Very-Short-BaseLine Electron Neutrino Disappearance

Carlo Giunti

INFN, Sezione di Torino, and Dipartimento di Fisica Teorica, Università di Torino mailto://giunti@to.infn.it Neutrino Unbound: http://www.nu.to.infn.it 11 December 2009

CERN Particle and Astro-Particle Physics Seminar

work in collaboration with Mario Acero Marco Laveder Walter Winter

Standard Model: Massless Neutrinos

- ► Standard Model: $\nu_L, \nu_R^c \implies$ no Dirac mass term $\mathcal{L}^D \sim m^D \nu_L \nu_R$
- Majorana Neutrino: $\nu^c = \nu$
- $\nu_R^c = \nu_R \implies$ Majorana mass term $\mathcal{L}^{\mathsf{M}} \sim m^{\mathsf{M}} \nu_L \nu_R^c$
- Standard Model: Majorana mass term not allowed by SU(2)_L × U(1)_Y (no Higgs triplet)

- ► Neutrinos are special in the Standard Model: the only neutral fermions
- In extensions of the SM neutrinos can mix with non-SM fermions:

$$L_{L} = \begin{pmatrix} \nu_{eL} \\ e_{L} \end{pmatrix} \begin{pmatrix} I=1/2 \\ Y=-1 \end{pmatrix} \quad \Phi = \begin{pmatrix} \phi^{+} \\ \phi^{0} \end{pmatrix} \begin{pmatrix} I=1/2 \\ Y=+1 \end{pmatrix} \quad \tilde{\Phi} = i\tau_{2} \Phi^{*} \begin{pmatrix} I=1/2 \\ Y=-1 \end{pmatrix}$$

non-SM chiral fermion field $f_R = f_L^C \begin{pmatrix} I=0\\ Y=0 \end{pmatrix}$

Dirac mass term $\sim \overline{L_L} \widetilde{\Phi} f_R + Majorana mass term \sim \overline{f_R^C} f_R$ in some models f_R is called right-handed neutrino: $f_R \rightarrow \nu_R$

- ▶ If these non-SM fermions are light, they are called sterile neutrinos: $\nu_{sL} \equiv \nu_R^C$
- Active neutrinos $(\nu_e, \nu_\mu, \nu_\tau)$ can oscillate into sterile neutrinos (ν_s)
- Extremely interesting window on physics beyond the SM
- Observable: disappearance of active neutrinos
- Many $\stackrel{(-)}{\nu_e}$ and $\stackrel{(-)}{\nu_{\mu}}$ disappearance experiments
- We focus on ν_e and $\bar{\nu}_e$ disappearance
- ▶ Gallium and MiniBooNE ν_e anomalies and reactor $\bar{\nu}_e$ data

Experimental Evidences of Neutrino Oscillations

Three-Neutrino Mixing

$$u_{lpha L} = \sum_{k=1}^{3} U_{lpha k} \,
u_{kL} \qquad (lpha = e, \mu, au)$$

three flavor fields: u_e , u_μ , $u_ au$

three massive fields: ν_1 , ν_2 , ν_3

$$\Delta m_{21}^2 + \Delta m_{32}^2 + \Delta m_{13}^2 = m_2^2 - m_1^2 + m_3^2 - m_2^2 + m_1^2 - m_3^2 = 0$$

$$\Delta m^2_{
m SOL} = \Delta m^2_{21} \simeq (7.6 \pm 0.2) imes 10^{-5} \, {
m eV}^2$$

 $\Delta m^2_{\rm ATM} \simeq |\Delta m^2_{31}| \simeq |\Delta m^2_{32}| \simeq (2.4 \pm 0.1) \times 10^{-3} \, {\rm eV^2}$

Allowed Three-Neutrino Schemes

different signs of
$$\Delta m^2_{31} \simeq \Delta m^2_{32}$$

absolute scale is not determined by neutrino oscillation data

Gallium Anomaly

Gallium Radioactive Source Experiments Tests of the solar neutrino detectors GALLEX (Cr1, Cr2) and SAGE (Cr, Ar) $\nu_{\rm o} + {}^{71}\text{Ga} \rightarrow {}^{71}\text{Ge} + e^{-}$ Detection Process: $e^- + {}^{51}Cr \rightarrow {}^{51}V + \nu_e$ $e^- + {}^{37}Ar \rightarrow {}^{37}Cl + \nu_e$ ν_{e} Sources: ⁵¹Cr ³⁷Ar E [keV] 427 811 813 747 752 432 0.8163 0.0849 0.0895 0.902 B.R. 0.0093 0.09851Cr (27.7 days) 427 keV v (9.0%) ³⁷Ar (35.04 days) 432 keV v (0.9% 813 keV v (9.8%) 747 keV v (81.6%) 811 keV v (90.2%) 752 keV v (8.5%) 37Cl (stable) 320 keV y [SAGE, PRC 73 (2006) 045805, nucl-ex/0512041] 51 V [SAGE, PRC 59 (1999) 2246, hep-ph/9803418] C. Giunti – VSBL Electron Neutrino Disappearance – 11 Dec 2009 – 7

[SAGE, PRC 73 (2006) 045805, nucl-ex/0512041]

$$\textit{R}_{Ga} = 0.88 \pm 0.05$$

[SAGE, PRC 59 (1999) 2246, hep-ph/9803418]

- Deficit could be due to overestimate of $\sigma(\nu_e + {}^{71}\text{Ga} \rightarrow {}^{71}\text{Ge} + e^-)$
- Calculation: Bahcall, PRC 56 (1997) 3391, hep-ph/9710491

• $\sigma_{G.S.}$ related to measured $\sigma(e^- + {}^{71}\text{Ge} \rightarrow {}^{71}\text{Ga} + \nu_e)$:

$$\sigma_{ ext{G.S.}}(^{51} ext{Cr}) = 55.3 imes 10^{-46} ext{ cm}^2 \left(1 \pm 0.004
ight)_{3\sigma}$$

•
$$\sigma(^{51}Cr) = \sigma_{G.S.}(^{51}Cr) \left(1 + 0.669 \frac{BGT_{175 \, keV}}{BGT_{G.S.}} + 0.220 \frac{BGT_{500 \, keV}}{BGT_{G.S.}}\right)$$

Bahcall:

from $p + {}^{71}\text{Ga} \rightarrow {}^{71}\text{Ge} + n$ measurements [Krofcheck et al., PRL 55 (1985) 1051] $\frac{\text{BGT}_{175 \text{ keV}}}{\text{BGT}_{CS}} < 0.056 \Rightarrow \frac{\text{BGT}_{175 \text{ keV}}}{\text{BGT}_{CS}} = \frac{0.056}{2} \qquad \frac{\text{BGT}_{500 \text{ keV}}}{\text{BGT}_{CS}} = 0.146$ 3σ lower limit: $\frac{BGT_{175 \text{ keV}}}{BGT_{GS}} = \frac{BGT_{500 \text{ keV}}}{BGT_{GS}} = 0$ 3σ upper limit: $\frac{BGT_{175 \text{ keV}}}{BGT_{CS}} < 0.056 \times 2$ $\frac{BGT_{500 \text{ keV}}}{BGT_{CS}} = 0.146 \times 2$ $\sigma(^{51}{\rm Cr}) = 58.1 \times 10^{-46} \, {\rm cm}^2 \left(1^{+0.036}_{-0.028}\right)_{\rm cm}$

► Haxton: [Hata, Haxton, PLB 353 (1995) 422, nucl-th/9503017; Haxton, PLB 431 (1998) 110, nucl-th/9804011] "a sophisticated shell model calculation is performed ... for the transition to the first excited state in ⁷¹Ge. The calculation predicts destructive interference between the (p, n) spin and spin-tensor matrix elements."

$$\sigma(^{51}{
m Cr}) = 63.9 imes 10^{-46} \, {
m cm}^2 \, (1 \pm 0.106)_{1\sigma}$$

	GAL	LEX	SAGE		
	Cr1	Cr2	Cr	Ar	
R	1.00 ± 0.10	0.81 ± 0.10	0.95 ± 0.12	0.79 ± 0.10	
$\langle L \rangle$	1.9) m	0.6 m		

$$\textit{R}_{Ga} = 0.88 \pm 0.05$$

[SAGE, PRC 73 (2006) 045805, nucl-ex/0512041]

$$P_{\nu_e \to \nu_e}(L, E) = 1 - \sin^2 2\vartheta \sin^2 \left(\frac{\Delta m^2 L}{4E}\right)$$

$$L_{
m osc} \lesssim 0.5$$
 m \implies $\Delta m_{
m SBL}^2 \gtrsim 1\,{
m eV}^2$ \implies $u_e
ightarrow
u_s$

$$R = \frac{\int dV L^{-2} \sum_{i} (B.R.)_{i} \sigma_{i} P_{\nu_{e} \to \nu_{e}}(L, E_{i})}{\sum_{i} (B.R.)_{i} \sigma_{i} \int dV L^{-2}}$$

[Acero, C.G, Laveder, PRD 78 (2008) 073009, arXiv:0711.4222]

3+1 Four-Neutrino Mixing

$$P_{\nu_{\alpha} \rightarrow \nu_{\beta}}^{\text{SBL}} = \sin^{2} 2\vartheta_{\alpha\beta}^{\text{SBL}} \sin^{2} \left(\frac{\Delta m_{\text{SBL}}^{2}L}{4E}\right) \quad (\alpha \neq \beta)$$

$$\sin^{2} 2\vartheta_{\alpha\beta}^{\text{SBL}} = 4|U_{\alpha4}|^{2}|U_{\beta4}|^{2}$$

$$P_{\nu_{\alpha} \rightarrow \nu_{\alpha}}^{\text{SBL}} = 1 - \sin^{2} 2\vartheta_{\alpha\alpha}^{\text{SBL}} \sin^{2} \left(\frac{\Delta m_{\text{SBL}}^{2}L}{4E}\right)$$

$$\sin^{2} 2\vartheta_{\alpha\alpha}^{\text{SBL}} = 4|U_{\alpha4}|^{2} \left(1 - |U_{\alpha4}|^{2}\right)$$

$$U = \begin{pmatrix} U_{e1} & U_{e2} & U_{e3} & U_{e4} \\ U_{\mu1} & U_{\mu2} & U_{\mu3} & U_{\mu4} \\ U_{\pi1} & U_{\pi2} & U_{\pi3} & U_{\pi4} \\ U_{s1} & U_{s2} & U_{s3} & U_{s4} \end{pmatrix}$$

$$\sin^{2} 2\vartheta_{ee}^{\text{SBL}} \simeq 0.22 \Rightarrow |U_{e4}|^{2} \simeq 0.06$$

$$\sin^{2} 2\vartheta_{ee}^{\text{SBL}} \gtrsim 0.02 \Rightarrow |U_{e4}|^{2} \gtrsim 0.005$$

Tritium Beta-Decay

Neutrino Mixing:
$$m_{\nu_e} \implies m_{\beta} = \sqrt{\sum_k |U_{ek}|^2 m_k^2}$$

4ν -inverted and fully-inverted schemes

$$\begin{aligned} |U_{e1}|^2 + |U_{e2}|^2 + |U_{e3}|^2 &\simeq 1 \qquad |U_{e4}|^2 \ll 1 \\ m_\beta &\simeq m_1 \simeq m_2 \simeq m_3 \simeq \sqrt{\Delta m_{SBL}^2} \\ \hline \Delta m_{SBL}^2 &\lesssim 5 \, \text{eV}^2 \end{aligned}$$

Normal and 3*v*-inverted schemes

$$\begin{split} m_{\beta} \lesssim 2 \,\mathrm{eV} &\implies |U_{e4}|^2 m_{4}^2 \lesssim 4 \,\mathrm{eV}^2 \\ m_{4} \gg m_1, m_2, m_3 &\implies m_4^2 \simeq \Delta m_{\mathrm{SBL}}^2 \\ \Delta m_{\mathrm{SBL}}^2 \lesssim 4 |U_{e4}|^{-2} \,\mathrm{eV}^2 \\ \sin^2 2\vartheta_{ee}^{\mathrm{SBL}} &= 4 |U_{e4}|^2 \left(1 - |U_{e4}|^2\right) \Longrightarrow |U_{e4}|^2 = \frac{1}{2} \left(1 \pm \sqrt{1 - \sin^2 2\vartheta_{ee}^{\mathrm{SBL}}}\right) \\ |U_{e4}|^2 < \frac{1}{2} \implies |U_{e4}|^2 = \frac{1}{2} \left(1 - \sqrt{1 - \sin^2 2\vartheta_{ee}^{\mathrm{SBL}}}\right) \\ \Delta m_{\mathrm{SBL}}^2 \lesssim \frac{8}{1 - \sqrt{1 - \sin^2 2\vartheta_{ee}^{\mathrm{SBL}}}} \,\mathrm{eV}^2 \\ \sin^2 2\vartheta_{ee}^{\mathrm{SBL}} \gtrsim 0.02 \Rightarrow \Delta m_{\mathrm{SBL}}^2 \lesssim 800 \,\mathrm{eV}^2 \end{split}$$

LSND

[PRL 75 (1995) 2650; PRC 54 (1996) 2685; PRL 77 (1996) 3082; PRD 64 (2001) 112007]

 $ar{
u}_{\mu}
ightarrow ar{
u}_{e} \qquad L \simeq 30 \, \mathrm{m} \qquad 20 \, \mathrm{MeV} < E < 200 \, \mathrm{MeV}$

<u>MiniBooNE</u>

[PRL 98 (2007) 231801]

MiniBooNE Low-Energy Anomaly

[PRL 102 (2009) 101802, arXiv:0812.2243]

 $N_{
u,j}^{\mathrm{the}} = f_{
u} \left(P_{
u_e
ightarrow
u_e} N_{
u_e,j}^{\mathrm{cal}} + N_{
u_\mu,j}^{\mathrm{cal}}
ight)$

$$N_{
u,j}^{ ext{the}} = f_{
u} \left(P_{
u_e
ightarrow
u_e} N_{
u_e,j}^{ ext{cal}} + N_{
u_\mu,j}^{ ext{cal}}
ight)$$

- ► Estimated 15% uncertainty of the calculated neutrino flux [MiniBooNE, PRD 79 (2009) 072002, arXiv:0806.1449] is consistent with measured ratio 1.21 ± 0.24 of detected and predicted charged-current quasi-elastic ν_{μ} events [MiniBooNE, PRL 100 (2008) 032301, arXiv:0706.0926]
- We consider $\Delta m_{SBL}^2 \rightarrow \Delta m_{VSBL}^2 \gtrsim 20 \, \text{eV}^2$
 - $P_{\nu_e \rightarrow \nu_e}$ is practically constant in MiniBooNE

$$L_{\rm osc}^{\rm MB} = \frac{4\pi E}{\Delta m^2} \lesssim 400 \,\mathrm{m} \,$$
 < $L^{\rm MB} \simeq 541 \,\mathrm{m}$

 Very-Short-BaseLine (VSBL) because oscillation length in Gallium Radioactive Source Experiments and Reactor Neutrino Experiments is extremely small:

$$L_{
m osc}(1\,{
m MeV}) \lesssim 10\,{
m cm}$$

MiniBooNE- ν + **Gallium** + **Reactors**

		MB - ν	$MB extsf{-} u extsf{+}Ga$	Re	MB - ν + Ga + Re
	$\chi^2_{ m min}$	27.2	34.0	2.9	36.9
No Osc.	NDF	10	11	7	18
	GoF	0.2%	0.04%	89.8%	0.5%
	$f_{ u}^{\mathrm{bf}}$	1.15	1.15		1.15
Osc.	$\chi^2_{\rm min}$	17.7	20.1	2.9	31.7
	NDF	9	10	6	17
	GoF	3.8%	2.8%	82.7%	1.7%
	$P_{ u_e ightarrow u_e}^{ m bf}$	0.72	0.83	1.0	0.93
	$f_{\nu}^{\rm bf}$	1.31	1.24		1.19
	$\Delta \chi^2_{ m min}$		2.4		11.1
PG	NDF	1 2			2
	GoF		12.4%		0.4%

[C.G, Laveder, PRD 80 (2009) 013005, arXiv:0902.1992]

 $\mathsf{PG}=\mathsf{Parameter}\ \mathsf{Goodness-of-fit}$

[Maltoni, Schwetz, PRD 68 (2003) 033020, hep-ph/0304176]

MiniBooNE Antineutrino Data

		$MB ext{-}ar{ u}$	$MB ext{-}\bar{\nu} ext{+}Re$	MB	MB+Ga+Re
	$\chi^2_{\rm min}$	16.9	19.8	44.1	53.8
No Osc.	NDF	10	17	21	29
	GoF	7.6%	28.5%	0.2%	0.3%
	$f^{\sf bf}_{ar{ u}}$	1.08	1.08	1.08	1.08
	$\chi^2_{ m min}$	16.9	19.8	36.7	48.9
	NDF	9	16	19	27
Osc.	GoF	5.0%	23.0%	0.9%	0.6%
	$P^{\mathrm{bf}}_{\nu_e ightarrow u_e}$	1.00	1.00	0.76	0.93
	$f_{\overline{\nu}}^{\rm bf}$	1.08	1.08	1.19	1.10
	$f_{ u}^{\rm bf}$			1.28	1.19
	$\Delta \chi^2_{\rm min}$		0.0	2.1	8.3
PG	NDF		1	1	3
	GoF		100.0%	14.8%	4.1%
$f_{ u,j}^{the} = f_{ u} \left(F_{ u,j}^{the} ight)$	$\mathcal{N}_{ u_e ightarrow u_e}\mathcal{N}_{ u_e}^{ca}$	$J_{j}^{I} + N_{ u_{\mu},j}^{cal}$	$N_{\overline{\nu},j}^{\text{the}} =$	$= f_{\overline{\nu}} \left(P_{\nu_e} \right)$	$_{ ightarrow u_e} \textit{N}_{ar{ u}_e, j}^{ ext{cal}} + \textit{N}_{ar{ u}_{\mu}, j}^{ ext{cal}}$

[C.G, Laveder, PRD 80 (2009) 013005, arXiv:0902.1992]

Tension between neutrino and antineutrino data could be due to:

- Statistical fluctuations.
- Underestimate of systematic uncertainties.
- Our hypothesis of VSBL ν_e disappearance is excluded.
- ▶ Violation of CPT symmetry: $P_{\nu_e \to \nu_e} \neq P_{\bar{\nu}_e \to \bar{\nu}_e}$.

$$\begin{array}{cccc} \nu_{\alpha} \rightarrow \nu_{\beta} & \stackrel{\mathsf{CP}}{\longrightarrow} & \nu_{\bar{\alpha}} \rightarrow \nu_{\bar{\beta}} & \stackrel{\mathsf{T}}{\rightarrow} & \nu_{\bar{\beta}} \rightarrow \nu_{\bar{\alpha}} \\ \\ \mathsf{CPT} & \Longrightarrow & \hline P_{\nu_{\alpha} \rightarrow \nu_{\beta}} = P_{\nu_{\bar{\beta}} \rightarrow \nu_{\bar{\alpha}}} \\ \\ \alpha = \beta & \Longrightarrow & \hline P_{\nu_{\alpha} \rightarrow \nu_{\alpha}} = P_{\bar{\nu}_{\alpha} \rightarrow \bar{\nu}_{\alpha}} \end{array}$$

CPT Violation?

Future Tests of (V)SBL ν_e and $\bar{\nu}_e$ Disappearance

The hypothesis of VSBL ν_e disappearance can be tested with high accuracy by future experiments with pure well-known electron neutrino beams:

- ▶ SAGE collaboration is planning a new source experiment (ν_e)
- Beta-Beam experiments:

$$egin{aligned} &\mathcal{N}(A,Z)
ightarrow \mathcal{N}(A,Z+1) + e^- + ar{
u}_e & (eta^-) \ &\mathcal{N}(A,Z)
ightarrow \mathcal{N}(A,Z-1) + e^+ +
u_e & (eta^+) \end{aligned}$$

▶ Neutrino Factory experiments:

$$\mu^+
ightarrow ar{
u}_\mu + e^+ +
u_e$$
 $\mu^-
ightarrow
u_\mu + e^- + ar{
u}_e$

Neutrino Factory

Near Detectors: Scintillator or Iron Calorimeter with perfect flavor identification

Systematic Uncertainties: Cross Section, Detector Normalization, Energy Resolution and Calibration, Backgrounds

CPT Violation?

$$P_{
u_e
ightarrow
u_e} = 1 - \sin^2 2 \vartheta_{
u} \sin^2 \left(rac{\Delta m_{
u}^2 L}{4E}
ight)$$

$$P_{ar{
u}_e
ightarrow ar{
u}_e} = 1 - \sin^2 2 artheta_{ar{
u}} \, \sin^2 \left(rac{\Delta m_{ar{
u}}^2 L}{4E}
ight)$$

$$a_{ ext{CPT}} \equiv rac{artheta_
u - artheta_{ar{
u}}}{artheta_
u + artheta_{ar{
u}}} \qquad m_{ ext{CPT}} \equiv rac{\Delta m_
u^2 - \Delta m_{ar{
u}}^2}{\Delta m_
u^2 + \Delta m_{ar{
u}}^2}$$

Conclusions

- ► The Gallium anomaly may be due to $\nu_e \rightarrow \nu_s$ oscillations with $\sin^2 2\vartheta \gtrsim 0.1$ and $1 \text{ eV}^2 \lesssim \Delta m^2 \lesssim 800 \text{ eV}^2$
- These transitions may explain the MiniBooNE Low-Energy-Anomaly
- ► Tension between neutrino and antineutrino data could be an indication of CPT violation (P_{\u03c6e e \u03c6 \u03c6_e \u2226 P_{\u03c6e e \u03c6_e \u2226_e)}}
- (V)SBL ν_e and $\bar{\nu}_e$ disappearance can be checked in future
 - Beta-Beam experiments (pure ν_e or $\bar{\nu}_e$ beam from nuclear decay)
 - ► Neutrino Factory experiments (ν_e and $\bar{\nu}_{\mu}$ from μ^+ decay, or $\bar{\nu}_e$ and ν_{μ} from μ^- decay), which can test also CPT violation.