [Klapdor-Kleingrothaus, Dietz, Krivosheina, Found. Phys. 32 (2002) 1181] [Klapdor-Kleingrothaus, Dietz, Chkvorez, Krivosheina, NIMA 522 (2004) 371] [Klapdor-Kleingrothaus, Krivosheina, Dietz, Chkvorets, PLB 586 (2004) 198]

the claim must be tested by independent experiment (NEMO-3, CUORICINO)

Experimental Perspectives for $\beta\beta_{0\nu}$ **Decay**

[Avignone, Thomas, Zuber]

Expected 5 y sensitivities of future projects. NME are from ref. [13] except when noted.

Experiment	Isotope	$T_{1/2}^{0\nu}$	$\langle m_{ u} \rangle$
		$(10^{26} y)$	(meV)
CUORE[47]	¹³⁰ Te	7	27
CUORICINO[47]	$^{130}\mathrm{Te}$	0.15	184
EXO[48]	¹³⁶ Xe	8	52
GENIUS[49]	$^{76}\mathrm{Ge}$	100	15
MAJORANA[50]	76 Ge	40	25
GEM[51]	⁷⁶ Ge	70	18
MOON[52]	¹⁰⁰ Mo	10	36
XMASS[53]	136 Xe	3	86
COBRA[54]	¹³⁰ Te	0.01	240
DCBA[55]	¹⁵⁰ Nd	0.15	190
NEMO 3[56]	¹⁰⁰ Mo	0.04	560
CAMEO[57]	¹¹⁶ Cd	> 1	69
CANDLES[58]	⁴⁸ Ca	1	158[15]

[Cremonesi, NPB P.S. 118 (2003) 287]

Neutrino Oscillations Bounds for $\beta\beta_{0\nu}$ **Decay**

complex $U_{ek} \Rightarrow$ possible cancellations among m_1, m_2, m_3 contributions!

$$m_{\beta\beta} = |U_{e1}|^2 m_1 + |U_{e2}|^2 e^{2i\lambda_{21}} m_2 + |U_{e3}|^2 e^{2i(\lambda_{31} - \delta_{13})} m_3$$

conserved CP $\implies \delta_{13} = 0 \quad \lambda_{kj} = 0, \ \frac{\pi}{2} \implies e^{2i\lambda_{kj}} = \pm 1$

opposite CP parities of v_k and $v_j \implies e^{2i\lambda_{kj}} = -1 \implies$ maximal cancellation!

Mass Hierarchy Without Fine-Tuned Cancellations

$$\begin{split} |\langle m \rangle| &\simeq \max_{k} |\langle m \rangle|_{k} \qquad |\langle m \rangle|_{k} \equiv |U_{ek}|^{2} m_{k} \\ |U_{e2}|^{2} &\simeq \sin^{2} \vartheta_{\text{SUN}} \qquad m_{2} \simeq \sqrt{\Delta m_{\text{SUN}}^{2}} \qquad |U_{e3}|^{2} \simeq \sin^{2} \vartheta_{\text{CHOOZ}} \qquad m_{3} \simeq \sqrt{\Delta m_{\text{ATM}}^{2}} \\ |U_{e2}|^{2}_{\text{best-fit}} &= 0.30, \qquad \sqrt{\Delta m_{\text{SUN}}^{2\text{best-fit}}} = 8.3 \times 10^{-3} \\ 0.22 &\leq |U_{e2}| \leq 0.38 \\ 7.3 \times 10^{-3} \leq \sqrt{\Delta m_{\text{SUN}}^{2}} \leq 9.7 \times 10^{-3} \\ 7.3 \times 10^{-3} \leq \sqrt{\Delta m_{\text{SUN}}^{2}} \leq 9.7 \times 10^{-3} \\ |U_{e3}|^{2}_{\text{best-fit}} &= 0, \qquad \sqrt{\Delta m_{\text{ATM}}^{2\text{best-fit}}} = 5.1 \times 10^{-2} \\ |U_{e2}| &\leq 0.05 \\ 3.7 \times 10^{-2} \leq \sqrt{\Delta m_{\text{ATM}}^{2}} \leq 7.1 \times 10^{-2} \\ \end{split}$$

 v_2 contribution $|\langle m \rangle|_2$ may be dominant! (lower limit for $|\langle m \rangle|$)

but overlap of allowed ranges for $|\langle m \rangle|_2$ and $|\langle m \rangle|_3$ show that strong cancellations are possible

CP Conservation: Normal Scheme

CP Conservation: Inverted Scheme

General Neutrino Oscillations Bounds for $\beta\beta_{0\nu}$ **Decay**

Carlo Giunti – $\beta\beta_{0\nu}$ Decay Phenomenology – IPPP Workshop, 21-23 April 2004, Grey College, Durham, UK – **35**

Beyond Neutrino Mass

very interesting, but I think always important to remember

OCKHAM RAZOR

essentia non sunt multiplicanda praeter necessitatem

entities should not be multiplied unnecessarily

[William Of Ockham (near Ripley, Surrey, England), ~ 1288 – 1348]

a basic principle of scientific research (and common sense)

I think that until the neutrino mass contribution dominance is found insufficient or there is independent evidence of the existence of other entities $\beta\beta_{0\nu}$ data should be used only to place limit on other mechanisms

Carlo Giunti – $\beta\beta_{0\nu}$ Decay Phenomenology – IPPP Workshop, 21-23 April 2004, Grey College, Durham, UK – **36**

[Hirsch] many possible mechanisms heavy majorana neutrinos left-right symmetry R-parity conserving supersymmetry R-parity violating supersymmetry leptoquarks composite neutrinos extra-dimensions [Pilaftsis]

Carlo Giunti – $\beta\beta_{0\nu}$ Decay Phenomenology – IPPP Workshop, 21-23 April 2004, Grey College, Durham, UK – **37**

•

Conclusions

\sim	Experimental evidences of ν Oscillations \Rightarrow 3- ν Mixing.
$ \rightarrow $	Most important open fundamental question: which is the nature of neutrinos (Dirac or Majorana)? Theory favors Majorana neutrinos. Windows on physics beyond SM.
\sim	Best known mechanism to reveal the Majorana nature of neutrinos is $\beta\beta_{0\nu}$ decay.
$ \rightarrow $	Next generation of $\beta\beta_{0\nu}$ decay experiments with sensitivity $ m_{\beta\beta} \sim \text{few } 10^{-1} \text{ eV}$ can probe the degenerate mass spectra.
\sim	Planned $\beta\beta_{0\nu}$ decay experiments with sensitivity $ m_{\beta\beta} \sim \text{few } 10^{-2} \text{ eV}$ will probe the inverted hierarchical mass spectrum.
$ \rightarrow $	Eventually $\beta\beta_{0\nu}$ decay experiments with sensitivity $ m_{\beta\beta} < 10^{-2} \text{ eV}$ may exclude the inverted hierarchical mass spectrum.
$ \rightarrow $	Hope is to find $\beta \beta_{\nu}$ decay at large $ m_{\beta\beta} $, which may allow detailed study of neutrino properties (masses and maybe CP violation and Majorana phases).
\sim	Big theoretical effort to understand and improve uncertainty of nuclear matrix element calculation is absolutely needed!