Neutrino Physics

Carlo Giunti

INFN, Sezione di Torino, and Dipartimento di Fisica Teorica, Università di Torino

mailto://giunti@to.infn.it

Neutrino Unbound: http://www.nu.to.infn.it

This File: http://www.nu.to.infn.it/slides/2010/giunti-1005-phd-to.pdf

Compact Version: http://www.nu.to.infn.it/slides/2010/giunti-1005-phd-to-4.pdf

Torino, 17-21 May 2010

C. Giunti and C.W. Kim Fundamentals of Neutrino Physics and Astrophysics Oxford University Press 15 March 2007 – 728 pages

Part I: Theory of Neutrino Masses and Mixing

- Dirac Neutrino Masses and Mixing
- Majorana Neutrino Masses and Mixing
- Dirac-Majorana Mass Term
- Number of Flavor and Massive Neutrinos?
- Sterile Neutrinos

Part II: Neutrino Oscillations in Vacuum and in Matter

- Neutrino Oscillations in Vacuum
- CPT, CP and T Symmetries
- Two-Neutrino Oscillations
- Neutrino Oscillations in Matter

Part III: Experimental Results and Theoretical Implications

- Solar Neutrinos and KamLAND
- Atmospheric and LBL Oscillation Experiments
- Phenomenology of Three-Neutrino Mixing
- Absolute Scale of Neutrino Masses
- Experimental Neutrino Anomalies
- Conclusions

Part I

Theory of Neutrino Masses and Mixing

Fermion Mass Spectrum

Dirac Neutrino Masses and Mixing

- Dirac Neutrino Masses and Mixing
 - Dirac Mass
 - Higgs Mechanism in SM
 - Dirac Lepton Masses
 - Three-Generations Dirac Neutrino Masses
 - Massive Chiral Lepton Fields
 - Massive Dirac Lepton Fields
 - Quantization
 - Mixing
 - Flavor Lepton Numbers
 - Total Lepton Number
 - Mixing Matrix
 - Standard Parameterization of Mixing Matrix
 - CP Violation
 - Example: $\vartheta_{12} = 0$
 - Example: $\vartheta_{13} = \pi/2$
 - Example: my C. Gilli /3- Neutrino Physics Torino, 17-21 May 2010 7

Dirac Mass

- Dirac Equation: $(i\partial m)\nu(x) = 0$ $(\partial \equiv \gamma^{\mu}\partial_{\mu})$
- Dirac Lagrangian: $\mathscr{L}(x) = \overline{\nu}(x) (i\partial \!\!/ m) \nu(x)$
- Chiral decomposition: $\nu_L \equiv P_L \nu$, $\nu_R \equiv P_R \nu$, $\nu = \nu_L + \nu_R$

$$P_L \equiv \frac{1 - \gamma^5}{2}$$
, $P_R \equiv \frac{1 + \gamma^5}{2}$, $P_L^2 = P_R^2 = 1$, $P_L P_R = P_R P_L = 0$

$$\mathscr{L} = \overline{\nu_L} i \partial \!\!\!/ \nu_L + \overline{\nu_R} i \partial \!\!\!/ \nu_R - m \left(\overline{\nu_L} \nu_R + \overline{\nu_R} \nu_L \right)$$

- In SM only $\nu_L \Longrightarrow$ no Dirac mass
- Oscillation experiments have shown that neutrinos are massive
- Simplest extension of the SM: add ν_R

Higgs Mechanism in SM

• Higgs Doublet:
$$\Phi(x) = \begin{pmatrix} \phi_+(x) \\ \phi_0(x) \end{pmatrix}$$
 $|\Phi|^2 = \Phi^{\dagger} \Phi = \phi^{\dagger}_+ \phi_+ + \phi^{\dagger}_0 \phi_0$

- Higgs Lagrangian: $\mathscr{L}_{\text{Higgs}} = (D_{\mu}\Phi)^{\dagger}(D^{\mu}\Phi) V(|\Phi|^2)$
- Higgs Potential: $V(|\Phi|^2) = \mu^2 |\Phi|^2 + \lambda |\Phi|^4$

•
$$\mu^2 < 0 \text{ and } \lambda > 0 \implies V(|\Phi|^2) = \lambda \left(|\Phi|^2 - \frac{v^2}{2}\right)^2$$
, with $v \equiv \sqrt{-\frac{\mu^2}{\lambda}}$

• Vacuum:
$$V_{\min}$$
 for $|\Phi|^2 = \frac{v^2}{2} \Longrightarrow \langle \Phi \rangle = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 \\ v \end{pmatrix}$

- ▶ Spontaneous Symmetry Breaking: $SU(2)_L \times U(1)_Y \rightarrow U(1)_Q$
- Unitary Gauge: $\Phi(x) = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 \\ v + H(x) \end{pmatrix}$

Dirac Lepton Masses

$$L_L \equiv \begin{pmatrix}
u_L \\
\ell_L \end{pmatrix} \qquad \ell_R \qquad
u_R$$

Lepton-Higgs Yukawa Lagrangian

$$\mathscr{L}_{H,L} = -y^{\ell} \overline{L_L} \Phi \ell_R - y^{\nu} \overline{L_L} \widetilde{\Phi} \nu_R + \text{H.c.}$$

Unitary Gauge

$$\Phi(x) = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 \\ v + H(x) \end{pmatrix} \qquad \qquad \tilde{\Phi} = i\sigma_2 \, \Phi^* = \frac{1}{\sqrt{2}} \begin{pmatrix} v + H(x) \\ 0 \end{pmatrix}$$

$$\begin{aligned} \mathscr{L}_{H,L} &= -\frac{y^{\ell}}{\sqrt{2}} \begin{pmatrix} \overline{\nu_L} & \overline{\ell_L} \end{pmatrix} \begin{pmatrix} 0 \\ v + H(x) \end{pmatrix} \ell_R \\ &- \frac{y^{\nu}}{\sqrt{2}} \begin{pmatrix} \overline{\nu_L} & \overline{\ell_L} \end{pmatrix} \begin{pmatrix} v + H(x) \\ 0 \end{pmatrix} \nu_R + \text{H.c} \end{aligned}$$

$$\mathscr{L}_{H,L} = -y^{\ell} \frac{v}{\sqrt{2}} \overline{\ell_L} \ell_R - y^{\nu} \frac{v}{\sqrt{2}} \overline{\nu_L} \nu_R$$
$$- \frac{y^{\ell}}{\sqrt{2}} \overline{\ell_L} \ell_R H - \frac{y^{\nu}}{\sqrt{2}} \overline{\nu_L} \nu_R H + \text{H.c.}$$

Three-Generations Dirac Neutrino Masses

$$\begin{array}{c|c} L'_{eL} \equiv \begin{pmatrix} \nu'_{eL} \\ \ell'_{eL} \equiv e'_{L} \end{pmatrix} & L'_{\mu L} \equiv \begin{pmatrix} \nu'_{\mu L} \\ \ell'_{\mu L} \equiv \mu'_{L} \end{pmatrix} & L'_{\tau L} \equiv \begin{pmatrix} \nu'_{\tau L} \\ \ell'_{\tau L} \equiv \tau'_{L} \end{pmatrix} \\ \hline \ell'_{eR} \equiv e'_{R} & \ell'_{\mu R} \equiv \mu'_{R} & \ell'_{\tau R} \equiv \tau'_{R} \\ \hline \nu'_{eR} & \nu'_{\mu R} & \nu'_{\tau R} \end{array}$$

Lepton-Higgs Yukawa Lagrangian

$$\mathscr{L}_{H,L} = -\sum_{\alpha,\beta=e,\mu,\tau} \left[Y_{\alpha\beta}^{\prime\ell} \, \overline{L_{\alpha L}^{\prime}} \, \Phi \, \ell_{\beta R}^{\prime} + Y_{\alpha\beta}^{\prime\nu} \, \overline{L_{\alpha L}^{\prime}} \, \widetilde{\Phi} \, \nu_{\beta R}^{\prime} \right] + \text{H.c.}$$

Unitary Gauge

$$\Phi(x) = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 \\ v + H(x) \end{pmatrix} \qquad \qquad \tilde{\Phi} = i\sigma_2 \Phi^* = \frac{1}{\sqrt{2}} \begin{pmatrix} v + H(x) \\ 0 \end{pmatrix}$$

$$\mathscr{L}_{H,L} = -\left(\frac{\nu+H}{\sqrt{2}}\right) \sum_{\alpha,\beta=e,\mu,\tau} \left[Y_{\alpha\beta}^{\prime\ell} \,\overline{\ell_{\alpha L}^{\prime}} \,\ell_{\beta R}^{\prime} + Y_{\alpha\beta}^{\prime\nu} \,\overline{\nu_{\alpha L}^{\prime}} \,\nu_{\beta R}^{\prime} \right] + \text{H.c.}$$

$$\mathscr{L}_{H,L} = -\left(\frac{\nu+H}{\sqrt{2}}\right) \left[\overline{\ell'_L} Y'^{\ell} \ell'_R + \overline{\nu'_L} Y'^{\nu} \nu'_R\right] + \mathsf{H.c}$$

 $M^{\prime \ell} = \frac{v}{\sqrt{2}} Y^{\prime \ell} \qquad \qquad M^{\prime \nu} = \frac{v}{\sqrt{2}} Y^{\prime \nu}$

$$\mathscr{L}_{H,L} = -\left(\frac{\nu+H}{\sqrt{2}}\right) \left[\overline{\ell'_L} Y'^{\ell} \ell'_R + \overline{\nu'_L} Y'^{\nu} \nu'_R\right] + \text{H.c.}$$

Diagonalization of Y'^{ℓ} and Y'^{ν} with unitary V_L^{ℓ} , V_R^{ℓ} , V_L^{ν} , V_R^{ν}

$$\ell_L' = V_L^\ell \, \ell_L \qquad \ell_R' = V_R^\ell \, \ell_R \qquad
u_L' = V_L^
u \, \mathbf{n}_L \qquad
u_R' = V_R^
u \, \mathbf{n}_R$$

Kinetic terms are invariant under unitary transformations of the fields

$$\mathcal{L}_{\mathsf{H},\mathsf{L}} = -\left(\frac{\nu+H}{\sqrt{2}}\right) \left[\overline{\ell_L} V_L^{\ell\dagger} Y^{\prime\ell} V_R^{\ell} \ell_R + \overline{\nu_L} V_L^{\nu\dagger} Y^{\prime\nu} V_R^{\nu} \nu_R\right] + \mathsf{H.c.}$$
$$V_L^{\ell\dagger} Y^{\prime\ell} V_R^{\ell} = Y^{\ell} \qquad Y_{\alpha\beta}^{\ell} = y_{\alpha}^{\ell} \delta_{\alpha\beta} \qquad (\alpha, \beta = e, \mu, \tau)$$
$$V_L^{\nu\dagger} Y^{\prime\nu} V_R^{\nu} = Y^{\nu} \qquad Y_{kj}^{\nu} = y_k^{\nu} \delta_{kj} \qquad (k, j = 1, 2, 3)$$

Real and Positive y_{α}^{ℓ} , y_{k}^{ν}

$$V_L^{\dagger} Y' V_R = Y \iff Y' = V_L Y V_R^{\dagger}$$
$$2N^2 N^2 N N^2$$
$$18 \qquad 9 \qquad 3 \qquad 9$$

Massive Chiral Lepton Fields

$$\ell_{L} = V_{L}^{\ell \dagger} \ell_{L}^{\prime} \equiv \begin{pmatrix} e_{L} \\ \mu_{L} \\ \tau_{L} \end{pmatrix} \qquad \ell_{R} = V_{R}^{\ell \dagger} \ell_{R}^{\prime} \equiv \begin{pmatrix} e_{R} \\ \mu_{R} \\ \tau_{R} \end{pmatrix}$$
$$\mathbf{n}_{L} = V_{L}^{\nu \dagger} \nu_{L}^{\prime} \equiv \begin{pmatrix} \nu_{1L} \\ \nu_{2L} \\ \nu_{3L} \end{pmatrix} \qquad \mathbf{n}_{R} = V_{R}^{\nu \dagger} \nu_{R}^{\prime} \equiv \begin{pmatrix} \nu_{1R} \\ \nu_{2R} \\ \nu_{3R} \end{pmatrix}$$

$$\begin{aligned} \mathscr{L}_{H,L} &= -\left(\frac{\nu+H}{\sqrt{2}}\right) \left[\overline{\ell_L} \, Y^\ell \, \ell_R + \overline{\mathbf{n}_L} \, Y^\nu \, n_R\right] + \text{H.c.} \\ &= -\left(\frac{\nu+H}{\sqrt{2}}\right) \left[\sum_{\alpha=e,\mu,\tau} y^\ell_\alpha \, \overline{\ell_{\alpha L}} \, \ell_{\alpha R} + \sum_{k=1}^3 y^\nu_k \, \overline{\nu_{k L}} \, \nu_{k R}\right] + \text{H.c.} \end{aligned}$$

Massive Dirac Lepton Fields

$$\ell_{lpha} \equiv \ell_{lpha L} + \ell_{lpha R}$$
 $(lpha = e, \mu, \tau)$
 $u_k = v_{kL} + v_{kR}$ $(k = 1, 2, 3)$

$$\mathscr{L}_{H,L} = -\sum_{\alpha=e,\mu,\tau} \frac{y_{\alpha}^{\ell} v}{\sqrt{2}} \overline{\ell_{\alpha}} \ell_{\alpha} - \sum_{k=1}^{3} \frac{y_{k}^{\nu} v}{\sqrt{2}} \overline{\nu_{k}} \nu_{k} \qquad \text{Mass Terms}$$
$$-\sum_{\alpha=e,\mu,\tau} \frac{y_{\alpha}^{\ell}}{\sqrt{2}} \overline{\ell_{\alpha}} \ell_{\alpha} H - \sum_{k=1}^{3} \frac{y_{k}^{\nu}}{\sqrt{2}} \overline{\nu_{k}} \nu_{k} H \quad \text{Lepton-Higgs Couplings}$$

Charged Lepton and Neutrino Masses

 $m_{\alpha} = \frac{y_{\alpha}^{\ell} v}{\sqrt{2}} \quad (\alpha = e, \mu, \tau) \qquad m_{k} = \frac{y_{k}^{\nu} v}{\sqrt{2}} \qquad (k = 1, 2, 3)$

Lepton-Higgs coupling & Lepton Mass

Quantization

 $\nu_k(x) = \int \frac{\mathrm{d}^3 p}{(2\pi)^3 \, 2E_k} \sum_{h=\pm 1} \left[a_k^{(h)}(p) \, u_k^{(h)}(p) \, e^{-ip \cdot x} + b_k^{(h)\dagger}(p) \, v_k^{(h)}(p) \, e^{ip \cdot x} \right]$

$$p^0 = E_k = \sqrt{\vec{p}^2 + m_k^2}$$
 $(\not p - m_k) u_k^{(h)}(p) = 0$
 $(\not p + m_k) v_k^{(h)}(p) = 0$

$$\frac{\vec{p} \cdot \vec{\Sigma}}{|\vec{p}|} u_k^{(h)}(p) = h u_k^{(h)}(p) \\ \frac{\vec{p} \cdot \vec{\Sigma}}{|\vec{p}|} v_k^{(h)}(p) = -h v_k^{(h)}(p)$$

 $\{a_{k}^{(h)}(p), a_{k}^{(h')\dagger}(p')\} = \{b_{k}^{(h)}(p), b_{k}^{(h')\dagger}(p')\} = (2\pi)^{3} 2E_{k} \,\delta^{3}(\vec{p} - \vec{p}') \,\delta_{hh'} \\ \{a_{k}^{(h)}(p), a_{k}^{(h')}(p')\} = \{a_{k}^{(h)\dagger}(p), a_{k}^{(h')\dagger}(p')\} = 0 \\ \{b_{k}^{(h)}(p), b_{k}^{(h')}(p')\} = \{b_{k}^{(h)\dagger}(p), b_{k}^{(h')\dagger}(p')\} = 0 \\ \{a_{k}^{(h)}(p), b_{k}^{(h')}(p')\} = \{a_{k}^{(h)\dagger}(p), b_{k}^{(h')\dagger}(p')\} = 0 \\ \{a_{k}^{(h)}(p), b_{k}^{(h')\dagger}(p')\} = \{a_{k}^{(h)\dagger}(p), b_{k}^{(h')}(p')\} = 0 \\ \{a_{k}^{(h)}(p), b_{k}^{(h')\dagger}(p')\} = \{a_{k}^{(h)\dagger}(p), b_{k}^{(h')}(p')\} = 0 \\ \hline C. \text{ Giunti - Neutrino Physics - Torino, 17-21 May 2010 - 19}$

Mixing

Charged-Current Weak Interaction Lagrangian

$$\mathscr{L}_{\mathsf{I}}^{(\mathsf{CC})} = -\frac{g}{2\sqrt{2}}j_{W}^{\rho}W_{\rho} + \mathsf{H.c.}$$

Weak Charged Current:

$$j_W^\rho = j_{W,\mathsf{L}}^\rho + j_{W,\mathsf{Q}}^\rho$$

Leptonic Weak Charged Current

Definition: Left-Handed Flavor Neutrino Fields

$$oldsymbol{
u}_L = U \, oldsymbol{n}_L = V_L^{\ell \dagger} \, oldsymbol{
u}_L' = egin{pmatrix}
u_{eL} \\
u_{\mu L} \\
u_{ au L} \end{pmatrix}$$

They allow us to write the Leptonic Weak Charged Current as in the SM:

$$j_{W,\mathsf{L}}^{
ho} = 2\,\overline{
u_L}\,\gamma^{
ho}\,\ell_L = 2\sum_{lpha=e,\mu, au}\overline{
u_{lpha L}}\,\gamma^{
ho}\,\ell_{lpha L}$$

Each left-handed flavor neutrino field is associated with the corresponding charged lepton field which describes a massive charged lepton:

$$j_{W,L}^{\rho} = 2\left(\overline{\nu_{eL}} \gamma^{\rho} e_{L} + \overline{\nu_{\mu L}} \gamma^{\rho} \mu_{L} + \overline{\nu_{\tau L}} \gamma^{\rho} \tau_{L}\right)$$

- In practice left-handed flavor neutrino fields are useful for calculations in the SM approximation of massless neutrinos (interactions).
- If neutrino masses must be taken into account, it is necessary to use $\frac{3}{3}$

$$j_{W,L}^{\rho} = 2 \,\overline{\mathbf{n}_L} \, U^{\dagger} \, \gamma^{\rho} \, \ell_L = 2 \sum_{k=1}^{\infty} \sum_{\alpha=e,\mu,\tau} U_{\alpha k}^* \, \overline{\nu_{kL}} \, \gamma^{\rho} \, \ell_{\alpha L}$$

Flavor Lepton Numbers

Flavor Neutrino Fields are useful for defining Flavor Lepton Numbers as in the SM

	L _e	L_{μ}	$L_{ au}$		L _e	L_{μ}	$L_{ au}$
(u_e,e^-)	+1	0	0	(u^c_e,e^+)	-1	0	0
(u_{μ},μ^{-})	0	+1	0	$\left(u_{\mu}^{c},\mu^{+} ight)$	0	-1	0
$(u_{ au}, au^{-})$	0	0	+1	$(u^c_{ au}, au^+)$	0	0	-1

$$L = L_e + L_\mu + L_\tau$$

Standard Model:

Lepton numbers are conserved

$$\mathscr{L}_{\text{mass}}^{\text{D}} = - \begin{pmatrix} \overline{\nu_{eL}} & \overline{\nu_{\mu L}} & \overline{\nu_{\tau L}} \end{pmatrix} \begin{pmatrix} m_{ee}^{\text{D}} & m_{e\mu}^{\text{D}} & m_{e\tau}^{\text{D}} \\ m_{\mu e}^{\text{D}} & m_{\mu \mu}^{\text{D}} & m_{\mu \tau}^{\text{D}} \\ m_{\tau e}^{\text{D}} & m_{\tau \mu}^{\text{D}} & m_{\tau \tau}^{\text{D}} \end{pmatrix} \begin{pmatrix} \nu_{eR} \\ \nu_{\mu R} \\ \nu_{\tau R} \end{pmatrix} + \text{H.c.}$$

 L_e , L_{μ} , L_{τ} are not conserved

L is conserved: $L(\nu_{\alpha R}) = L(\nu_{\beta L}) \Rightarrow |\Delta L| = 0$

 Leptonic Weak Charged Current is invariant under the global U(1) gauge transformations

If neutrinos are massless (SM), Noether's theorem implies that there is, for each flavor, a conserved current:

$$j^{\rho}_{\alpha} = \overline{\nu_{\alpha L}} \, \gamma^{\rho} \, \nu_{\alpha L} + \overline{\ell_{\alpha}} \, \gamma^{\rho} \, \ell_{\alpha} \qquad \qquad \partial_{\rho} j^{\rho}_{\alpha} = 0$$

and a conserved charge:

$$L_{\alpha} = \int d^3 x j^0_{\alpha}(x) \qquad \qquad \partial_0 L_{\alpha} = 0$$

$$\begin{aligned} : \mathsf{L}_{\alpha} : &= \int \frac{\mathsf{d}^{3}p}{(2\pi)^{3} \, 2E} \left[a_{\nu_{\alpha}}^{(-)\dagger}(p) \, a_{\nu_{\alpha}}^{(-)}(p) - b_{\nu_{\alpha}}^{(+)\dagger}(p) \, b_{\nu_{\alpha}}^{(+)}(p) \right] \\ &+ \int \frac{\mathsf{d}^{3}p}{(2\pi)^{3} \, 2E} \sum_{h=\pm 1} \left[a_{\ell_{\alpha}}^{(h)\dagger}(p) \, a_{\ell_{\alpha}}^{(h)}(p) - b_{\ell_{\alpha}}^{(h)\dagger}(p) \, b_{\ell_{\alpha}}^{(h)}(p) \right] \end{aligned}$$

Lepton-Higgs Yukawa Lagrangian:

2

$$\mathscr{L}_{H,L} = -\left(\frac{\nu+H}{\sqrt{2}}\right) \left[\sum_{\alpha=e,\mu,\tau} y_{\alpha}^{\ell} \overline{\ell_{\alpha L}} \ell_{\alpha R} + \sum_{k=1}^{3} y_{k}^{\nu} \overline{\nu_{k L}} \nu_{k R}\right] + \text{H.c.}$$

• Mixing:
$$\nu_{\alpha L} = \sum_{k=1}^{3} U_{\alpha k} \nu_{kL} \iff \nu_{kL} = \sum_{\alpha = e, \mu, \tau} U_{\alpha k}^{*} \nu_{\alpha L}$$

$$\mathscr{L}_{H,L} = -\left(\frac{\nu + H}{\sqrt{2}}\right) \sum_{\alpha = e, \mu, \tau} \left[y_{\alpha}^{\ell} \overline{\ell_{\alpha L}} \ell_{\alpha R} + \overline{\nu_{\alpha L}} \sum_{k=1}^{3} U_{\alpha k} y_{k}^{\nu} \nu_{kR} \right] + \text{H.c.}$$

- $\begin{array}{l} \bullet \quad \text{Invariant for} \\ \ell_{\alpha L} \to e^{i\varphi_{\alpha}} \ell_{\alpha L} \,, \quad \nu_{\alpha L} \to e^{i\varphi_{\alpha}} \nu_{\alpha L} \\ \ell_{\alpha R} \to e^{i\varphi_{\alpha}} \ell_{\alpha R} \,, \quad \sum_{k=1}^{3} U_{\alpha k} \, y_{k}^{\nu} \, \nu_{k R} \to e^{i\varphi_{\alpha}} \sum_{k=1}^{3} U_{\alpha k} \, y_{k}^{\nu} \, \nu_{k R} \end{array}$
- But kinetic part of neutrino Lagrangian is not invariant

$$\mathscr{L}_{\text{kinetic}}^{(\nu)} = \sum_{\alpha=e,\mu,\tau} \overline{\nu_{\alpha L}} i \partial \!\!\!/ \nu_{\alpha L} + \sum_{k=1}^{S} \overline{\nu_{k R}} i \partial \!\!\!/ \nu_{k R}$$

because $\sum_{k=1}^{3} U_{\alpha k} y_{k}^{\nu} \nu_{kR}$ is not a unitary combination of the ν_{kR} 's

Total Lepton Number

- Dirac neutrino masses violate conservation of Flavor Lepton Numbers
- ► Total Lepton Number is conserved, because Lagrangian is invariant under the global U(1) gauge transformations
 - $egin{aligned} &
 u_{kL}
 ightarrow e^{iarphi} \,
 u_{kR}
 ightarrow e^{iarphi} \,
 u_{kR}
 ightarrow e^{iarphi} \,
 u_{kR}
 ightarrow e^{iarphi} \,
 u_{lpha R}
 ightarrow e^{iarph$
- From Noether's theorem:

$$j^{\rho} = \sum_{k=1}^{\infty} \overline{\nu_{k}} \gamma^{\rho} \nu_{k} + \sum_{\alpha = e, \mu, \tau} \overline{\ell_{\alpha}} \gamma^{\rho} \ell_{\alpha} \qquad \partial_{\rho} j^{\rho} = 0$$

Conserved charge: $L_{\alpha} = \int d^3x j_{\alpha}^0(x)$ $\partial_0 L_{\alpha} = 0$

$$: \mathsf{L}: = \sum_{k=1}^{3} \int \frac{\mathrm{d}^{3}p}{(2\pi)^{3} \, 2E} \sum_{h=\pm 1} \left[a_{\nu_{k}}^{(h)\dagger}(p) \, a_{\nu_{k}}^{(h)}(p) - b_{\nu_{k}}^{(h)\dagger}(p) \, b_{\nu_{k}}^{(h)}(p) \right] \\ + \sum_{\alpha=e,\mu,\tau} \int \frac{\mathrm{d}^{3}p}{(2\pi)^{3} \, 2E} \sum_{h=\pm 1} \left[a_{\ell_{\alpha}}^{(h)\dagger}(p) \, a_{\ell_{\alpha}}^{(h)}(p) - b_{\ell_{\alpha}}^{(h)\dagger}(p) \, b_{\ell_{\alpha}}^{(h)}(p) \right]$$

Mixing Matrix

• Leptonic Weak Charged Current: $j_{W,L}^{\rho} = 2 \overline{\mathbf{n}_L} U^{\dagger} \gamma^{\rho} \ell_L$

$$\blacktriangleright \ U = V_L^{\ell \dagger} \ V_L^{\nu} = \begin{pmatrix} U_{11} & U_{12} & U_{13} \\ U_{21} & U_{22} & U_{23} \\ U_{31} & U_{32} & U_{33} \end{pmatrix} \equiv \begin{pmatrix} U_{e1} & U_{e2} & U_{e3} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} \end{pmatrix}$$

• Unitary $N \times N$ matrix depends on N^2 independent real parameters

$$N = 3 \implies \frac{N(N-1)}{2} = 3$$
 Mixing Angles
 $\frac{N(N+1)}{2} = 6$ Phases

- Not all phases are physical observables
- Only physical effect of mixing matrix occurs through its presence in the Leptonic Weak Charged Current

- Weak Charged Current: $j_{W,L}^{\rho} = 2 \sum_{k=1}^{3} \sum_{\alpha=e,\mu,\tau} \overline{\nu_{kL}} U_{\alpha k}^* \gamma^{\rho} \ell_{\alpha L}$
- ► Apart from the Weak Charged Current, the Lagrangian is invariant under the global phase transformations (6 arbitrary phases) $\nu_k \rightarrow e^{i\varphi_k} \nu_k$ (k = 1, 2, 3), $\ell_\alpha \rightarrow e^{i\varphi_\alpha} \ell_\alpha$ ($\alpha = e, \mu, \tau$)
- Performing this transformation, the Charged Current becomes

$$j_{W,L}^{\rho} = 2 \sum_{k=1}^{3} \sum_{\alpha=e,\mu,\tau} \overline{\nu_{kL}} e^{-i\varphi_{k}} U_{\alpha k}^{*} e^{i\varphi_{\alpha}} \gamma^{\rho} \ell_{\alpha L}$$
$$j_{W,L}^{\rho} = 2 \underbrace{e^{-i(\varphi_{1}-\varphi_{e})}}_{1} \sum_{k=1}^{3} \sum_{\alpha=e,\mu,\tau} \overline{\nu_{kL}} \underbrace{e^{-i(\varphi_{k}-\varphi_{1})}}_{2} U_{\alpha k}^{*} \underbrace{e^{i(\varphi_{\alpha}-\varphi_{e})}}_{2} \gamma^{\rho} \ell_{\alpha L}$$

- There are 5 arbitrary phases of the fields that can be chosen to eliminate 5 of the 6 phases of the mixing matrix
- 5 and not 6 phases of the mixing matrix can be eliminated because a common rephasing of all the fields leaves the Charged Current invariant
 ⇒ conservation of Total Lepton Number.

- The mixing matrix contains 1 Physical Phase.
- It is convenient to express the 3 × 3 unitary mixing matrix only in terms of the four physical parameters:

3 Mixing Angles and 1 Phase

Standard Parameterization of Mixing Matrix

$$\begin{pmatrix} \nu_{eL} \\ \nu_{\mu L} \\ \nu_{\tau L} \end{pmatrix} = \begin{pmatrix} U_{e1} & U_{e2} & U_{e3} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} \end{pmatrix} \begin{pmatrix} \nu_{1L} \\ \nu_{2L} \\ \nu_{3L} \end{pmatrix}$$
$$U = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13}e^{-i\delta_{13}} \\ 0 & 1 & 0 \\ -s_{13}e^{i\delta_{13}} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
$$= \begin{pmatrix} c_{12}c_{13} & s_{12}c_{13} & s_{13}e^{-i\delta_{13}} \\ -s_{12}c_{23}-c_{12}s_{23}s_{13}e^{i\delta_{13}} & c_{12}c_{23}-s_{12}s_{23}s_{13}e^{i\delta_{13}} & s_{23}c_{13} \\ s_{12}s_{23}-c_{12}c_{23}s_{13}e^{i\delta_{13}} & -c_{12}s_{23}-s_{12}c_{23}s_{13}e^{i\delta_{13}} & c_{23}c_{13} \end{pmatrix}$$
$$c_{ab} \equiv \cos \vartheta_{ab} \qquad s_{ab} \equiv \sin \vartheta_{ab} \qquad 0 \le \vartheta_{ab} \le \frac{\pi}{2} \qquad 0 \le \delta_{13} \le 2\pi$$
$$3 \text{ Mixing Angles } \vartheta_{12}, \vartheta_{23}, \vartheta_{13} \text{ and } 1 \text{ Phase } \delta_{13}$$

Standard Parameterization

$$U = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13}e^{-i\delta_{13}} \\ 0 & 1 & 0 \\ -s_{13}e^{i\delta_{13}} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

Example of Different Phase Convention

$$U = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23}e^{i\delta_{23}} \\ 0 & -s_{23}e^{-i\delta_{13}} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13} \\ 0 & 1 & 0 \\ -s_{13} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

Example of Different Parameterization

$$U = \begin{pmatrix} c_{12}' & s_{12}' e^{-i\delta_{12}'} & 0\\ -s_{12}' e^{i\delta_{12}'} & c_{12}' & 0\\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0\\ 0 & c_{23}' & s_{23}'\\ 0 & -s_{23}' & c_{23}' \end{pmatrix} \begin{pmatrix} c_{13}' & 0 & s_{13}'\\ 0 & 1 & 0\\ -s_{13}' & 0 & c_{13}' \end{pmatrix}$$

CP Violation

- $U \neq U^* \implies$ CP Violation
- General conditions for CP violation (14 conditions):
 - 1. No two charged leptons or two neutrinos are degenerate in mass (6 conditions)
 - 2. No mixing angle is equal to 0 or $\pi/2$ (6 conditions)
 - 3. The physical phase is different from 0 or π (2 conditions)
- These 14 conditions are combined into the single condition det $C \neq 0$

 $C = -i \left[M^{\prime \nu} M^{\prime \nu \dagger}, M^{\prime \ell} M^{\prime \ell \dagger} \right]$

$$\det C = -2 J \left(m_{\nu_2}^2 - m_{\nu_1}^2 \right) \left(m_{\nu_3}^2 - m_{\nu_1}^2 \right) \left(m_{\nu_3}^2 - m_{\nu_2}^2 \right) \\ \left(m_{\mu}^2 - m_e^2 \right) \left(m_{\tau}^2 - m_e^2 \right) \left(m_{\tau}^2 - m_{\mu}^2 \right)$$

► Jarlskog rephasing invariant: $J = \Im \mathfrak{m} \left[U_{e2} U_{e3}^* U_{\mu 2}^* U_{\mu 3} \right]$

[C. Jarlskog, Phys. Rev. Lett. 55 (1985) 1039, Z. Phys. C 29 (1985) 491]

[O. W. Greenberg, Phys. Rev. D 32 (1985) 1841]

[I. Dunietz, O. W. Greenberg, Dan-di Wu, Phys. Rev. Lett. 55 (1985) 2935]

Example: $\vartheta_{12} = 0$

 $U = R_{23}R_{13}W_{12}$

$$W_{12} = \begin{pmatrix} \cos\vartheta_{12} & \sin\vartheta_{12}e^{-i\delta_{12}} & 0\\ -\sin\vartheta_{12}e^{-i\delta_{12}} & \cos\vartheta_{12} & 0\\ 0 & 0 & 1 \end{pmatrix}$$

$$\vartheta_{12} = 0 \implies W_{12} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} = \mathbf{1}$$

real mixing matrix $U = R_{23}R_{13}$

Example: $\vartheta_{13} = \pi/2$

 $U = R_{23}W_{13}R_{12}$

$$W_{13} = egin{pmatrix} \cosartheta_{13} & 0 & \sinartheta_{13}e^{-i\delta_{13}} \ 0 & 1 & 0 \ -\sinartheta_{13}e^{i\delta_{13}} & 0 & \cosartheta_{13} \end{pmatrix}$$

$$\vartheta_{13} = \pi/2 \implies W_{13} = \begin{pmatrix} 0 & 0 & e^{-i\delta_{13}} \\ 0 & 1 & 0 \\ -e^{i\delta_{13}} & 0 & 0 \end{pmatrix}$$

$$U = \begin{pmatrix} 0 & 0 & e^{-i\delta_{13}} \\ -s_{12}c_{23}-c_{12}s_{23}e^{i\delta_{13}} & c_{12}c_{23}-s_{12}s_{23}e^{i\delta_{13}} & 0 \\ s_{12}s_{23}-c_{12}c_{23}e^{i\delta_{13}} & -c_{12}s_{23}-s_{12}c_{23}e^{i\delta_{13}} & 0 \end{pmatrix}$$

$$\begin{split} U &= \begin{pmatrix} 0 & 0 & e^{-i\delta_{13}} \\ |U_{\mu1}|e^{i\lambda_{\mu1}} & |U_{\mu2}|e^{i\lambda_{\mu2}} & 0 \\ |U_{\tau1}|e^{i\lambda_{\tau1}} & |U_{\tau2}|e^{i\lambda_{\tau2}} & 0 \end{pmatrix} \\ \lambda_{\mu1} - \lambda_{\mu2} &= \lambda_{\tau1} - \lambda_{\tau2} \pm \pi & \lambda_{\tau1} - \lambda_{\mu1} = \lambda_{\tau2} - \lambda_{\mu2} \pm \pi \\ \nu_k &\to e^{i\varphi_k} \nu_k \quad (k = 1, 2, 3), \qquad \ell_\alpha \to e^{i\varphi_\alpha} \ell_\alpha \quad (\alpha = e, \mu, \tau) \\ U \to \begin{pmatrix} e^{-i\varphi_e} & 0 & 0 \\ 0 & e^{-i\varphi_\tau} & 0 \\ 0 & 0 & e^{-i\varphi_\tau} \end{pmatrix} \begin{pmatrix} 0 & 0 & e^{-i\delta_{13}} \\ |U_{\mu1}|e^{i\lambda_{\mu1}} & |U_{\mu2}|e^{i\lambda_{\mu2}} & 0 \\ |U_{\tau1}|e^{i\lambda_{\tau2}} & |U_{\tau2}|e^{i\lambda_{\tau2}} & 0 \end{pmatrix} \begin{pmatrix} e^{i\varphi_1} & 0 & 0 \\ 0 & e^{i\varphi_2} & 0 \\ 0 & 0 & e^{i\varphi_3} \end{pmatrix} \\ U &= \begin{pmatrix} |U_{\mu1}|e^{i(\lambda_{\mu1} - \varphi_\mu + \varphi_1)} & |U_{\mu2}|e^{i(\lambda_{\mu2} - \varphi_\mu + \varphi_2)} & 0 \\ |U_{\tau1}|e^{i(\lambda_{\tau1} - \varphi_\tau + \varphi_1)} & |U_{\tau2}|e^{i(\lambda_{\tau2} - \varphi_\tau + \varphi_2)} & 0 \end{pmatrix} \end{pmatrix} \\ \varphi_1 &= 0 \qquad \varphi_\mu = \lambda_{\mu1} \qquad \varphi_\tau = \lambda_{\tau1} \qquad \varphi_2 = \varphi_\mu - \lambda_{\mu2} = \lambda_{\mu1} - \lambda_{\mu2} \\ \varphi_2 &= \varphi_\tau - \lambda_{\tau2} \pm \pi = \lambda_{\tau1} - \lambda_{\tau2} \pm \pi = \lambda_{\mu1} - \lambda_{\mu2} \qquad \text{OK!} \\ U &= \begin{pmatrix} 0 & 0 & \pm 1 \\ |U_{\mu1}| & |U_{\mu2}| & 0 \\ |U_{\tau1}| & -|U_{\tau2}| & 0 \end{pmatrix} \end{split}$$

Example: $m_{\nu_2} = m_{\nu_3}$

 $j_{WI}^{\rho} = 2 \overline{\mathbf{n}_{I}} U^{\dagger} \gamma^{\rho} \ell_{I}$ $U = R_{12}R_{13}W_{23} \implies j_{W_{\perp}}^{\rho} = 2 \,\overline{\mathbf{n}_L} \, W_{23}^{\dagger} R_{13}^{\dagger} R_{12}^{\dagger} \gamma^{\rho} \, \ell_L$ $W_{23} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos \vartheta_{23} & \sin \vartheta_{23} e^{-i\delta_{23}} \\ 0 & -\sin \vartheta_{23} e^{-i\delta_{23}} & \cos \vartheta_{23} \end{pmatrix}$ $W_{23}\mathbf{n}_L = \mathbf{n}'_L \qquad R_{12}R_{13} = U' \qquad \Longrightarrow \qquad j^{\rho}_{WL} = 2\,\overline{\mathbf{n}'_L}\,U^{\dagger}\,\gamma^{\rho}\,\ell_L$ ν_2 and ν_3 are indistinguishable drop the prime $\implies j_{WL}^{\rho} = 2 \overline{\mathbf{n}_L} U^{\dagger} \gamma^{\rho} \ell_L$ real mixing matrix $U = R_{12}R_{13}$ C. Giunti – Neutrino Physics – Torino, 17–21 May 2010 – 36
Jarlskog Rephasing Invariant

• Simplest rephasing invariants: $|U_{\alpha k}| = U_{\alpha k} U_{\alpha k}^*$, $U_{\alpha k} U_{\alpha j}^* U_{\beta k}^* U_{\beta j}$ $\Im m \Big[U_{\alpha k} U_{\alpha j}^* U_{\beta k}^* U_{\beta j} \Big] = \pm J$ $J = \Im m \Big[U_{e2} U_{e3}^* U_{\mu 2}^* U_{\mu 3} \Big] = \Im m \begin{pmatrix} \cdot & \circ & \times \\ \cdot & \times & \circ \\ \cdot & \cdot & \cdot \end{pmatrix}$

In standard parameterization:

$$J = c_{12}s_{12}c_{23}s_{23}c_{13}^2s_{13}\sin\delta_{13}$$

= $\frac{1}{8}\sin 2\vartheta_{12}\sin 2\vartheta_{23}\cos\vartheta_{13}\sin 2\vartheta_{13}\sin\delta_{13}$

- Jarlskog invariant is useful for quantifying CP violation in a parameterization-independent way
- ► All measurable CP-violation effects depend on J.

Maximal CP Violation

Maximal CP violation is defined as the case in which |J| has its maximum possible value

$$|J|_{\max} = \frac{1}{6\sqrt{3}}$$

In the standard parameterization it is obtained for

$$\vartheta_{12} = \vartheta_{23} = \pi/4\,, \quad s_{13} = 1/\sqrt{3}\,, \quad \sin\delta_{13} = \pm 1$$

► This case is called Trimaximal Mixing. All the absolute values of the elements of the mixing matrix are equal to 1/√3:

$$U = \begin{pmatrix} \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} & \mp \frac{i}{\sqrt{3}} \\ -\frac{1}{2} \mp \frac{i}{2\sqrt{3}} & \frac{1}{2} \mp \frac{i}{2\sqrt{3}} & \frac{1}{\sqrt{3}} \\ \frac{1}{2} \mp \frac{i}{2\sqrt{3}} & -\frac{1}{2} \mp \frac{i}{2\sqrt{3}} & \frac{1}{\sqrt{3}} \end{pmatrix} = \frac{1}{\sqrt{3}} \begin{pmatrix} 1 & 1 & \mp i \\ -e^{\pm i\pi/6} & e^{\mp i\pi/6} & 1 \\ e^{\mp i\pi/6} & -e^{\pm i\pi/6} & 1 \end{pmatrix}$$

GIM Mechanism

[S.L. Glashow, J. Iliopoulos, L. Maiani, Phys. Rev. D 2 (1970) 1285]

► The unitarity of V^ℓ_L, V^ℓ_R and V^ν_L implies that the expression of the neutral weak current in terms of the lepton fields with definite masses is the same as that in terms of the primed lepton fields:

$$j_{Z,L}^{\rho} = 2 g_L^{\nu} \overline{\nu_L'} \gamma^{\rho} \nu_L' + 2 g_L' \overline{\ell_L'} \gamma^{\rho} \ell_L' + 2 g_R' \overline{\ell_R'} \gamma^{\rho} \ell_R'$$

$$= 2 g_L^{\nu} \overline{\mathbf{n}_L} V_L^{\nu\dagger} \gamma^{\rho} V_L^{\nu} \mathbf{n}_L + 2 g_L' \overline{\ell_L} V_L^{\ell\dagger} \gamma^{\rho} V_L^{\ell} \ell_L + 2 g_R' \overline{\ell_R} V_R^{\ell\dagger} \gamma^{\rho} V_R^{\ell} \ell_R$$

$$= 2 g_L^{\nu} \overline{\mathbf{n}_L} \gamma^{\rho} \mathbf{n}_L + 2 g_L' \overline{\ell_L} \gamma^{\rho} \ell_L + 2 g_R' \overline{\ell_R} \gamma^{\rho} \ell_R$$

The unitarity of U implies the same expression for the neutral weak current in terms of the flavor neutrino fields ν_L = U n_L:

$$j_{Z,L}^{\rho} = 2 g_L^{\nu} \overline{\nu_L} U \gamma^{\rho} U^{\dagger} \nu_L + 2 g_L^{\prime} \overline{\ell_L} \gamma^{\rho} \ell_L + 2 g_R^{\prime} \overline{\ell_R} \gamma^{\rho} \ell_R$$
$$= 2 g_L^{\nu} \overline{\nu_L} \gamma^{\rho} \nu_L + 2 g_L^{\prime} \overline{\ell_L} \gamma^{\rho} \ell_L + 2 g_R^{\prime} \overline{\ell_R} \gamma^{\rho} \ell_R$$

Lepton Numbers Violating Processes

Dirac mass term allows L_e , L_μ , L_τ violating processes Example: $\mu^{\pm} \rightarrow e^{\pm} + \gamma$, $\mu^{\pm} \rightarrow e^{\pm} + e^+ + e^ \mu^- \rightarrow e^- + \gamma$

 $\sum U_{\mu k}^* U_{ek} = 0 \Longrightarrow$ only part of u_k propagator $\propto m_k$ contributes $\Gamma = \frac{G_{\mathsf{F}} m_{\mu}^{\mathsf{o}}}{192\pi^3} \frac{3\alpha}{32\pi} \left| \sum_{k} U_{\mu k}^* U_{ek} \frac{m_k^2}{m_W^2} \right|^2$ e^{-} $(BR)_{exp} \le 10^{-11}$ $(BR)_{the} \le 10^{-47}$ C. Giunti – Neutrino Physics – Torino, 17–21 May 2010 – 40

Majorana Neutrino Masses and Mixing

• Dirac Neutrino Masses and Mixing

• Majorana Neutrino Masses and Mixing

- Two-Component Theory of a Massless Neutrino
- Majorana Equation
- Majorana Lagrangian
- Majorana Antineutrino?
- Lepton Number
- CP Symmetry
- No Majorana Neutrino Mass in the SM
- Effective Majorana Mass
- Mixing of Three Majorana Neutrinos
- Mixing Matrix

Number of Ele

• Dirac-Majorana Mass Term

Two-Component Theory of a Massless Neutrino

[L. Landau, Nucl. Phys. 3 (1957) 127], [T.D. Lee, C.N. Yang, Phys. Rev. 105 (1957) 1671], [A. Salam, Nuovo Cim. 5 (1957) 299]

- Dirac Equation: $(i\gamma^{\mu}\partial_{\mu} m)\psi = 0$
- Chiral decomposition of a Fermion Field: $\psi = \psi_L + \psi_R$
- Equations for the Chiral components are coupled by mass:

 $i\gamma^{\mu}\partial_{\mu}\psi_{L} = m\psi_{R}$ $i\gamma^{\mu}\partial_{\mu}\psi_{R} = m\psi_{L}$

► They are decoupled for a massless fermion: Weyl Equations (1929)

 $i\gamma^{\mu}\partial_{\mu}\psi_{L}=0$ $i\gamma^{\mu}\partial_{\mu}\psi_{R}=0$

 A massless fermion can be described by a single chiral field ψ_L or ψ_R (Weyl Spinor).

• ψ_L and ψ_R have only two independent components: in the chiral representation

$$\psi_L = \begin{pmatrix} 0 \\ \chi_L \end{pmatrix} \equiv \begin{pmatrix} 0 \\ 0 \\ \chi_{L1} \\ \chi_{L2} \end{pmatrix} \qquad \qquad \psi_R = \begin{pmatrix} \chi_R \\ 0 \end{pmatrix} \equiv \begin{pmatrix} \chi_{R1} \\ \chi_{R2} \\ 0 \\ 0 \end{pmatrix}$$

- ► The possibility to describe a physical particle with a Weyl spinor was rejected by Pauli in 1933 because it leads to parity violation $(\psi_L \stackrel{P}{\rightleftharpoons} \psi_R)$
- ► The discovery of parity violation in 1956-57 invalidated Pauli's reasoning, opening the possibility to describe massless particles with Weyl spinor fields ⇒ Two-component Theory of a Massless Neutrino (1957)
- V A Charged-Current Weak Interactions $\implies \nu_L$
- In the 1960s, the Two-component Theory of a Massless Neutrino was incorporated in the SM through the assumption of the absence of ν_R

Majorana Equation

- Can a two-component spinor describe a massive fermion? Yes! (E. Majorana, 1937)
- Trick: ψ_R and ψ_L are not independent:

 $\psi_R = \mathcal{C} \, \overline{\psi_I}^T$

• $C \overline{\psi_L}^T$ is right-handed: $P_R C \overline{\psi_L}^T = C \overline{\psi_L}^T$ $(C \gamma_\mu^T C^{-1} = -\gamma_\mu)$

• Majorana Equation: $i\gamma^{\mu}\partial_{\mu}\psi_{L} = m C \overline{\psi_{L}}^{T}$

• Majorana Field: $\psi = \psi_L + \psi_R = \psi_L + C \overline{\psi_L}^T$

• Majorana Condition: $\psi = C \overline{\psi}^T = \psi^C$

Only two independent components: $\psi = \begin{pmatrix} i\sigma^2 \chi_L^* \\ \chi_L \end{pmatrix} = \begin{pmatrix} \chi_{L2}^* \\ -\chi_{L1}^* \\ \chi_{L1} \\ \chi_{L2} \end{pmatrix}$

- $\psi = \psi^{C}$ implies the equality of particle and antiparticle
- Only neutral fermions can be Majorana particles
- ► For a Majorana field, the electromagnetic current vanishes identically: $\overline{\psi}\gamma^{\mu}\psi = \overline{\psi}^{C}\gamma^{\mu}\psi^{C} = -\psi^{T}C^{\dagger}\gamma^{\mu}C\overline{\psi}^{T} = \overline{\psi}C\gamma^{\mu}^{T}C^{\dagger}\psi = -\overline{\psi}\gamma^{\mu}\psi = 0$

Majorana Lagrangian

Dirac Lagrangian

 $\mathscr{L}^{\mathsf{D}} = \overline{\nu} (i\partial - m) \nu$ $= \overline{\nu_{I}}i\partial \overline{\nu_{I}} + \overline{\nu_{R}}i\partial \overline{\nu_{R}} - m(\overline{\nu_{R}}\nu_{I} + \overline{\nu_{I}}\nu_{R})$ $\nu_R \rightarrow \nu_I^C = C \overline{\nu_I}^T$ $\frac{1}{2}\mathscr{L}^{\mathsf{D}} \rightarrow \overline{\nu_{L}} \, i \not \! \partial \, \nu_{L} - \frac{m}{2} \left(-\nu_{L}^{\mathsf{T}} \, \mathcal{C}^{\dagger} \, \nu_{L} + \overline{\nu_{L}} \, \mathcal{C} \, \overline{\nu_{L}}^{\mathsf{T}} \right)$ Majorana Lagrangian $\mathscr{L}^{\mathsf{M}} = \overline{\nu_{L}} \, i \partial \!\!\!/ \, \nu_{L} - \frac{m}{2} \left(-\nu_{L}^{\mathsf{T}} \, \mathcal{C}^{\dagger} \, \nu_{L} + \overline{\nu_{L}} \, \mathcal{C} \, \overline{\nu_{L}}^{\mathsf{T}} \right)$ $=\overline{\nu_L} i \partial \!\!\!/ \nu_L - \frac{m}{2} \left(\overline{\nu_L^C} \nu_L + \overline{\nu_L} \nu_L^C \right)$

- Majorana Field: $\nu = \nu_L + \nu_L^C$
- Majorana Condition: $\nu^{C} = \nu$
- Majorana Lagrangian: $\mathscr{L}^{\mathsf{M}} = \frac{1}{2} \overline{\nu} (i \partial \!\!\!/ m) \nu$
- The factor 1/2 distinguishes the Majorana Lagrangian from the Dirac Lagrangian
- Quantized Dirac Neutrino Field:

$$\nu(x) = \int \frac{d^3 p}{(2\pi)^3 \, 2E} \sum_{h=\pm 1} \left[a^{(h)}(p) \, u^{(h)}(p) \, e^{-ip \cdot x} + b^{(h)^{\dagger}}(p) \, v^{(h)}(p) \, e^{ip \cdot x} \right]$$

- ► Quantized Majorana Neutrino Field $[b^{(h)}(p) = a^{(h)}(p)]$ $\nu(x) = \int \frac{d^3p}{(2\pi)^3 2E} \sum_{h=\pm 1} [a^{(h)}(p) u^{(h)}(p) e^{-ip \cdot x} + a^{(h)\dagger}(p) v^{(h)}(p) e^{ip \cdot x}]$
- A Majorana field has half the degrees of freedom of a Dirac field

Majorana Antineutrino?

- A Majorana neutrino is the same as a Majorana antineutrino
- Neutrino interactions are described by the CC and NC Lagrangians

$$\mathcal{L}_{l,L}^{CC} = -\frac{g}{\sqrt{2}} \left(\overline{\nu_L} \gamma^{\mu} \ell_L W_{\mu} + \overline{\ell_L} \gamma^{\mu} \nu_L W_{\mu}^{\dagger} \right)$$
$$\mathcal{L}_{l,\nu}^{NC} = -\frac{g}{2\cos\vartheta_W} \overline{\nu_L} \gamma^{\mu} \nu_L Z_{\mu}$$

 In practice, since detectable neutrinos are always ultrarelativistic, the neutrino mass can be neglected in interactions • In interaction amplitudes we neglect corrections of order m/E

Common definitions:

Majorana neutrino with negative helicity \equiv neutrino Majorana neutrino with positive helicity \equiv antineutrino

Lepton Number

$$\begin{split} \mathcal{N}(A,Z) &\to \mathcal{N}(A,Z+2) + 2e^- + 2\bar{\varkappa}_{e} & (\beta\beta_{0\nu}^-) \\ \mathcal{N}(A,Z) &\to \mathcal{N}(A,Z-2) + 2e^+ + 2\bar{\varkappa}_{e} & (\beta\beta_{0\nu}^+) \end{split}$$

CP Symmetry

Under a CP transformation

$$U_{CP}\nu_{L}(x)U_{CP}^{-1} = \xi_{\nu}^{CP}\gamma^{0}\nu_{L}^{C}(x_{P})$$
$$U_{CP}\nu_{L}^{C}(x)U_{CP}^{-1} = -\xi_{\nu}^{CP*}\gamma^{0}\nu_{L}(x_{P})$$
$$U_{CP}\overline{\nu_{L}}(x)U_{CP}^{-1} = \xi_{\nu}^{CP*}\overline{\nu_{L}^{C}}(x_{P})\gamma^{0}$$
$$U_{CP}\overline{\nu_{L}^{C}}(x)U_{CP}^{-1} = -\xi_{\nu}^{CP}\overline{\nu_{L}}(x_{P})\gamma^{0}$$

with $|\xi_{\nu}^{\mathsf{CP}}|^2 = 1$, $x^{\mu} = (x^0, \vec{x})$, and $x_{\mathsf{P}}^{\mu} = (x^0, -\vec{x})$

The theory is CP-symmetric if there are values of the phase ξ^{CP}_ν such that the Lagrangian transforms as

 $U_{\mathsf{CP}}\mathscr{L}(x)U_{\mathsf{CP}}^{-1}=\mathscr{L}(x_{\mathsf{P}})$ in order to keep invariant the action $I=\int d^4x\,\mathscr{L}(x)$

► The Majorana Mass Term $\mathscr{L}_{mass}^{M}(x) = -\frac{1}{2} m \left[\overline{\nu_{L}^{C}}(x) \nu_{L}(x) + \overline{\nu_{L}}(x) \nu_{L}^{C}(x) \right]$ transforms as

$$U_{CP}\mathscr{L}_{mass}^{M}(x)U_{CP}^{-1} = -\frac{1}{2}m\left[-(\xi_{\nu}^{CP})^{2}\overline{\nu_{L}}(x_{P})\nu_{L}^{C}(x_{P}) - (\xi_{\nu}^{CP*})^{2}\overline{\nu_{L}^{C}}(x_{P})\nu_{L}(x_{P})\right]$$

- ► $U_{CP} \mathscr{L}_{mass}^{M}(x) U_{CP}^{-1} = \mathscr{L}_{mass}^{M}(x_{P})$ for $\xi_{\nu}^{CP} = \pm i$
- The one-generation Majorana theory is CP-symmetric
- The Majorana case is different from the Dirac case, in which the CP phase ξ^{CP}_ν is arbitrary

No Majorana Neutrino Mass in the SM

- ► Majorana Mass Term $\propto \left[\nu_L^T C^{\dagger} \nu_L \overline{\nu_L} C \overline{\nu_L}^T\right]$ involves only the neutrino left-handed chiral field ν_L , which is present in the SM (one for each lepton generation)
- Eigenvalues of the weak isospin *I*, of its third component *I*₃, of the hypercharge *Y* and of the charge *Q* of the lepton and Higgs multiplets:

		1	<i>I</i> 3	Y	$Q = I_3 + \frac{Y}{2}$
lepton doublet	$L_L = egin{pmatrix} u_L \\ \ell_L \end{pmatrix}$	1/2	1/2	-1	0
			-1/2		-1
lepton singlet	ℓ_R	0	0	-2	-1
Higgs doublet	$\Phi(x) = \begin{pmatrix} \phi_+(x) \\ \phi_0(x) \end{pmatrix}$	1/2	1/2	+1	1
			-1/2		0

• $\nu_L^T C^\dagger \nu_L$ has $I_3 = 1$ and $Y = -2 \implies$ needed Higgs triplet with Y = 2

Effective Majorana Mass

- ▶ Dimensional analysis: Fermion Field $\sim [E]^{3/2}$ Boson Field $\sim [E]$
- Dimensionless action: $I = \int d^4 x \mathscr{L}(x) \Longrightarrow \mathscr{L}(x) \sim [E]^4$
- Kinetic terms: $\overline{\psi}i\partial\!\!\!/\psi\sim [E]^4$, $(\partial_\mu\phi)^\dagger\,\partial^\mu\phi\sim [E]^4$
- Mass terms: $m \overline{\psi} \psi \sim [E]^4$, $m^2 \phi^{\dagger} \phi \sim [E]^4$
- CC weak interaction: $g \overline{\nu_L} \gamma^{\rho} \ell_L W_{\rho} \sim [E]^4$
- Yukawa couplings: $y \overline{L_L} \Phi \ell_R \sim [E]^4$
- ▶ Product of fields \mathcal{O}_d with energy dimension $d \equiv \text{dim-}d$ operator
- $\blacktriangleright \ \mathscr{L}_{(\mathscr{O}_d)} = C_{(\mathscr{O}_d)} \mathscr{O}_d \implies C_{(\mathscr{O}_d)} \sim [E]^{4-d}$
- $\mathcal{O}_{d>4}$ are not renormalizable

- ▶ SM Lagrangian includes all $\mathcal{O}_{d \leq 4}$ invariant under $SU(2)_L \times U(1)_Y$
- SM cannot be considered as the final theory of everything
- SM is an effective low-energy theory
- It is likely that SM is the low-energy product of the symmetry breaking of a high-energy unified theory
- It is plausible that at low-energy there are effective non-renormalizable
 \$\mathcal{O}_{d>4}\$ [S. Weinberg, Phys. Rev. Lett. 43 (1979) 1566]
- ► All O_d must respect SU(2)_L × U(1)_Y, because they are generated by the high-energy theory which must include the gauge symmetries of the SM in order to be effectively reduced to the SM at low energies

▶ Ø_{d>4} is suppressed by a coefficient M^{4-d}, where M is a heavy mass characteristic of the symmetry breaking scale of the high-energy unified theory:

$$\mathscr{L} = \mathscr{L}_{\mathsf{SM}} + \frac{g_5}{\mathcal{M}} \, \mathscr{O}_5 + \frac{g_6}{\mathcal{M}^2} \, \mathscr{O}_6 + \dots$$

- ► Analogy with $\mathscr{L}_{eff}^{(CC)} \propto G_{\mathsf{F}} (\overline{\nu_{eL}} \gamma^{\rho} e_L) (\overline{e_L} \gamma_{\rho} \nu_{eL}) + \dots$ $\mathscr{O}_6 \rightarrow (\overline{\nu_{eL}} \gamma^{\rho} e_L) (\overline{e_L} \gamma_{\rho} \nu_{eL}) + \dots \qquad \frac{g_6}{\mathcal{M}^2} \rightarrow \frac{G_{\mathsf{F}}}{\sqrt{2}} = \frac{g^2}{8m_W^2}$
- *M*^{4-d} is a strong suppression factor which limits the observability of the low-energy effects of the new physics beyond the SM
- The difficulty to observe the effects of the effective low-energy non-renormalizable operators increase rapidly with their dimensionality
- $\mathcal{O}_5 \implies$ Majorana neutrino masses (Lepton number violation)
- $\blacktriangleright \mathcal{O}_6 \implies \text{Baryon number violation (proton decay)}$ C. Giunti Neutrino Physics Torino, 17–21 May 2010 56

Only one dim-5 operator:

$$\mathcal{O}_{5} = (L_{L}^{T} \sigma_{2} \Phi) \mathcal{C}^{\dagger} (\Phi^{T} \sigma_{2} L_{L}) + \text{H.c.}$$
$$= \frac{1}{2} (L_{L}^{T} \mathcal{C}^{\dagger} \sigma_{2} \vec{\tau} L_{L}) \cdot (\Phi^{T} \sigma_{2} \vec{\tau} \Phi) + \text{H.c.}$$

$$\mathscr{L}_{5} = \frac{g_{5}}{2\mathcal{M}} \left(L_{L}^{T} \mathcal{C}^{\dagger} \sigma_{2} \vec{\tau} L_{L} \right) \cdot \left(\Phi^{T} \sigma_{2} \vec{\tau} \Phi \right) + \text{H.c.}$$

• Electroweak Symmetry Breaking: $\Phi = \begin{pmatrix} \phi_+ \\ \phi_0 \end{pmatrix} \xrightarrow[Breaking]{Symmetry} \begin{pmatrix} 0 \\ v/\sqrt{2} \end{pmatrix}$

$$\blacktriangleright \ \mathscr{L}_{5} \ \xrightarrow{\text{Symmetry}}_{\text{Breaking}} \ \mathscr{L}_{\text{mass}}^{\text{M}} = \frac{1}{2} \frac{g_{5} v^{2}}{\mathcal{M}} v_{L}^{T} \mathcal{C}^{\dagger} v_{L} + \text{H.c.} \implies \qquad m = \frac{g_{5} v^{2}}{\mathcal{M}}$$

The study of Majorana neutrino masses provides the most accessible low-energy window on new physics beyond the SM

• $m \propto \frac{v^2}{M} \propto \frac{m_D^2}{M}$ natural explanation of smallness of neutrino masses (special case: See-Saw Mechanism)

• Example: $m_{\rm D} \sim v \sim 10^2 \, {\rm GeV}$ and $\mathcal{M} \sim 10^{15} \, {\rm GeV} \implies m \sim 10^{-2} \, {\rm eV}$

Mixing of Three Majorana Neutrinos

• In general, the matrix M^L is a complex symmetric matrix

$$\sum_{\alpha,\beta} \nu_{\alpha L}^{\prime T} C^{\dagger} M_{\alpha \beta}^{L} \nu_{\beta L}^{\prime} = -\sum_{\alpha,\beta} \nu_{\beta L}^{\prime T} M_{\alpha \beta}^{L} (C^{\dagger})^{T} \nu_{\alpha L}^{\prime}$$
$$= \sum_{\alpha,\beta} \nu_{\beta L}^{\prime T} C^{\dagger} M_{\alpha \beta}^{L} \nu_{\alpha L}^{\prime} = \sum_{\alpha,\beta} \nu_{\alpha L}^{\prime T} C^{\dagger} M_{\beta \alpha}^{L} \nu_{\beta L}^{\prime}$$

$$M^L_{lphaeta} = M^L_{etalpha} \iff M^L = M^{L^T}$$

$$\mathcal{L}_{\text{mass}}^{\mathsf{M}} = \frac{1}{2} \boldsymbol{\nu}_{L}^{\prime T} \, \mathcal{C}^{\dagger} \, \boldsymbol{M}^{L} \, \boldsymbol{\nu}_{L}^{\prime} + \mathsf{H.c.}$$

$$\boldsymbol{\nu}_{L}^{\prime} = V_{L}^{\nu} \, \mathbf{n}_{L} \implies \qquad \mathcal{L}_{\text{mass}}^{\mathsf{M}} = \frac{1}{2} \boldsymbol{\nu}_{L}^{\prime T} \, (V_{L}^{\nu})^{T} \, \mathcal{C}^{\dagger} \, \boldsymbol{M}^{L} \, V_{L}^{\nu} \, \boldsymbol{\nu}_{L}^{\prime} + \mathsf{H.c.}$$

$$\boldsymbol{(} V_{L}^{\nu})^{T} \, \boldsymbol{M}^{L} \, V_{L}^{\nu} = \boldsymbol{M}, \qquad \boldsymbol{M}_{kj} = m_{k} \, \delta_{kj} \qquad (k, j = 1, 2, 3)$$

• Left-handed chiral fields with definite mass: $\mathbf{n}_L = V_L^{\nu \dagger} \nu'_L = \begin{pmatrix} \nu_{1L} \\ \nu_{2L} \\ \nu_{2L} \end{pmatrix}$

$$\mathscr{L}_{\text{mass}}^{\mathsf{M}} = \frac{1}{2} \left(\mathbf{n}_{L}^{\mathsf{T}} \, \mathcal{C}^{\dagger} \, \mathcal{M} \, \mathbf{n}_{L} - \overline{\mathbf{n}_{L}} \, \mathcal{M} \, \mathcal{C} \, \mathbf{n}_{L}^{\mathsf{T}} \right)$$
$$= \frac{1}{2} \sum_{k=1}^{3} m_{k} \left(\nu_{kL}^{\mathsf{T}} \, \mathcal{C}^{\dagger} \, \nu_{kL} - \overline{\nu_{kL}} \, \mathcal{C} \, \nu_{kL}^{\mathsf{T}} \right)$$

• Majorana fields of massive neutrinos: $\nu_k = \nu_{kL} + \nu_{kL}^C$

×

$$\nu_k^C = \nu_k$$

$$\mathbf{h} = \begin{pmatrix} \nu_1 \\ \nu_2 \\ \nu_3 \end{pmatrix} \Longrightarrow \mathscr{L}^{\mathsf{M}} = \frac{1}{2} \sum_{k=1}^3 \overline{\nu_k} (i\partial - m_k) \nu_k = \frac{1}{2} \overline{\mathbf{n}} (i\partial - M) \mathbf{n}$$

Mixing Matrix

Leptonic Weak Charged Current:

$$j^{
ho}_{W,\mathsf{L}}=2\,\overline{\mathbf{n}_L}\,U^\dagger\,\gamma^{
ho}\,\ell_L \qquad ext{with} \qquad U=\,V_L^{\ell\dagger}\,V_L^{
u}$$

Definition of the left-handed flavor neutrino fields:

$$u_L = U \mathbf{n}_L = V_L^{\ell \dagger} \, u_L' = \begin{pmatrix}
u_{eL} \\
u_{\mu L} \\
u_{\tau L} \end{pmatrix}$$

Leptonic Weak Charged Current has the SM form

$$j_{W,L}^{\rho} = 2 \, \overline{\nu_L} \, \gamma^{\rho} \, \ell_L = 2 \sum_{\alpha = e, \mu, \tau} \overline{\nu_{\alpha L}} \, \gamma^{\rho} \, \ell_{\alpha L}$$

 Important difference with respect to Dirac case: Two additional CP-violating phases: Majorana phases

► Majorana Mass Term $\mathscr{L}_{mass}^{M} = \frac{1}{2} \sum_{k=1}^{3} m_k \nu_{kL}^{T} \mathcal{C}^{\dagger} \nu_{kL} + H.c.$ is not invariant under the global U(1) gauge transformations

 $u_{kL}
ightarrow e^{i arphi_k}
u_{kL} \qquad (k=1,2,3)$

Left-handed massive neutrino fields cannot be rephased in order to eliminate two Majorana phases factorized on the right of mixing matrix:

$$U = U^{\mathsf{D}} D^{\mathsf{M}} \qquad D^{\mathsf{M}} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & e^{i\lambda_2} & 0 \\ 0 & 0 & e^{i\lambda_3} \end{pmatrix}$$

- $U^{\rm D}$ is analogous to a Dirac mixing matrix, with one Dirac phase
- Standard parameterization:

$$U = \begin{pmatrix} c_{12}c_{13} & s_{12}c_{13} & s_{13}e^{-i\delta_{13}} \\ -s_{12}c_{23} - c_{12}s_{23}s_{13}e^{i\delta_{13}} & c_{12}c_{23} - s_{12}s_{23}s_{13}e^{i\delta_{13}} & s_{23}c_{13} \\ s_{12}s_{23} - c_{12}c_{23}s_{13}e^{i\delta_{13}} & -c_{12}s_{23} - s_{12}c_{23}s_{13}e^{i\delta_{13}} & c_{23}c_{13} \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & e^{i\lambda_2} & 0 \\ 0 & 0 & e^{i\lambda_3} \end{pmatrix}$$

► Jarlskog rephasing invariant: $J = c_{12}s_{12}c_{23}s_{23}c_{13}^2s_{13}\sin\delta_{13}$

► $D^{\mathsf{M}} = \mathsf{diag}(e^{i\lambda_1}, e^{i\lambda_2}, e^{i\lambda_3})$, but only two Majorana phases are physical

 All measurable quantities depend only on the differences of the Majorana phases

$$\ell_{lpha}
ightarrow e^{i\varphi}\ell_{lpha} \implies e^{i\lambda_k}
ightarrow e^{i(\lambda_k - \varphi)}$$

 $e^{i(\lambda_k - \lambda_j)}$ remains constant

- Our convention: $\lambda_1 = 0 \Longrightarrow D^{\mathsf{M}} = \mathsf{diag}(1, e^{i\lambda_2}, e^{i\lambda_3})$
- CP is conserved if all the elements of each column of the mixing matrix are either real or purely imaginary:

$$\delta_{13}=0 ext{ or } \pi \quad ext{and} \quad \lambda_k=0 ext{ or } \pi/2 ext{ or } \pi ext{ or } 3\pi/2$$

Dirac-Majorana Mass Term

- Dirac Neutrino Masses and Mixing
- Majorana Neutrino Masses and Mixing
- Dirac-Majorana Mass Term
 - One Generation
 - Real Mass Matrix
 - Maximal Mixing
 - Dirac Limit

A Number of Ele

- Pseudo-Dirac Neutrinos
- See-Saw Mechanism
- Majorana Neutrino Mass?
- Right-Handed Neutrino Mass Term
- Singlet Majoron Model
- Three-Generation Mixing

One Generation

If ν_R exists, the most general mass term is the

Dirac-Majorana Mass Term

$$\mathscr{L}_{\text{mass}}^{\text{D}+\text{M}} = \mathscr{L}_{\text{mass}}^{\text{D}} + \mathscr{L}_{\text{mass}}^{\text{L}} + \mathscr{L}_{\text{mass}}^{\text{R}}$$

$$\mathscr{L}_{mass}^{D} = -m_{D} \overline{\nu_{R}} \nu_{L} + H.c.$$
 Dirac Mass Term

$$\mathscr{L}_{\text{mass}}^{L} = \frac{1}{2} m_L \nu_L^T C^{\dagger} \nu_L + \text{H.c.} \qquad \text{Majorana Mass Term}$$

 $\mathscr{L}_{\text{mass}}^{R} = \frac{1}{2} m_{R} \nu_{R}^{T} \mathcal{C}^{\dagger} \nu_{R} + \text{H.c.}$ New Majorana Mass Term!

- ► Column matrix of left-handed chiral fields: $N_L = \begin{pmatrix} \nu_L \\ \nu_R^C \end{pmatrix} = \begin{pmatrix} \nu_L \\ \mathcal{C} \overline{\nu_R}^T \end{pmatrix}$ $\mathscr{L}_{mass}^{D+M} = \frac{1}{2} N_L^T \mathcal{C}^\dagger M N_L + \text{H.c.} \qquad M = \begin{pmatrix} m_L & m_D \\ m_D & m_R \end{pmatrix}$
- The Dirac-Majorana Mass Term has the structure of a Majorana Mass Term for two chiral neutrino fields coupled by the Dirac mass

► Diagonalization:
$$n_L = U^{\dagger} N_L = \begin{pmatrix} \nu_{1L} \\ \nu_{2L} \end{pmatrix}$$

 $U^{\intercal} M U = \begin{pmatrix} m_1 & 0 \\ 0 & m_2 \end{pmatrix}$ Real $m_k \ge 0$

$$\blacktriangleright \mathscr{L}_{\text{mass}}^{\text{D+M}} = \frac{1}{2} \sum_{k=1,2} m_k \, \nu_{kL}^T \, \mathcal{C}^\dagger \, \nu_{kL} + \text{H.c.} = -\frac{1}{2} \sum_{k=1,2} m_k \, \overline{\nu_k} \, \nu_k$$
$$\nu_k = \nu_{kL} + \nu_{kL}^C$$

Massive neutrinos are Majorana!

 $\nu_k = \nu_k^C$

Real Mass Matrix

• CP is conserved if the mass matrix is real: $M = M^*$

• $M = \begin{pmatrix} m_L & m_D \\ m_D & m_R \end{pmatrix}$ we consider real and positive m_R and m_D and real m_L

• A real symmetric mass matrix can be diagonalized with $U = \mathcal{O} \rho$ $\mathcal{O} = \begin{pmatrix} \cos \vartheta & \sin \vartheta \\ -\sin \vartheta & \cos \vartheta \end{pmatrix} \qquad \rho = \begin{pmatrix} \rho_1 & 0 \\ 0 & \rho_2 \end{pmatrix} \qquad \rho_k^2 = \pm 1$

$$\bullet \mathcal{O}^{\mathsf{T}} \mathcal{M} \mathcal{O} = \begin{pmatrix} m_1' & 0\\ 0 & m_2' \end{pmatrix} \qquad \tan 2\vartheta = \frac{2m_{\mathsf{D}}}{m_R - m_L}$$
$$m_{2,1}' = \frac{1}{2} \left[m_L + m_R \pm \sqrt{(m_L - m_R)^2 + 4 m_{\mathsf{D}}^2} \right]$$

• m_1' is negative if $m_L m_R < m_D^2$

$$U^{\mathsf{T}} M U = \rho^{\mathsf{T}} \mathcal{O}^{\mathsf{T}} M \mathcal{O} \rho = \begin{pmatrix} \rho_1^2 m_1' & 0 \\ 0 & \rho_2^2 m_2' \end{pmatrix} \implies \mathbf{m}_k = \rho_k^2 m_k'$$

▶ m'_2 is always positive:

$$m_2 = m'_2 = \frac{1}{2} \left[m_L + m_R + \sqrt{(m_L - m_R)^2 + 4 m_D^2} \right]$$

• If $m_L m_R \ge m_{\mathsf{D}}^2$, then $m_1' \ge 0$ and $ho_1^2 = 1$

$$m_{1} = \frac{1}{2} \left[m_{L} + m_{R} - \sqrt{\left(m_{L} - m_{R}\right)^{2} + 4 m_{D}^{2}} \right]$$

$$\rho_{1} = 1 \text{ and } \rho_{2} = 1 \implies U = \begin{pmatrix} \cos \vartheta & \sin \vartheta \\ -\sin \vartheta & \cos \vartheta \end{pmatrix}$$

 \blacktriangleright If $m_L m_R < m_{\rm D}^2,$ then $m_1' < 0$ and $\rho_1^2 = -1$

$$m_{1} = \frac{1}{2} \left[\sqrt{(m_{L} - m_{R})^{2} + 4 m_{D}^{2}} - (m_{L} + m_{R}) \right]$$

$$\rho_{1} = i \text{ and } \rho_{2} = 1 \implies U = \begin{pmatrix} i \cos \vartheta & \sin \vartheta \\ -i \sin \vartheta & \cos \vartheta \end{pmatrix}$$

If Δm² is small, there are oscillations between active ν_a generated by ν_L and sterile ν_s generated by ν_R^C:

$$P_{\nu_a \to \nu_s}(L, E) = \sin^2 2\vartheta \, \sin^2 \left(\frac{\Delta m^2 L}{4 E}\right)$$
$$\Delta m^2 = m_2^2 - m_1^2 = (m_L + m_R) \sqrt{(m_L - m_R)^2 + 4 m_D^2}$$

► It can be shown that the CP parity of ν_k is $\xi_k^{CP} = i \rho_k^2$: $U_{CP}\nu_k(x)U_{CP}^{-1} = i \rho_k^2 \gamma^0 \nu_k(x_P)$

- Special cases:
 - $m_L = m_R \implies$ Maximal Mixing
 - $m_L = m_R = 0 \implies$ Dirac Limit
 - ▶ $|m_L|, m_R \ll m_D \implies$ Pseudo-Dirac Neutrinos

• $m_L = 0$ $m_D \ll m_R \implies$ See-Saw Mechanism

Maximal Mixing

 $m_L = m_R$ $\vartheta = \pi/4$ $m'_{2,1} = m_L \pm m_D$ $\left\{ \begin{array}{ll} \rho_{1}^{2}=+1\,, \quad m_{1}=m_{L}-m_{D} \quad \text{if} \quad m_{L}\geq m_{D} \\ \rho_{1}^{2}=-1\,, \quad m_{1}=m_{D}-m_{L} \quad \text{if} \quad m_{L}< m_{D} \end{array} \right.$ $m_2 = m_1 + m_D$ $m_L < m_D$ $\begin{cases} \nu_{1L} = \frac{-i}{\sqrt{2}} \left(\nu_L - \nu_R^C \right) \\ \nu_{2L} = \frac{1}{\sqrt{2}} \left(\nu_L + \nu_R^C \right) \end{cases}$ $\begin{cases} \nu_{1} = \nu_{1L} + \nu_{1L}^{C} = \frac{-i}{\sqrt{2}} \left[(\nu_{L} + \nu_{R}) - (\nu_{L}^{C} + \nu_{R}^{C}) \right] \\ \nu_{2} = \nu_{2L} + \nu_{2L}^{C} = \frac{1}{\sqrt{2}} \left[(\nu_{L} + \nu_{R}) + (\nu_{L}^{C} + \nu_{R}^{C}) \right] \end{cases}$

Dirac Limit $m_{1} = m_{2} = 0$

$$(-2 - 1)$$

- $m'_{2,1} = \pm m_{\rm D} \implies \begin{cases} \rho_1^2 = -1, & m_1 = m_{\rm D} \\ \rho_2^2 = +1, & m_2 = m_{\rm D} \end{cases}$
- The two Majorana fields ν₁ and ν₂ can be combined to give one Dirac field:

$$u = \frac{1}{\sqrt{2}} (i\nu_1 + \nu_2) = \nu_L + \nu_R$$

• A Dirac field ν can always be split in two Majorana fields:

$$\nu = \frac{1}{2} \left[\left(\nu - \nu^{C} \right) + \left(\nu + \nu^{C} \right) \right]$$

= $\frac{i}{\sqrt{2}} \left(-i \frac{\nu - \nu^{C}}{\sqrt{2}} \right) + \frac{1}{\sqrt{2}} \left(\frac{\nu + \nu^{C}}{\sqrt{2}} \right) = \frac{1}{\sqrt{2}} \left(i\nu_{1} + \nu_{2} \right)$

 A Dirac field is equivalent to two Majorana fields with the same mass and opposite CP parities

Pseudo-Dirac Neutrinos

 $|m_L|, m_R \ll m_D$

 $\bullet \ m_{2,1}' \simeq \frac{m_L + m_R}{2} \pm m_D$

- $\bullet \ m_1' < 0 \implies \rho_1^2 = -1 \implies m_{2,1} \simeq m_{\rm D} \pm \frac{m_L + m_R}{2}$
- The two massive Majorana neutrinos have opposite CP parities and are almost degenerate in mass
- The best way to reveal pseudo-Dirac neutrinos are active-sterile neutrino oscillations due to the small squared-mass difference

$$\Delta m^2 \simeq m_{\rm D} \left(m_L + m_R \right)$$

The oscillations occur with practically maximal mixing:

$$\tan 2\vartheta = \frac{2m_{\rm D}}{m_R - m_L} \gg 1 \implies \vartheta \simeq \pi/4$$
See-Saw Mechanism

[Minkowski, PLB 67 (1977) 42; Yanagida (1979); Gell-Mann, Ramond, Slansky (1979); Mohapatra, Senjanovic, PRL 44 (1980) 912]

 $m_L = 0$ $m_D \ll m_R$

- $\mathscr{L}_{\text{mass}}^{L}$ is forbidden by SM symmetries $\implies m_{L} = 0$
- ► $m_{\rm D} \lesssim v \sim 100 \, {\rm GeV}$ is generated by SM Higgs Mechanism (protected by SM symmetries)
- ▶ m_R is not protected by SM symmetries $\implies m_R \sim \mathcal{M}_{\text{GUT}} \gg v$

- Natural explanation of smallness of neutrino masses
- Mixing angle is very small: $\tan 2\vartheta = 2 \frac{m_D}{m_R} \ll 1$
- ν_1 is composed mainly of active ν_L : $\nu_{1L} \simeq -i \nu_L$
- ► ν_2 is composed mainly of sterile ν_R : $\nu_{2L} \simeq \nu_R^C$ C. Giunti – Neutrino Physics – Torino, 17–21 May 2010 – 73

Majorana Neutrino Mass?

Majorana neutrino masses provide the most accessible window on New Physics Beyond the Standard Model

Right-Handed Neutrino Mass Term

Majorana mass term for u_R respects the SU(2) $_L imes$ U(1) $_Y$ Standard Model Symmetry!

$$\mathcal{L}_{R}^{\mathsf{M}}=-rac{1}{2}\,m\left(\overline{
u_{R}^{\,c}}\,
u_{R}+\overline{
u_{R}}\,
u_{R}^{\,c}
ight)$$

Majorana mass term for ν_R breaks Lepton number conservation!

- Lepton number can be explicitly broken
 Lepton number is spontaneously broken locally, with a massive vector boson coupled to the lepton number current
 Lepton number is spontaneously broken globally and a massless Goldstone boson appears in the theory (Majoron)

Singlet Majoron Model

[Chikashige, Mohapatra, Peccei, Phys. Lett. B98 (1981) 265, Phys. Rev. Lett. 45 (1980) 1926]

 ρ = massive scalar, χ = Majoron (massless pseudoscalar Goldstone boson)

The Majoron is weakly coupled to the light neutrino

$$\mathcal{L}_{\chi-\nu} = \frac{iy_s}{\sqrt{2}} \chi \left[\overline{\nu_2} \gamma^5 \nu_2 - \frac{m_D}{m_R} \left[\overline{\nu_2} \gamma^5 \nu_1 + \overline{\nu_1} \gamma^5 \nu_2 \right) + \left(\frac{m_D}{m_R} \right)^2 \overline{\nu_1} \gamma^5 \nu_1 \right]$$

Three-Generation Mixing

$$\begin{aligned} \mathscr{L}_{\text{mass}}^{\text{D+M}} &= \mathscr{L}_{\text{mass}}^{\text{D}} + \mathscr{L}_{\text{mass}}^{\text{L}} + \mathscr{L}_{\text{mass}}^{\text{R}} \\ \mathscr{L}_{\text{mass}}^{\text{D}} &= -\sum_{s=1}^{N_{s}} \sum_{\alpha=e,\mu,\tau} \overline{\nu_{sR}'} M_{s\alpha}^{\text{D}} \nu_{\alpha L}' + \text{H.c.} \\ \mathscr{L}_{\text{mass}}^{\text{L}} &= \frac{1}{2} \sum_{\alpha,\beta=e,\mu,\tau} \nu_{\alpha L}'^{T} \mathcal{C}^{\dagger} M_{\alpha\beta}^{\text{L}} \nu_{\beta L}' + \text{H.c.} \\ \mathscr{L}_{\text{mass}}^{\text{R}} &= \frac{1}{2} \sum_{s,s'=1}^{N_{s}} \nu_{sR}'^{T} \mathcal{C}^{\dagger} M_{ss'}^{\text{R}} \nu_{s'R}' + \text{H.c.} \\ N_{L}' &\equiv \begin{pmatrix} \nu_{L}' \\ \nu_{R}' \end{pmatrix} \qquad \nu_{L}' &\equiv \begin{pmatrix} \nu_{eL}' \\ \nu_{\mu L}' \\ \nu_{\tau L}' \end{pmatrix} \qquad \nu_{R}'^{C} &\equiv \begin{pmatrix} \nu_{1R}' \\ \vdots \\ \nu_{NSR}' \end{pmatrix} \\ \mathscr{L}_{\text{mass}}^{\text{D+M}} &= \frac{1}{2} N_{L}'^{T} \mathcal{C}^{\dagger} M^{\text{D+M}} N_{L}' + \text{H.c.} \qquad M^{\text{D+M}} = \begin{pmatrix} M^{L} & M^{\text{D}}^{T} \\ M^{\text{D}} & M^{R} \end{pmatrix} \end{aligned}$$

- Diagonalization of the Dirac-Majorana Mass Term Majorana neutrinos
- See-Saw Mechanism

 sterile right-handed neutrinos have large
 masses and are decoupled from the low-energy phenomenology
- ▶ At low energy we have an effective mixing of three Majorana neutrinos

Number of Flavor and Massive Neutrinos?

[LEP, Phys. Rept. 427 (2006) 257, arXiv:hep-ex/0509008]

$$\Gamma_{Z} = \sum_{\ell=e,\mu,\tau} \Gamma_{Z \to \ell \bar{\ell}} + \sum_{q \neq t} \Gamma_{Z \to q \bar{q}} + \Gamma_{\text{inv}} \qquad \qquad \Gamma_{\text{inv}} = N_{\nu} \, \Gamma_{Z \to \nu \bar{\nu}}$$

$$N_{
m v} = 2.9840 \pm 0.0082$$

 $e^+e^-
ightarrow Z
ightarrow
u ar{
u} \implies
u_e \
u_\mu \
u_ au$ active flavor neutrinos

mixing
$$\Rightarrow \nu_{\alpha L} = \sum_{k=1}^{N} U_{\alpha k} \nu_{kL}$$
 $\alpha = e, \mu, \tau$ $N \ge 3$
no upper limit!

Mass Basis: ν_1 ν_2 ν_3 ν_4 ν_5 \cdots Flavor Basis: ν_e ν_μ ν_τ ν_{s_1} ν_{s_2} \cdots ACTIVESTERILE

STERILE NEUTRINOS

singlets of SM \implies no interactions!

active \rightarrow sterile transitions are possible if ν_4 , ... are light \downarrow disappearance of active neutrinos

Sterile Neutrinos

- Sterile means No Standard Model Interactions
- Obviously no electromagnetic interactions as normal active neutrinos
- Thus Sterile means No Standard Weak Interactions
- But Sterile Neutrinos are not absolutely sterile:
 - Gravitational Interactions
 - New Non-Standard Interactions of the Physics Beyond the Standard Model which generates the masses of sterile neutrinos

Part II

Neutrino Oscillations in Vacuum and in Matter

Neutrino Oscillations in Vacuum

Neutrino Oscillations in Vacuum

- Ultrarelativistic Approximation
- Easy Example of Neutrino Production
- Neutrino Oscillations in Vacuum
- Neutrinos and Antineutrinos

• CPT, CP and T Symmetries

- Two-Neutrino Oscillations
- Neutrino Oscillations in Matter

Ultrarelativistic Approximation

Only neutrinos with energy $\gtrsim 0.1 MeV$ are detectable!

Charged-Current Processes: Threshold

u + A ightarrow B + C	$ u_e + {}^{71}Ga o {}^{71}Ge + e^-$	$E_{\rm th}=0.233{ m MeV}$
↓	$ u_e + {}^{37} ext{Cl} o {}^{37} ext{Ar} + e^-$	$E_{ m th}=0.81 m MeV$
$s=2Em_A+m_A^2\geq (m_B+m_C)^2$	$ar{ u}_e + p ightarrow n + e^+$	$E_{ m th}=1.8{ m MeV}$
\downarrow	$ u_{\mu}+n ightarrow p+\mu^{-}$	$E_{\rm th}=110{ m MeV}$
$E_{ m th} = rac{(m_B + m_C)^2}{2m_A} - rac{m_A}{2}$	$ u_{\mu}+e^{-} ightarrow u_{e}+\mu^{-}$	$E_{ m th}\simeq rac{m_{\mu}^2}{2m_e}=10.9{ m GeV}$

Elastic Scattering Processes: Cross Section \propto Energy $\nu + e^- \rightarrow \nu + e^- \qquad \sigma(E) \sim \sigma_0 E/m_e \qquad \sigma_0 \sim 10^{-44} \text{ cm}^2$ Background $\implies E_{\text{th}} \simeq 5 \text{ MeV} (\text{SK, SNO}), 0.25 \text{ MeV} (\text{Borexino})$

Laboratory and Astrophysical Limits $\implies m_{\nu} \lesssim 1\,{
m eV}$

Easy Example of Neutrino Production

$$\frac{\pi^+ \to \mu^+ + \nu_{\mu}}{\mu^+ \to \mu^+ + \nu_{\mu}}$$

$$\frac{\nu_{\mu} = \sum_k U_{\mu k} \nu_k}{\mu_k \to \mu_k}$$
two-body decay \Longrightarrow fixed kinematics
$$\frac{E_k^2 = p_k^2 + m_k^2}{2}$$

$$\pi \text{ at rest:} \begin{cases} p_k^2 = \frac{m_\pi^2}{4} \left(1 - \frac{m_\mu^2}{m_\pi^2}\right)^2 - \frac{m_k^2}{2} \left(1 + \frac{m_\mu^2}{m_\pi^2}\right) + \frac{m_k^4}{4 m_\pi^2} \\ E_k^2 = \frac{m_\pi^2}{4} \left(1 - \frac{m_\mu^2}{m_\pi^2}\right)^2 + \frac{m_k^2}{2} \left(1 - \frac{m_\mu^2}{m_\pi^2}\right) + \frac{m_k^4}{4 m_\pi^2} \end{cases}$$

$$0^{\text{th}} \text{ order:} \quad m_k = 0 \Rightarrow p_k = E_k = E = \frac{m_\pi}{2} \left(1 - \frac{m_\mu^2}{m_\pi^2}\right) \simeq 30 \text{ MeV}$$

$$1^{\text{st}} \text{ order:} \quad E_k \simeq E + \xi \frac{m_k^2}{2E} \qquad p_k \simeq E - (1 - \xi) \frac{m_k^2}{2E}$$

$$\xi = \frac{1}{2} \left(1 - \frac{m_\mu^2}{m_\pi^2}\right) \simeq 0.2$$

Neutrino Oscillations in Vacuum

[Eliezer, Swift, NPB 105 (1976) 45] [Fritzsch, Minkowski, PLB 62 (1976) 72] [Bilenky, Pontecorvo, SJNP 24 (1976) 316]

$$\mathcal{L}_{CC} \sim W_{\rho} \left(\overline{\nu_{eL}} \gamma^{\rho} e_L + \overline{\nu_{\mu L}} \gamma^{\rho} \mu_L + \overline{\nu_{\tau L}} \gamma^{\rho} \tau_L \right)$$

Fields $\nu_{\alpha} = \sum_{k} U_{\alpha k} \nu_{k} \implies |\nu_{\alpha}\rangle = \sum_{k} U_{\alpha k}^{*} |\nu_{k}\rangle$ States

initial flavor: $\alpha = e$ or μ or τ

$$|
u_k(t,x)
angle = e^{-iE_kt+ip_kx} |
u_k
angle \implies |
u_{lpha}(t,x)
angle = \sum_k U^*_{lpha k} e^{-iE_kt+ip_kx} |
u_k
angle$$

$$|\nu_{k}\rangle = \sum_{eta = e, \mu, \tau} U_{eta k} |
u_{eta}\rangle \quad \Rightarrow \quad |
u_{lpha}(t, x)\rangle = \sum_{eta = e, \mu, \tau} \underbrace{\left(\sum_{k} U_{lpha k}^{*} e^{-iE_{k}t + ip_{k} \times} U_{eta k}\right)}_{\mathcal{A}_{
u_{lpha}
ightarrow
u_{eta}(t, x)}} |
u_{eta}\rangle$$

$$\mathcal{A}_{
u_lpha
ightarrow
u_eta}(0,0) = \sum_k U^*_{lpha k} U_{eta k} = \delta_{lphaeta} \qquad \qquad \mathcal{A}_{
u_lpha
ightarrow
u_eta}(t>0,x>0)
eq \delta_{lphaeta}$$

$$P_{\nu_{\alpha} \to \nu_{\beta}}(t, x) = \left| \mathcal{A}_{\nu_{\alpha} \to \nu_{\beta}}(t, x) \right|^{2} = \left| \sum_{k} U_{\alpha k}^{*} e^{-iE_{k}t + ip_{k} \times} U_{\beta k} \right|^{2}$$

ultra-relativistic neutrinos $\implies t \simeq x = L$ source-detector distance

$$E_k t - p_k x \simeq (E_k - p_k) L = \frac{E_k^2 - p_k^2}{E_k + p_k} L = \frac{m_k^2}{E_k + p_k} L \simeq \frac{m_k^2}{2E} L$$

$$P_{\nu_{\alpha} \to \nu_{\beta}}(L, E) = \left| \sum_{k} U_{\alpha k}^{*} e^{-im_{k}^{2}L/2E} U_{\beta k} \right|^{2}$$
$$= \sum_{k,j} U_{\alpha k}^{*} U_{\beta k} U_{\alpha j} U_{\beta j}^{*} \exp\left(-i\frac{\Delta m_{k j}^{2}L}{2E}\right)$$
$$\Delta m_{k j}^{2} \equiv m_{k}^{2} - m_{j}^{2}$$

Neutrinos and Antineutrinos

Right-handed antineutrinos are described by CP-conjugated fields:

$$u^{\mathsf{CP}} = \gamma^0 \, \mathcal{C} \, \overline{
u}^{\, \mathcal{T}} = - \mathcal{C} \,
u^*$$

- $C \implies Particle \leftrightarrows Antiparticle$
- $\mathsf{P} \implies \mathsf{Left}\mathsf{-}\mathsf{Handed}\leftrightarrows \mathsf{Right}\mathsf{-}\mathsf{Handed}$

Fields:
$$\nu_{\alpha L} = \sum_{k} U_{\alpha k} \nu_{kL} \xrightarrow{\text{CP}} \nu_{\alpha L}^{\text{CP}} = \sum_{k} U_{\alpha k}^{*} \nu_{kL}^{\text{CP}}$$

States: $|\nu_{\alpha}\rangle = \sum_{k}^{k} U_{\alpha k}^{*} |\nu_{k}\rangle \xrightarrow{\text{CP}} |\bar{\nu}_{\alpha}\rangle = \sum_{k}^{k} U_{\alpha k} |\bar{\nu}_{k}\rangle$

<u>NEUTRINOS</u> $U \hookrightarrow U^*$ <u>ANTINEUTRINOS</u>

$$P_{\nu_{\alpha} \to \nu_{\beta}}(L, E) = \sum_{k,j} U_{\alpha k}^{*} U_{\beta k} U_{\alpha j} U_{\beta j}^{*} \exp\left(-i\frac{\Delta m_{kj}^{2}L}{2E}\right)$$
$$P_{\bar{\nu}_{\alpha} \to \bar{\nu}_{\beta}}(L, E) = \sum_{k,j} U_{\alpha k} U_{\beta k}^{*} U_{\alpha j}^{*} U_{\beta j} \exp\left(-i\frac{\Delta m_{kj}^{2}L}{2E}\right)$$

CPT, CP and T Symmetries

- Neutrino Oscillations in Vacuum
- CPT, CP and T Symmetries
 - CPT Symmetry
 - CP Symmetry
 - T Symmetry
- Two-Neutrino Oscillations
- Neutrino Oscillations in Matter

CPT Symmetry

$$\begin{array}{rcl} P_{\nu_{\alpha} \rightarrow \nu_{\beta}} & \xrightarrow{\mathsf{CPT}} & P_{\bar{\nu}_{\beta} \rightarrow \bar{\nu}_{\alpha}} \\ \\ \text{CPT Asymmetries:} & A_{\alpha\beta}^{\mathsf{CPT}} = P_{\nu_{\alpha} \rightarrow \nu_{\beta}} - P_{\bar{\nu}_{\beta} \rightarrow \bar{\nu}_{\alpha}} \\ \\ \text{Local Quantum Field Theory} & \Longrightarrow & A_{\alpha\beta}^{\mathsf{CPT}} = 0 & \text{CPT Symmetry} \\ \\ P_{\nu_{\alpha} \rightarrow \nu_{\beta}}(L, E) = \sum_{k,j} U_{\alpha k}^{*} U_{\beta k} U_{\alpha j} U_{\beta j}^{*} \exp\left(-i\frac{\Delta m_{k j}^{2} L}{2E}\right) \\ \\ \text{is invariant under CPT:} & U & \leftrightarrows & U^{*} & \alpha & \leftrightarrows & \beta \\ \hline P_{\nu_{\alpha} \rightarrow \nu_{\beta}} = P_{\bar{\nu}_{\beta} \rightarrow \bar{\nu}_{\alpha}} \end{array}$$

 $P_{\nu_{\alpha} \to \nu_{\alpha}} = P_{\bar{\nu}_{\alpha} \to \bar{\nu}_{\alpha}}$

(solar ν_e , reactor $\bar{\nu}_e$, accelerator ν_{μ})

CP Symmetry

$$\begin{array}{ccc} P_{\nu_{\alpha} \to \nu_{\beta}} & \stackrel{\mathrm{CP}}{\longrightarrow} & P_{\bar{\nu}_{\alpha} \to \bar{\nu}_{\beta}} \end{array}$$

$$\begin{array}{ccc} \mathsf{CP} \text{ Asymmetries: } A_{\alpha\beta}^{\mathsf{CP}} = P_{\nu_{\alpha} \to \nu_{\beta}} - P_{\bar{\nu}_{\alpha} \to \bar{\nu}_{\beta}} & \boxed{\mathsf{CPT}} & \Rightarrow & A_{\alpha\beta}^{\mathsf{CP}} = -A_{\beta\alpha}^{\mathsf{CP}} \end{array}$$

$$A_{\alpha\beta}^{CP}(L,E) = 4 \sum_{k>j} \operatorname{Im}\left[U_{\alpha k}^* U_{\beta k} U_{\alpha j} U_{\beta j}^*\right] \sin\left(\frac{\Delta m_{kj}^2 L}{2E}\right)$$

Jarlskog rephasing invariant: $\operatorname{Im}\left[U_{\alpha k}^{*} U_{\beta k} U_{\alpha j} U_{\beta j}^{*}\right] = \pm J$

$$J = c_{12}s_{12}c_{23}s_{23}c_{13}^2s_{13}\sin\delta_{13}$$

violation of CP in neutrino oscillations is proportional to

$$|U_{e3}| = \sin \vartheta_{13}$$
 and $\sin \delta_{13}$

T Symmetry

$$P_{\nu_{\alpha} \to \nu_{\beta}} \xrightarrow{\mathsf{T}} P_{\nu_{\beta} \to \nu_{\alpha}}$$

T Asymmetries: $A_{\alpha\beta}^{\mathsf{T}} = P_{\nu_{\alpha} \rightarrow \nu_{\beta}} - P_{\nu_{\beta} \rightarrow \nu_{\alpha}}$

$$\begin{array}{lll} \mathsf{CPT} & \Longrightarrow & 0 = A_{\alpha\beta}^{\mathsf{CPT}} = P_{\nu_{\alpha} \to \nu_{\beta}} - P_{\bar{\nu}_{\beta} \to \bar{\nu}_{\alpha}} \\ & = P_{\nu_{\alpha} \to \nu_{\beta}} - P_{\nu_{\beta} \to \nu_{\alpha}} + P_{\nu_{\beta} \to \nu_{\alpha}} - P_{\bar{\nu}_{\beta} \to \bar{\nu}_{\alpha}} \\ & = A_{\alpha\beta}^{\mathsf{T}} + A_{\beta\alpha}^{\mathsf{CP}} = A_{\alpha\beta}^{\mathsf{T}} - A_{\alpha\beta}^{\mathsf{CP}} \Longrightarrow & A_{\alpha\beta}^{\mathsf{T}} = A_{\alpha\beta}^{\mathsf{CP}} \end{array}$$

$$A_{\alpha\beta}^{\mathsf{T}}(L,E) = 4\sum_{k>j} \operatorname{Im}\left[U_{\alpha k}^{*} U_{\beta k} U_{\alpha j} U_{\beta j}^{*}\right] \sin\left(\frac{\Delta m_{k j}^{2} L}{2E}\right)$$

Jarlskog rephasing invariant: $\operatorname{Im}\left[U_{\alpha k}^{*} U_{\beta k} U_{\alpha j} U_{\beta j}^{*}\right] = \pm J$

Two-Neutrino Oscillations

- Neutrino Oscillations in Vacuum
- CPT, CP and T Symmetries
- Two-Neutrino Oscillations
 - Two-Neutrino Mixing and Oscillations
 - Types of Experiments
 - Average over Energy Resolution of the Detector
 - Anatomy of Exclusion Plots
- Neutrino Oscillations in Matter

Two-Neutrino Mixing and Oscillations

$$|\nu_{\alpha}\rangle = \sum_{k=1}^{2} U_{\alpha k} |\nu_{k}\rangle \qquad (\alpha = e, \mu)$$

$$U = \begin{pmatrix} \cos \vartheta & \sin \vartheta \\ -\sin \vartheta & \cos \vartheta \end{pmatrix}$$

$$|\nu_{e}\rangle = \cos \vartheta |\nu_{1}\rangle + \sin \vartheta |\nu_{2}\rangle \\|\nu_{\mu}\rangle = -\sin \vartheta |\nu_{1}\rangle + \cos \vartheta |\nu_{2}\rangle$$

$$\Delta m^2 \equiv \Delta m^2_{21} \equiv m^2_2 - m^2_1$$

Transition Probability:

$$P_{\nu_e \to \nu_{\mu}} = P_{\nu_{\mu} \to \nu_e} = \sin^2 2\vartheta \sin^2 \left(\frac{\Delta m^2 L}{4E}\right)$$

 ν_2

Survival Probabilities: $P_{\nu_e \to \nu_e} = P_{\nu_\mu \to \nu_\mu} = 1 - P_{\nu_e \to \nu_\mu}$

two-neutrino mixing transition probability

$$\alpha \neq \beta \qquad \alpha, \beta = e, \mu, \tau$$

$$P_{\nu_{\alpha} \to \nu_{\beta}}(L, E) = \sin^{2} 2\vartheta \sin^{2} \left(\frac{\Delta m^{2}L}{4E}\right)$$

$$= \sin^{2} 2\vartheta \sin^{2} \left(1.27 \frac{\Delta m^{2} [eV^{2}] L[m]}{E[MeV]}\right)$$

$$= \sin^{2} 2\vartheta \sin^{2} \left(1.27 \frac{\Delta m^{2} [eV^{2}] L[km]}{E[GeV]}\right)$$

oscillation length

$$L^{\rm osc} = \frac{4\pi E}{\Delta m^2} = 2.47 \frac{E \,[{\rm MeV}]}{\Delta m^2 \,[{\rm eV}^2]} \,\mathrm{m} = 2.47 \frac{E \,[{\rm GeV}]}{\Delta m^2 \,[{\rm eV}^2]} \,\mathrm{km}$$

Types of Experiments

Two-Neutrino Mixing

$$P_{\nu_{\alpha} \to \nu_{\beta}}(L, E) = \sin^2 2\vartheta \sin^2 \left(\frac{\Delta m^2 L}{4E}\right)$$

observable if $\frac{\Delta m^2 L}{4E}\gtrsim 1$

 $\label{eq:BL} \begin{array}{ll} {\sf SBL} & {\sf Reactor:} \ L \sim 10 \, {\sf m} \ , \ E \sim 1 \, {\sf MeV} \\ L/E \lesssim 10 \, {\rm eV}^{-2} {\Rightarrow} \Delta m^2 \gtrsim 0.1 \, {\rm eV}^2 & {\sf Accelerator:} \ L \sim 1 \, {\sf km} \ , \ E \gtrsim 0.1 \, {\sf GeV} \end{array}$

 $\label{eq:Logither} \begin{array}{ll} \mbox{ATM \& LBL} & \mbox{Reactor: } L \sim 1 \mbox{ km} \ , \ E \sim 1 \mbox{ MeV CHOOZ, PALO VERDE} \\ \mbox{$L/E \lesssim 10^4 \mbox{ eV}^{-2}$ Accelerator: } L \sim 10^3 \mbox{ km} \ , \ E \gtrsim 1 \mbox{ GeV K2K, MINOS, CNGS} \\ \mbox{\downarrow} & \mbox{Atmospheric: } L \sim 10^2 - 10^4 \mbox{ km} \ , \ E \sim 0.1 - 10^2 \mbox{ GeV} \\ \mbox{$\Delta m^2 \gtrsim 10^{-4} \mbox{ eV}^2$ Kamiokande, IMB, Super-Kamiokande, Soudan, MACRO, MINOS} \end{array}$

 $\underbrace{SUN}_{L} \qquad L \sim 10^8 \text{ km}, \quad E \sim 0.1 - 10 \text{ MeV}$ $\underbrace{L}_{E} \sim 10^{11} \text{ eV}^{-2} \Rightarrow \Delta m^2 \gtrsim 10^{-11} \text{ eV}^2 \qquad \text{Homestake, Kamiokande, GALLEX, SAGE, Super-Kamiokande, GNO, SNO, Borexino}$ Matter Effect (MSW) $\Rightarrow 10^{-4} \lesssim \sin^2 2\vartheta \lesssim 1, \ 10^{-8} \text{ eV}^2 \lesssim \Delta m^2 \lesssim 10^{-4} \text{ eV}^2$ $\underbrace{VLBL}_{L/E \lesssim 10^5 \text{ eV}^{-2} \Rightarrow \Delta m^2 \gtrsim 10^{-5} \text{ eV}^2 \qquad \text{Reactor: } L \sim 10^2 \text{ km}, E \sim 1 \text{ MeV}$ $\underbrace{L/E \lesssim 10^5 \text{ eV}^{-2} \Rightarrow \Delta m^2 \gtrsim 10^{-5} \text{ eV}^2 \qquad \text{KamLAND}$

Average over Energy Resolution of the Detector

$$\langle P_{\nu_{\alpha} \to \nu_{\beta}}(L, E) \rangle = \frac{1}{2} \sin^2 2\vartheta \left[1 - \int \cos\left(\frac{\Delta m^2 L}{2E}\right) \phi(E) dE \right] \qquad (\alpha \neq \beta)$$

$$\langle P_{\nu_{\alpha} \to \nu_{\beta}}(L, E) \rangle \leq P_{\nu_{\alpha} \to \nu_{\beta}}^{\max} \implies \sin^{2} 2\vartheta \leq \frac{2 P_{\nu_{\alpha} \to \nu_{\beta}}^{\max}}{1 - \int \cos\left(\frac{\Delta m^{2} L}{2E}\right) \phi(E) \, \mathrm{d}E}$$

Anatomy of Exclusion Plots

- $\Delta m^2 \gg \langle L/E \rangle^{-1}$ $P \simeq \frac{1}{2} \sin^2 2\vartheta \Rightarrow \sin^2 2\vartheta \simeq 2P$
- ► Min $\left\langle \cos\left(\frac{\Delta m^2 L}{2E}\right) \right\rangle \ge -1$ $\sin^2 2\vartheta = \frac{2P}{1 - \operatorname{Min}\left\langle \cos\left(\frac{\Delta m^2 L}{2E}\right) \right\rangle} \ge P$

 $\Delta m^2 \simeq 2\pi \langle L/E \rangle^{-1}$

 $\blacktriangleright \Delta m^2 \ll 2\pi \langle L/E \rangle^{-1}$

$$\cos\left(\frac{\Delta m^2 L}{2E}\right) \simeq 1 - \frac{1}{2} \left(\frac{\Delta m^2 L}{2E}\right)^2$$
$$\Delta m^2 \simeq 4 \left\langle \frac{L}{E} \right\rangle^{-1} \sqrt{\frac{P}{\sin^2 2\vartheta}}$$

Neutrino Oscillations in Matter

- Neutrino Oscillations in Vacuum
- CPT, CP and T Symmetries
- Two-Neutrino Oscillations
- Neutrino Oscillations in Matter
 - Effective Potentials in Matter
 - Matter Effects
 - Evolution of Neutrino Flavors in Matter
 - Two-Neutrino Mixing
 - Constant Matter Density
 - MSW Effect (Resonant Transitions in Matter)
 - Averaged Survival Probability
 - Crossing Probability
 - Solar Neutrinos
 - Electron Neufrightine Revenue Revision Topping 17=21, May 2010 101

Effective Potentials in Matter

$V_e = V_{\rm CC} +$	V _{NC}	$V_{\mu} =$	$V_{\tau} =$	$V_{\rm NC}$
----------------------	-----------------	-------------	--------------	--------------

only $V_{\mathsf{CC}} = V_e - V_\mu = V_e - V_ au$ is important for flavor transitions

antineutrinos: $\overline{V}_{CC} = -V_{CC}$ $\overline{V}_{NC} = -V_{NC}$

Matter Effects

a flavor neutrino u_{lpha} with momentum p is described by

$$\begin{split} |\nu_{\alpha}(p)\rangle &= \sum_{k} U_{\alpha k}^{*} |\nu_{k}(p)\rangle \\ \mathcal{H}_{0} |\nu_{k}(p)\rangle &= \mathbf{E}_{k} |\nu_{k}(p)\rangle \qquad \mathbf{E}_{k} = \sqrt{p^{2} + m_{k}^{2}} \\ \text{in matter} \qquad \mathcal{H} = \mathcal{H}_{0} + \mathcal{H}_{I} \qquad \mathcal{H}_{I} |\nu_{\alpha}(p)\rangle = V_{\alpha} |\nu_{\alpha}(p)\rangle \end{split}$$

 V_{α} = effective potential due to coherent interactions with the medium forward elastic CC and NC scattering

Evolution of Neutrino Flavors in Matter

Schrödinger picture:

$$i \frac{d}{dt} |\nu(p, t)\rangle = \mathcal{H} |\nu(p, t)\rangle, \qquad |\nu(p, 0)\rangle = |\nu_{\alpha}(p)\rangle$$
flavor transition amplitudes:

$$\varphi_{\beta}(p, t) = \langle \nu_{\beta}(p) | \nu(p, t) \rangle, \qquad \varphi_{\beta}(p, 0) = \delta_{\alpha\beta}$$

$$i \frac{d}{dt} \varphi_{\beta}(p, t) = \langle \nu_{\beta}(p) | \mathcal{H} | \nu(p, t) \rangle = \langle \nu_{\beta}(p) | \mathcal{H}_{0} | \nu(p, t) \rangle + \langle \nu_{\beta}(p) | \mathcal{H}_{l} | \nu(p, t) \rangle$$

$$\langle \nu_{\beta}(p) | \mathcal{H}_{0} | \nu(p, t) \rangle = \sum_{\rho} \langle \nu_{\beta}(p) | \mathcal{H}_{0} | \nu_{\rho}(p) \rangle \underbrace{\langle \nu_{\rho}(p) | \nu(p, t) \rangle}_{\varphi_{\rho}(p, t)}$$

$$= \sum_{\rho} \sum_{k,j} U_{\beta k} \underbrace{\langle \nu_{k}(p) | \mathcal{H}_{0} | \nu_{j}(p) \rangle}_{\delta_{kj} E_{k}} \underbrace{\langle \nu_{\beta}(p) | \mathcal{H}_{0} | \nu_{\beta}(p, t) \rangle}_{\delta_{kj} E_{k}}$$

$$\langle
u_eta(p) | \mathcal{H}_I |
u(p,t)
angle = \sum_
ho \underbrace{\langle
u_eta(p) | \mathcal{H}_I |
u_
ho(p)
angle}_{\delta_{eta
ho} V_eta} arphi_
ho(p,t) = V_eta \, arphi_eta(p,t)$$

$$i \frac{\mathrm{d}}{\mathrm{d}t} \varphi_{\beta} = \sum_{\rho} \left(\sum_{k} U_{\beta k} E_{k} U_{\rho k}^{*} + \delta_{\beta \rho} V_{\beta} \right) \varphi_{\rho}$$

ultrarelativistic neutrinos: $E_k = p + \frac{m_k^2}{2E}$ E = p t = x $V_e = V_{CC} + V_{NC}$ $V_{\mu} = V_{\tau} = V_{NC}$ $i \frac{d}{dx} \varphi_{\beta}(p, x) = (p + V_{NC}) \varphi_{\beta}(p, x) + \sum_{\rho} \left(\sum_{k} U_{\beta k} \frac{m_k^2}{2E} U_{\rho k}^* + \delta_{\beta e} \delta_{\rho e} V_{CC} \right) \varphi_{\rho}(p, x)$

$$\psi_{\beta}(p, x) = \varphi_{\beta}(p, x) e^{ipx + i \int_{0}^{x} V_{NC}(x') dx'}$$
$$\downarrow$$
$$i \frac{d}{dx} \psi_{\beta} = e^{ipx + i \int_{0}^{x} V_{NC}(x') dx'} \left(-p - V_{NC} + i \frac{d}{dx}\right) \varphi_{\beta}$$

$$i \frac{\mathrm{d}}{\mathrm{d}x} \psi_{\beta} = \sum_{\rho} \left(\sum_{k} U_{\beta k} \frac{m_{k}^{2}}{2E} U_{\rho k}^{*} + \delta_{\beta e} \, \delta_{\rho e} \, V_{\mathsf{CC}} \right) \psi_{\rho}$$

$$P_{
u_lpha
ightarrow
u_eta} = |arphi_eta|^2 = |\psi_eta|^2$$

evolution of flavor transition amplitudes in matrix form

$$i \frac{\mathrm{d}}{\mathrm{d}x} \Psi_{\alpha} = \frac{1}{2E} \left(U \mathbb{M}^2 U^{\dagger} + \mathbb{A} \right) \Psi_{\alpha}$$

$$\Psi_{\alpha} = \begin{pmatrix} \psi_{e} \\ \psi_{\mu} \\ \psi_{\tau} \end{pmatrix} \qquad \mathbb{M}^{2} = \begin{pmatrix} m_{1}^{2} & 0 & 0 \\ 0 & m_{2}^{2} & 0 \\ 0 & 0 & m_{3}^{2} \end{pmatrix} \qquad \mathbb{A} = \begin{pmatrix} A_{\mathsf{CC}} & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

$$A_{\rm CC} = 2EV_{\rm CC} = 2\sqrt{2}EG_{\rm F}N_e$$

 $\underset{\substack{\text{matrix}\\\text{in vacuum}}}{\text{matrix}} \mathbb{M}_{\text{VAC}}^2 = U \mathbb{M}^2 U^{\dagger} \xrightarrow{\text{matter}} U \mathbb{M}^2 U^{\dagger} + 2 E \mathbb{V} = \mathbb{M}_{\text{MAT}}^2$ $\underset{\substack{\text{potential due to coherent}\\\text{forward elastic scattering}}}{\text{matrix}}$

Two-Neutrino Mixing

$$u_e
ightarrow
u_\mu$$
 transitions with $U = egin{pmatrix} \cosartheta & \sinartheta \ -\sinartheta & \cosartheta \end{pmatrix}$

$$U \mathbb{M}^{2} U^{\dagger} = \begin{pmatrix} \cos^{2}\vartheta m_{1}^{2} + \sin^{2}\vartheta m_{2}^{2} & \cos\vartheta \sin\vartheta (m_{2}^{2} - m_{1}^{2}) \\ \cos\vartheta \sin\vartheta (m_{2}^{2} - m_{1}^{2}) & \sin^{2}\vartheta m_{1}^{2} + \cos^{2}\vartheta m_{2}^{2} \end{pmatrix}$$
$$= \frac{1}{2} \Sigma m^{2} + \frac{1}{2} \begin{pmatrix} -\Delta m^{2} \cos 2\vartheta & \Delta m^{2} \sin 2\vartheta \\ \Delta m^{2} \sin 2\vartheta & \Delta m^{2} \cos 2\vartheta \end{pmatrix}$$

irrelevant common phase

$$\Sigma m^2 \equiv m_1^2 + m_2^2$$
 $\Delta m^2 \equiv m_2^2 - m_1^2$

$$i\frac{d}{dx}\begin{pmatrix}\psi_e\\\psi_\mu\end{pmatrix} = \frac{1}{4E}\begin{pmatrix}-\Delta m^2\cos 2\vartheta + 2A_{CC} & \Delta m^2\sin 2\vartheta\\\Delta m^2\sin 2\vartheta & \Delta m^2\cos 2\vartheta\end{pmatrix}\begin{pmatrix}\psi_e\\\psi_\mu\end{pmatrix}$$

initial
$$u_e \implies \begin{pmatrix} \psi_e(0) \\ \psi_\mu(0) \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$egin{aligned} & P_{
u_e
ightarrow
u_\mu}(x) = |\psi_\mu(x)|^2 \ & P_{
u_e
ightarrow
u_e}(x) = |\psi_e(x)|^2 = 1 - P_{
u_e
ightarrow
u_\mu}(x) \end{aligned}$$
Constant Matter Density

Effective Mixing Angle in Matter

$$an 2artheta_{\mathsf{M}} = rac{ an 2artheta}{1 - rac{ extsf{A}_{\mathsf{CC}}}{\Delta m^2 \cos 2artheta}}$$

Effective Squared-Mass Difference

$$\Delta m_{\mathsf{M}}^2 = \sqrt{\left(\Delta m^2\cos 2artheta - \mathcal{A}_{\mathsf{CC}}
ight)^2 + \left(\Delta m^2\sin 2artheta
ight)^2}$$

Resonance
$$(\vartheta_{\rm M} = \pi/4)$$

 $A_{\rm CC}^{\rm R} = \Delta m^2 \cos 2\vartheta \implies N_e^{\rm R} = \frac{\Delta m^2 \cos 2\vartheta}{2\sqrt{2}EG_{\rm F}}$

$$i\frac{d}{dx}\begin{pmatrix}\psi_{1}\\\psi_{2}\end{pmatrix} = \frac{1}{4E}\begin{pmatrix}-\Delta m_{M}^{2} & 0\\ 0 & \Delta m_{M}^{2}\end{pmatrix}\begin{pmatrix}\psi_{1}\\\psi_{2}\end{pmatrix}$$
$$\begin{pmatrix}\psi_{e}\\\psi_{\mu}\end{pmatrix} = \begin{pmatrix}\cos\vartheta_{M} & \sin\vartheta_{M}\\-\sin\vartheta_{M} & \cos\vartheta_{M}\end{pmatrix}\begin{pmatrix}\psi_{1}\\\psi_{2}\end{pmatrix} \Rightarrow \begin{pmatrix}\psi_{1}\\\psi_{2}\end{pmatrix} = \begin{pmatrix}\cos\vartheta_{M} & -\sin\vartheta_{M}\\\sin\vartheta_{M} & \cos\vartheta_{M}\end{pmatrix}\begin{pmatrix}\psi_{e}\\\psi_{\mu}\end{pmatrix}$$
$$\nu_{e} \rightarrow \nu_{\mu} \implies \begin{pmatrix}\psi_{e}(0)\\\psi_{\mu}(0)\end{pmatrix} = \begin{pmatrix}1\\0\end{pmatrix} \implies \begin{pmatrix}\psi_{1}(0)\\\psi_{2}(0)\end{pmatrix}\begin{pmatrix}\cos\vartheta_{M}\\\sin\vartheta_{M}\end{pmatrix}$$
$$\psi_{1}(x) = \cos\vartheta_{M}\exp\left(i\frac{\Delta m_{M}^{2}x}{4E}\right)$$
$$\psi_{2}(x) = \sin\vartheta_{M}\exp\left(-i\frac{\Delta m_{M}^{2}x}{4E}\right)$$

 $P_{
u_e
ightarrow
u_\mu}(x) = |\psi_\mu(x)|^2 = |-\sin \vartheta_{\mathsf{M}} \psi_1(x) + \cos \vartheta_{\mathsf{M}} \psi_2(x)|^2$

$$P_{\nu_e o
u_\mu}(x) = \sin^2 2 \vartheta_{\mathsf{M}} \sin^2 \left(\frac{\Delta m_{\mathsf{M}}^2 x}{4E} \right)$$

MSW Effect (Resonant Transitions in Matter)

$$\begin{pmatrix} \psi_{e} \\ \psi_{\mu} \end{pmatrix} = \begin{pmatrix} \cos\vartheta_{M} & \sin\vartheta_{M} \\ -\sin\vartheta_{M} & \cos\vartheta_{M} \end{pmatrix} \begin{pmatrix} \psi_{1} \\ \psi_{2} \end{pmatrix}$$

$$i\frac{d}{dx} \begin{pmatrix} \psi_{1} \\ \psi_{2} \end{pmatrix} = \begin{bmatrix} \frac{A_{CC}}{4E} + \frac{1}{4E} \begin{pmatrix} -\Delta m_{M}^{2} & 0 \\ 0 & \Delta m_{M}^{2} \end{pmatrix} + \begin{pmatrix} 0 & -i\frac{d\vartheta_{M}}{dx} \\ i\frac{d\vartheta_{M}}{dx} & 0 \end{pmatrix} \end{bmatrix} \begin{pmatrix} \psi_{1} \\ \psi_{2} \end{pmatrix}$$

$$irrelevant common phase \uparrow maximum near resonance$$

$$\begin{pmatrix} \psi_{1}(0) \\ \psi_{2}(0) \end{pmatrix} = \begin{pmatrix} \cos\vartheta_{M}^{0} & -\sin\vartheta_{M}^{0} \\ \sin\vartheta_{M}^{0} & \cos\vartheta_{M}^{0} \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} \cos\vartheta_{M}^{0} \\ \sin\vartheta_{M}^{0} \end{pmatrix}$$

$$\psi_{1}(x) \simeq \begin{bmatrix} \cos\vartheta_{M}^{0} \exp\left(i\int_{0}^{x_{R}}\frac{\Delta m_{M}^{2}(x')}{4E} dx'\right) A_{11}^{R} + \sin\vartheta_{M}^{0} \exp\left(-i\int_{0}^{x_{R}}\frac{\Delta m_{M}^{2}(x')}{4E} dx'\right) A_{21}^{R} \end{bmatrix}$$

$$\times \exp\left(i\int_{x_{R}}^{x}\frac{\Delta m_{M}^{2}(x')}{4E} dx'\right) A_{12}^{R} + \sin\vartheta_{M}^{0} \exp\left(-i\int_{0}^{x_{R}}\frac{\Delta m_{M}^{2}(x')}{4E} dx'\right) A_{22}^{R} \end{bmatrix}$$

$$\times \exp\left(-i\int_{x_{R}}^{x}\frac{\Delta m_{M}^{2}(x')}{4E} dx'\right) A_{12}^{R} + \sin\vartheta_{M}^{0} \exp\left(-i\int_{0}^{x_{R}}\frac{\Delta m_{M}^{2}(x')}{4E} dx'\right) A_{22}^{R} \end{bmatrix}$$

Averaged Survival Probability

 $\psi_e(x) = \cos \vartheta_{\mathsf{M}}^{\mathsf{x}} \psi_1(x) + \sin \vartheta_{\mathsf{M}}^{\mathsf{x}} \psi_2(x)$

neglect interference (averaged over energy spectrum)

$$\begin{split} \overline{P}_{\nu_e \to \nu_e}(x) &= |\langle \psi_e(x) \rangle|^2 = \cos^2 \vartheta_{\mathsf{M}}^{\mathsf{x}} \cos^2 \vartheta_{\mathsf{M}}^0 \, |\mathcal{A}_{11}^{\mathsf{R}}|^2 + \cos^2 \vartheta_{\mathsf{M}}^{\mathsf{x}} \sin^2 \vartheta_{\mathsf{M}}^0 \, |\mathcal{A}_{21}^{\mathsf{R}}|^2 \\ &+ \sin^2 \vartheta_{\mathsf{M}}^{\mathsf{x}} \cos^2 \vartheta_{\mathsf{M}}^0 \, |\mathcal{A}_{12}^{\mathsf{R}}|^2 + \sin^2 \vartheta_{\mathsf{M}}^{\mathsf{x}} \sin^2 \vartheta_{\mathsf{M}}^0 \, |\mathcal{A}_{22}^{\mathsf{R}}|^2 \end{split}$$

conservation of probability (unitarity)

 $|\mathcal{A}_{12}^{\mathsf{R}}|^2 = |\mathcal{A}_{21}^{\mathsf{R}}|^2 = P_{\mathsf{c}}$ $|\mathcal{A}_{11}^{\mathsf{R}}|^2 = |\mathcal{A}_{22}^{\mathsf{R}}|^2 = 1 - P_{\mathsf{c}}$

 $P_{\rm c} \equiv$ crossing probability

$$\overline{P}_{\nu_e \to \nu_e}(x) = \frac{1}{2} + \left(\frac{1}{2} - P_{\mathsf{c}}\right) \cos 2\vartheta_{\mathsf{M}}^{\mathsf{0}} \cos 2\vartheta_{\mathsf{M}}^{\mathsf{x}}$$

[Parke, PRL 57 (1986) 1275]

Crossing Probability

$$P_{\rm c} = \frac{\exp\left(-\frac{\pi}{2}\gamma F\right) - \exp\left(-\frac{\pi}{2}\gamma \frac{F}{\sin^2\vartheta}\right)}{1 - \exp\left(-\frac{\pi}{2}\gamma \frac{F}{\sin^2\vartheta}\right)}$$

[Kuo, Pantaleone, PRD 39 (1989) 1930]

adiabaticity parameter:
$$\gamma = \frac{\Delta m_{\rm M}^2/2E}{2|d\vartheta_{\rm M}/dx|}\Big|_{\rm R} = \frac{\Delta m^2 \sin^2 2\vartheta}{2E \cos 2\vartheta \left|\frac{d \ln A_{\rm CC}}{dx}\right|_{\rm R}}$$

 $A \propto x$ F = 1 (Landau-Zener approximation) [Parke, PRL 57 (1986) 1275] $A \propto 1/x$ $F = (1 - \tan^2 \vartheta)^2 / (1 + \tan^2 \vartheta)$ [Kuo, Pantaleone, PRD 39 (1989) 1930]

[Pizzochero, PRD 36 (1987) 2293]

 $A \propto \exp(-x)$ $F = 1 - \tan^2 \vartheta$ [Toshev, PLB 196 (1987) 170]

[Petcov, PLB 200 (1988) 373]

Review: [Kuo, Pantaleone, RMP 61 (1989) 937]

Solar Neutrinos

Electron Neutrino Regeneration in the Earth

$$P_{\nu_e \to \nu_e}^{\text{sun+earth}} = \overline{P}_{\nu_e \to \nu_e}^{\text{sun}} + \frac{\left(1 - 2\overline{P}_{\nu_e \to \nu_e}^{\text{sun}}\right)\left(P_{\nu_2 \to \nu_e}^{\text{earth}} - \sin^2\vartheta\right)}{\cos^2\vartheta}$$

[Mikheev, Smirnov, Sov. Phys. Usp. 30 (1987) 759], [Baltz, Weneser, PRD 35 (1987) 528]

[Giunti, Kim, Monteno, NP B 521 (1998) 3]

 $P_{\nu_2 \rightarrow \nu_e}^{\text{earth}}$ is usually calculated numerically approximating the Earth density profile with a step function.

Effective massive neutrinos propagate as plane waves in regions of constant density.

Wave functions of flavor neutrinos are joined at the boundaries of steps.

Phenomenology of Solar Neutrinos

LMA (Large Mixing Angle): LOW (LOW Δm^2): SMA (Small Mixing Angle): QVO (Quasi-Vacuum Oscillations): VAC (VACuum oscillations):

[de Gouvea, Friedland, Murayama, PLB 490 (2000) 125]

[Bahcall, Krastev, Smirnov, JHEP 05 (2001) 015]

In Neutrino Oscillations Dirac = Majorana

Evolution of Amplitudes:

$$i \frac{\mathrm{d}\psi_{lpha}}{\mathrm{d}x} = \frac{1}{2E} \sum_{eta} \left(U M^2 U^{\dagger} + 2EV \right)_{lphaeta} \psi_{eta}$$

difference: $\begin{cases} \text{Dirac:} & U^{(D)} \\ \text{Majorana:} & U^{(M)} = U^{(D)}D(\lambda) \end{cases}$

$$D(\lambda) = \begin{pmatrix} 1 & 0 & \cdots & 0 \\ 0 & e^{i\lambda_{21}} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & e^{i\lambda_{N1}} \end{pmatrix} \quad \Rightarrow \quad D^{\dagger} = D^{-\frac{1}{2}}$$

$$M^{2} = \begin{pmatrix} m_{1}^{2} & 0 & \cdots & 0 \\ 0 & m_{2}^{2} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & m_{N}^{2} \end{pmatrix} \implies DM^{2} = M^{2}D \implies DM^{2}D^{\dagger} = M^{2}$$

 $U^{(M)}M^{2}(U^{(M)})^{\dagger} = U^{(D)}DM^{2}D^{\dagger}(U^{(D)})^{\dagger} = U^{(D)}M^{2}(U^{(D)})^{\dagger}$

Part III

Experimental Results and Theoretical Implications

Solar Neutrinos and KamLAND

- Solar Neutrinos and KamLAND
 - The Sun
 - Standard Solar Model (SSM)
 - Homestake
 - Gallium Experiments
 - SAGE: Soviet-American Gallium Experiment
 - GALLEX: GALLium EXperiment
 - GNO: Gallium Neutrino Observatory
 - Kamiokande
 - Super-Kamiokande
 - SNO: Sudbury Neutrino Observatory
 - KamLAND
 - Sterile Neutrinos in Solar Neutrino Flux?
 - Determination of Solar Neutrino Fluxes
 - Details of Solar Neutrino Oscillations
 - BOREXino

The Sun

Extreme ultraviolet Imaging Telescope (EIT) 304 Å images of the Sun emission in this spectral line (He II) shows the upper chromosphere at a temperature of about 60,000 K

[The Solar and Heliospheric Observatory (SOHO), http://sohowww.nascom.nasa.gov/]

Standard Solar Model (SSM)

C. Giunti - Neutrino Physics - Torino, 17-21 May 2010 - 126

[Castellani, Degl'Innocenti, Fiorentini, Lissia, Ricci, Phys. Rept. 281 (1997) 309, astro-ph/9606180]

C. Giunti – Neutrino Physics – Torino, 17–21 May 2010 – 127

Flux

[Castellani, Degl'Innocenti, Fiorentini, Lissia, Ricci, Phys. Rept. 281 (1997) 309, astro-ph/9606180]

Homestake

Gallium Experiments

SAGE, GALLEX, GNO

radiochemical experiments

 $u_e + {}^{71}\text{Ga}
ightarrow {}^{71}\text{Ge} + e^-$ [Kuzmin (1965)]

threshold: $E_{\text{th}}^{\text{Ga}} = 0.233 \text{ MeV} \implies pp$, ⁷Be, ⁸B, *pep*, *hep*, ¹³N, ¹⁵O, ¹⁷F

SAGE+GALLEX+GNO
$$\implies \frac{R_{Ga}^{exp}}{R_{Ga}^{SSM}} = 0.56 \pm 0.03$$

 $R_{Ga}^{exp} = 72.4 \pm 4.7 \,\text{SNU}$ $R_{Ga}^{SSM} = 128^{+9}_{-7} \,\text{SNU}$

SAGE: Soviet-American Gallium Experiment

Baksan Neutrino Observatory, northern Caucasus 50 tons of metallic ⁷¹Ga, 2000 m deep, 4700 m.w.e. $\Rightarrow \Phi_{\mu} \simeq 2.6 \text{ m}^{-2} \text{ day}^{-1}$ detector test: ⁵¹Cr Source: $R = 0.95^{+0.11+0.06}_{-0.10-0.05}$ [PRC 59 (1999) 2246] $\frac{R_{Ga}^{SAGE}}{R_{C}^{SSM}} = 0.54 \pm 0.05$ [astro-ph/0204245] 1990 - 2001400 beak only 300 Capture rate (SNU) 200 100 0 1990 1991 1992 1993 1994 1995 1996 1998 1999 2000 2001 Mean extraction time C. Giunti – Neutrino Physics – Torino, 17–21 May 2010 – 132

GALLEX: GALLium EXperiment

Gran Sasso Underground Laboratory, Italy, overhead shielding: 3300 m.w.e. 30.3 tons of gallium in 101 tons of gallium chloride (GaCl₃-HCl) solution May 1991 – Jan 1997 $\implies \frac{R_{Ga}^{GALLEX}}{R_{Ga}^{SSM}} = 0.61 \pm 0.06$ [PLB 477 (1999) 127]

GNO: Gallium Neutrino Observatory

Kamiokande

water Cherenkov detector $\nu + e^- \rightarrow \nu + e^-$ Sensitive to ν_e , ν_{μ} , ν_{τ} , but $\sigma(\nu_e) \simeq 6 \sigma(\nu_{\mu,\tau})$ Kamioka mine (200 km west of Tokyo), 1000 m underground, 2700 m.w.e. 3000 tons of water. 680 tons fiducial volume. 948 PMTs threshold: $E_{th}^{Kam} \simeq 6.75 \text{ MeV} \implies {}^{8}\text{B}$, hep Jan 1987 – Feb 1995 (2079 days) $\frac{R_{\nu e}^{\text{Kam}}}{R^{\text{SSM}}} = 0.55 \pm 0.08$ [PRL 77 (1996) 1683]

Super-Kamiokande

continuation of Kamiokande

50 ktons of water, 22.5 ktons fiducial volume, 11146 PMTs threshold: $E_{th}^{Kam} \simeq 4.75 \text{ MeV} \implies {}^{8}\text{B}$, hep 1996 – 2001 (1496 days) $\frac{R_{\nu e}^{SK}}{R_{\nu e}^{SSM}} = 0.465 \pm 0.015$ [SK, PLB 539 (2002) 179]

the Super-Kamiokande underground water Cherenkov detector located near Higashi-Mozumi, Gifu Prefecture, Japan access is via a 2 km long truck tunnel

[R. J. Wilkes, SK, hep-ex/0212035]

Super-Kamiokande $\cos \theta_{sun}$ distribution

the peak at $\cos \theta_{sun} = 1$ is due to solar neutrinos

[Smy, hep-ex/0208004]

Super-Kamiokande energy spectrum normalized to BP2000 SSM

Day-Night asymmetry as a function of energy

solar zenith angle (θ_z) dependence of Super-Kamiokande data

[Smy, hep-ex/0208004]

Time variation of the Super-Kamiokande data

The gray data points are measured every 10 days.

The black data points are measured every 1.5 months.

The black line indicates the expected annual 7% flux variation.

The right-hand panel combines the 1.5 month bins to search for yearly variations.

The gray data points (open circles) are obtained from the black data points

by subtracting the expected 7% variation.

[Smy, hep-ex/0208004]

SNO: Sudbury Neutrino Observatory

water Cherenkov detector, Sudbury, Ontario, Canada 1 kton of D₂O, 9456 20-cm PMTs 2073 m underground, 6010 m.w.e. $\begin{array}{ll} \mathsf{CC:} & \nu_e + d \to p + p + e^- \\ \mathsf{NC:} & \nu + d \to p + n + \nu \end{array}$ ES: $\nu + e^- \rightarrow \nu + e^ \begin{array}{l} \mbox{CC threshold: } E_{th}^{SNO}(CC) \simeq 8.2 \, \mbox{MeV} \\ \mbox{NC threshold: } E_{th}^{SNO}(NC) \simeq 2.2 \, \mbox{MeV} \\ \mbox{ES threshold: } E_{th}^{SNO}(ES) \simeq 7.0 \, \mbox{MeV} \end{array} \right\} \Longrightarrow {}^8\mbox{B, hep}$ D₂O phase: 1999 – 2001 NaCl phase: 2001 – 2002 $\frac{\frac{R_{CC}^{SNO}}{R_{ES}^{SSN}} = 0.35 \pm 0.02}{\frac{R_{NC}^{SNO}}{R_{NC}^{SSNO}}} = 1.01 \pm 0.13$ $\frac{\frac{R_{NC}^{SNO}}{R_{ES}^{SSN}} = 0.47 \pm 0.05$ $\frac{R_{\text{CC}}^{\text{SNO}}}{R_{\text{CC}}^{\text{SNO}}} = 0.31 \pm 0.02$ $\frac{R_{\text{NC}}^{\text{SNO}}}{R_{\text{RSNO}}^{\text{SNO}}} = 1.03 \pm 0.09$ $\frac{R_{\text{ES}}^{\text{SNO}}}{R_{\text{ES}}^{\text{SNO}}} = 0.44 \pm 0.06$ [PRL 89 (2002) 011301] [nucl-ex/0309004]

$$\begin{split} \Phi_{\nu_e}^{\text{SNO}} &= 1.76 \pm 0.11 \times 10^6 \text{ cm}^{-2} \text{ s}^{-1} \\ \Phi_{\nu_{\mu},\nu_{\tau}}^{\text{SNO}} &= 5.41 \pm 0.66 \times 10^6 \text{ cm}^{-2} \text{ s}^{-1} \end{split}$$

SNO solved solar neutrino problem ↓ Neutrino Physics (April 2002)

[SNO, PRL 89 (2002) 011301, nucl-ex/0204008]

 $u_e
ightarrow
u_\mu,
u_ au$ oscillations ightarrowLarge Mixing Angle solution $\Delta m^2 \simeq 7 \times 10^{-5} \, \mathrm{eV}^2$ $\tan^2 artheta \simeq 0.45$

[SNO, PRC 72 (2005) 055502, nucl-ex/0502021]

KamLAND

Kamioka Liquid scintillator Anti-Neutrino Detector

long-baseline reactor $\bar{\nu}_e$ experiment

Kamioka mine (200 km west of Tokyo), 1000 m underground, 2700 m.w.e.

53 nuclear power reactors in Japan and Korea

6.7% of flux from one reactor at 88 kmaverage distance from reactors: 180 km79% of flux from 26 reactors at 138–214 km14.3% of flux from other reactors at >295 km

1 kt liquid scintillator detector: $ar{
u}_e + p o e^+ + n$, energy threshold: $E_{
m th}^{ar{
u}_e p} = 1.8\,{
m MeV}$

data taking: 4 March - 6 October 2002, 145.1 days (162 ton yr)

expected number of reactor neutrino events (no osc.): expected number of background events: observed number of neutrino events:

$$\frac{\textit{N}_{\textit{observed}}^{\textit{KamLAND}} - \textit{N}_{\textit{background}}^{\textit{KamLAND}}}{\textit{N}_{\textit{expected}}^{\textit{KamLAND}}} = 0.611 \pm 0.085 \pm 0.041$$

 $\begin{array}{l} N_{expected}^{KamLAND} = 86.8 \pm 5.6 \\ N_{background}^{KamLAND} = 0.95 \pm 0.99 \\ N_{observed}^{KamLAND} = 54 \end{array}$

99.95% C.L. evidence of $\bar{\nu}_e$ disappearance

[KamLAND, PRL 100 (2008) 221803]

Sterile Neutrinos in Solar Neutrino Flux?

Determination of Solar Neutrino Fluxes

[Bahcall, Peña-Garay, hep-ph/0305159]

fit of solar and KamLAND neutrino data with fluxes as free parameters

+ luminosity constraint
+ luminosity constraint

$$\sum_{r} \alpha_{r} \Phi_{r} = K_{0} \quad (r = pp, pep, hep, {}^{7}Be, {}^{8}B, {}^{13}N, {}^{15}O, {}^{17}F)$$

$$K_{0} \equiv \mathcal{L}_{0}/4\pi (1a.u.)^{2} = 8.534 \times 10^{11} \text{ MeV cm}^{-2} \text{ s}^{-1}$$
solar constant

$$\Delta m^{2} = 7.3^{+0.4}_{-0.6} \text{ eV}^{2} \quad \tan^{2}\vartheta = 0.42^{+0.08}_{-0.06} \begin{pmatrix} +0.39 \\ -0.19 \end{pmatrix}$$

$$\frac{\Phi_{8}}{\Phi_{8B}^{SSM}} = 1.01^{+0.06}_{-0.17} \begin{pmatrix} +0.22 \\ \Phi_{7Be}^{SSM} \\ \Phi_{7Be}^{SSM} \\ edsge uncertainty \\ mederate uncertainty \\ NC data (salt phase) \end{pmatrix} \quad \frac{\Phi_{7}}{Be} \text{ experiment} \\ (KamLAND, Borexino?)$$

CNO luminosity: $\mathcal{L}_{CNO}/\mathcal{L}_{\odot} = 0.0^{+2.8}_{-0.0} \left(^{+7.3}_{-0.0}\right)$

[Bahcall, Gonzalez-Garcia, Peña-Garay, PRL 90 (2003) 131301]

Details of Solar Neutrino Oscillations

best fit of reactor + solar neutrino data: $\Delta m^2 \simeq 7 \times 10^{-5} \, \text{eV}^2$ $\tan^2 \vartheta \sim 0.4$ $\overline{P}^{\mathsf{sun}}_{
u_e o
u_e} = rac{1}{2} + \left(rac{1}{2} - P_\mathsf{c}
ight) \mathsf{cos} 2artheta_\mathsf{M}^0 \; \mathsf{cos} 2artheta$ $P_{\rm c} = \frac{\exp\left(-\frac{\pi}{2}\gamma F\right) - \exp\left(-\frac{\pi}{2}\gamma \frac{F}{\sin^2\vartheta}\right)}{1 - \exp\left(-\frac{\pi}{2}\gamma \frac{F}{\sin^2\vartheta}\right)} \qquad \gamma = \frac{\Delta m^2 \sin^2 2\vartheta}{2E \cos 2\vartheta \left|\frac{d\ln A}{dx}\right|_{\rm p}} \qquad F = 1 - \tan^2\vartheta$ $A_{\rm CC} \simeq 2\sqrt{2}EG_{\rm F}N_e^{\rm c}\exp\left(-\frac{x}{x_0}\right) \implies \left|\frac{{\rm d}\ln A}{{\rm d}x}\right| \simeq \frac{1}{x_0} = \frac{10.54}{R_{\rm C}} \simeq 3 \times 10^{-15} \,{\rm eV}$ $\gamma \simeq 2 \times 10^4 \left(\frac{E}{MeV}\right)^{-1}$ $\tan^2 \vartheta \simeq 0.4 \implies \sin^2 2\vartheta \simeq 0.82, \cos 2\vartheta \simeq 0.43$ $\gamma \gg 1 \implies P_{\rm c} \ll 1 \implies \overline{P}_{\nu_e o \nu_e}^{
m sun,LMA} \simeq rac{1}{2} + rac{1}{2} \cos 2artheta_{
m M}^0 \cos 2artheta$

each neutrino experiment is mainly sensitive to one flux each neutrino experiment is mainly sensitive to ϑ accurate pp experiment can improve determination of ϑ

[Bahcall, Peña-Garay, hep-ph/0305159]

BOREXino

[BOREXino, arXiv:0708.2251]

Real-time measurement of ^{7}Be solar neutrinos (0.862 MeV)

 $\nu + e \rightarrow \nu + e$ $E = 0.862 \,\mathrm{MeV} \implies \sigma_{\nu_e} \simeq 5.5 \,\sigma_{\nu_u, \nu_\tau}$

Atmospheric and LBL Oscillation Experiments

• Solar Neutrinos and KamLAND

• Atmospheric and LBL Oscillation Experiments

- Atmospheric Neutrinos
- Super-Kamiokande Up-Down Asymmetry
- Fit of Super-Kamiokande Atmospheric Data
- Kamiokande, Soudan-2, MACRO and MINOS
- K2K
- MINOS
- Sterile Neutrinos in Atmospheric Neutrino Flux?
- Phenomenology of Three-Neutrino Mixing
- Absolute Scale of Neutrino Masses

Experimental Neutrino Anomalies
 C. Giunti – Neutrino Physics – Torino, 17–21 May 2010 – 153

Atmospheric Neutrinos

$$rac{{\it N}(
u_\mu+ar
u_\mu)}{{\it N}(
u_e+ar
u_e)}\simeq 2 \quad ext{ at } E\lesssim 1\, ext{GeV}$$

uncertainty on ratios: \sim 5%

uncertainty on fluxes: \sim 30%

ratio of ratios

$$R\equiv rac{[N(
u_{\mu}+ar{
u}_{\mu})/N(
u_{e}+ar{
u}_{e})]_{\mathsf{data}}}{[N(
u_{\mu}+ar{
u}_{\mu})/N(
u_{e}+ar{
u}_{e})]_{\mathsf{MC}}}$$

 $\textit{R}_{sub-GeV}^{K} = 0.60 \pm 0.07 \pm 0.05$

[Kamiokande, PLB 280 (1992) 146]

 $R_{
m multi-GeV}^{
m K} = 0.57 \pm 0.08 \pm 0.07$

[Kamiokande, PLB 335 (1994) 237]

Super-Kamiokande Up-Down Asymmetry

 $E_{
u}\gtrsim 1\,{
m GeV}\Rightarrow$ isotropic flux of cosmic rays

$$\phi^{(A)}_{
u_{lpha}}(heta^{AB}_{lpha})=\phi^{(B)}_{
u_{lpha}}(\pi- heta^{AB}_{lpha}) \hspace{0.5cm} \phi^{(A)}_{
u_{lpha}}(heta^{AB}_{lpha})=\phi^{(B)}_{
u_{lpha}}(heta^{AB}_{lpha})
onumber \ \psi^{(A)}_{
u_{lpha}}(heta_{lpha})=\phi^{(A)}_{
u_{lpha}}(\pi- heta_{lpha})$$

(December 1998)

 $\mathcal{A}_{\nu_{\mu}}^{\text{up-down}}(\mathsf{SK}) = \left(\frac{\mathcal{N}_{\nu_{\mu}}^{\text{up}} - \mathcal{N}_{\nu_{\mu}}^{\text{down}}}{\mathcal{N}_{\nu_{\mu}}^{\text{up}} + \mathcal{N}_{\nu_{\mu}}^{\text{down}}}\right) = -0.296 \pm 0.048 \pm 0.01$

[Super-Kamiokande, Phys. Rev. Lett. 81 (1998) 1562, hep-ex/9807003]

 6σ MODEL INDEPENDENT EVIDENCE OF $ν_μ$ DISAPPEARANCE!

Fit of Super-Kamiokande Atmospheric Data

Measure of ν_{τ} CC Int. is Difficult:

- $E_{\rm th} = 3.5 \, {\rm GeV} \Longrightarrow \sim 20 {\rm events/yr}$
- τ -Decay \implies Many Final States

$$\begin{split} \nu_{\tau}\text{-Enriched Sample} \\ N_{\nu_{\tau}}^{\text{the}} &= 78\pm26\ @\ \Delta m^2 = 2.4\times10^{-3}\ \text{eV}^2 \\ \hline N_{\nu_{\tau}}^{\text{exp}} &= 138^{+50}_{-58} \\ N_{\nu_{\tau}} &> 0 \quad @ \quad 2.4\sigma \end{split}$$

[Super-Kamiokande, PRL 97(2006) 171801, hep-ex/0607059]

 $\begin{array}{l} \mbox{Check: OPERA } (\nu_{\mu} \rightarrow \nu_{\tau}) \\ \mbox{CERN to Gran Sasso (CNGS)} \\ \mbox{L} \simeq 732 \mbox{ km } \langle E \rangle \simeq 18 \mbox{ GeV} \\ \\ \mbox{[NJP 8 (2006) 303, hep-ex/0611023]} \end{array}$

Kamiokande, Soudan-2, MACRO and MINOS

K2K

confirmation of atmospheric allowed region (June 2002)

KEK to Kamioka (Super-Kamiokande) 250 km $u_{\mu}
ightarrow
u_{\mu}$

MINOS

May 2005 - Feb 2006

http://www-numi.fnal.gov/

[MINOS, PRL 97 (2006) 191801, hep-ex/0607088]

Sterile Neutrinos in Atmospheric Neutrino Flux?

Nature of atmospheric Oscillation

Mode	Best fit	Δχ2	σ
ν _μ -ν _τ	sin ² 2θ=1.00; Δm ² =2.5x10 ⁻³ eV ²	0.0	0.0
ν _μ -ν _e	sin ² 2θ=0.97; Δm ² =5.0x10 ⁻³ eV ²	79.3	8.9
ν _μ -ν _s	$\sin^2 2\theta = 0.96$; $\Delta m^2 = 3.6 \times 10^{-3} eV^2$	19.0	4.4
LxE	sin ² 2θ=0.90; α=5.3x10 ⁻⁴	67.1	8.2
v_{μ} Decay	cos ² θ=0.47; α=3.0x10 ⁻³ eV ²	81.1	9.0
ν_{μ} Decay to ν_{s}	$\cos^2\theta=0.33; \alpha=1.1x10^{-2}eV^2$	14.1	3.8

[Smy (SK), Moriond 2002]

[Nakaya (SK), hep-ex/0209036]

FUTURE

 $\begin{array}{ll} \text{MINOS:} & \nu_{\mu} \rightarrow \nu_{\mu}, \, \nu_{\mu} \rightarrow \nu_{e}, \, \nu_{\mu} \rightarrow \nu_{e,\mu,\tau} \, \left(\text{NC} \right) \\ \text{CNGS:} \, \text{ICARUS:} & \nu_{\mu} \rightarrow \nu_{e}, \, \nu_{\mu} \rightarrow \nu_{\tau} \, \text{OPERA:} \, \nu_{\mu} \rightarrow \nu_{\tau} \end{array}$

Phenomenology of Three-Neutrino Mixing

- Solar Neutrinos and KamLAND
- Atmospheric and LBL Oscillation Experiments
- Phenomenology of Three-Neutrino Mixing
 - Experimental Evidences of Neutrino Oscillations
 - Three-Neutrino Mixing
 - Allowed Three-Neutrino Schemes
 - Mixing Matrix
 - The Hunt for ϑ_{13}
 - Bilarge Mixing
- Absolute Scale of Neutrino Masses
- Experimental Neutrino Anomalies

Experimental Evidences of Neutrino Oscillations

Three-Neutrino Mixing

$$u_{lpha L} = \sum_{k=1}^{3} U_{lpha k} \,
u_{kL} \qquad (lpha = e, \mu, au)$$

three flavor fields: u_e , u_μ , $u_ au$

three massive fields: ν_1 , ν_2 , ν_3

$$\Delta m_{21}^2 + \Delta m_{32}^2 + \Delta m_{13}^2 = m_2^2 - m_1^2 + m_3^2 - m_2^2 + m_1^2 - m_3^2 = 0$$

$$\Delta m^2_{\mathsf{SOL}} = \Delta m^2_{21} \simeq (7.6 \pm 0.2) imes 10^{-5} \, \mathrm{eV}^2$$

 $\Delta m^2_{
m ATM} \simeq |\Delta m^2_{
m 31}| \simeq |\Delta m^2_{
m 32}| \simeq (2.4 \pm 0.1) imes 10^{-3} \, {
m eV^2}$

Allowed Three-Neutrino Schemes

absolute scale is not determined by neutrino oscillation data

Mixing Matrix

 $|U_{\mu3}|^2 \simeq \sin^2 artheta_{
m ATM} \qquad |U_{ au3}|^2 \simeq \cos^2 artheta_{
m ATM}$

Effective ATM and LBL Oscillation Probability in Vacuum

$$P_{\nu_{\alpha} \to \nu_{\beta}} = \left| \sum_{k=1}^{3} U_{\alpha k}^{*} U_{\beta k} e^{-iE_{k}t} \right|^{2} * \left| e^{iE_{1}t} \right|^{2}$$
$$= \left| \sum_{k=1}^{3} U_{\alpha k}^{*} U_{\beta k} e^{-i(E_{k} - E_{1})t} \right|^{2} \to \left| \sum_{k=1}^{3} U_{\alpha k}^{*} U_{\beta k} \exp\left(\frac{\Delta m_{k1}^{2}L}{2E}\right) \right|^{2}$$

$$\frac{\Delta m_{21}^2 L}{2E} \ll 1 \qquad \Delta m_{31}^2 \to \Delta m^2$$

$$P_{\nu_{\alpha} \to \nu_{\beta}} = \left| U_{\alpha 1}^* U_{\beta 1} + U_{\alpha 2}^* U_{\beta 2} + U_{\alpha 3}^* U_{\beta 3} \exp\left(\frac{\Delta m^2 L}{2E}\right) \right|^2$$

$$U_{\alpha 1}^* U_{\beta 1} + U_{\alpha 2}^* U_{\beta 2} = \delta_{\alpha \beta} - U_{\alpha 3}^* U_{\beta 3}$$

$$P_{\nu_{\alpha} \to \nu_{\beta}} = \left| \delta_{\alpha\beta} - U_{\alpha3}^{*} U_{\beta3} \left[1 - \exp\left(\frac{\Delta m^{2}L}{2E}\right) \right] \right|^{2}$$

$$= \delta_{\alpha\beta} + |U_{\alpha3}|^{2} |U_{\beta3}|^{2} \left(2 - 2\cos\frac{\Delta m^{2}L}{2E} \right)$$

$$- 2\delta_{\alpha\beta} |U_{\alpha3}|^{2} \left(1 - \cos\frac{\Delta m^{2}L}{2E} \right)$$

$$= \delta_{\alpha\beta} - 2|U_{\alpha3}|^{2} \left(\delta_{\alpha\beta} - |U_{\beta3}|^{2} \right) \left(1 - \cos\frac{\Delta m^{2}L}{2E} \right)$$

$$= \delta_{\alpha\beta} - 4|U_{\alpha3}|^{2} \left(\delta_{\alpha\beta} - |U_{\beta3}|^{2} \right) \sin^{2}\frac{\Delta m^{2}L}{4E}$$

$$\alpha \neq \beta \implies P_{\nu_{\alpha} \to \nu_{\beta}} = 4|U_{\alpha3}|^{2} |U_{\beta3}|^{2} \sin^{2}\left(\frac{\Delta m^{2}L}{4E}\right)$$

$$\alpha = \beta \implies P_{\nu_{\alpha} \to \nu_{\alpha}} = 4|U_{\alpha3}|^{2} \left(1 - |U_{\alpha3}|^{2} \right) \sin^{2}\left(\frac{\Delta m^{2}L}{4E}\right)$$

$$C. Giunti - Neutrino Physics - Torino, 17-21 May 2010 - 167$$

$$P_{\nu_{\alpha} \to \nu_{\beta}} = \sin^{2} 2\vartheta_{\alpha\beta} \sin^{2} \left(\frac{\Delta m^{2}L}{4E}\right) \quad (\alpha \neq \beta)$$

$$\sin^{2} 2\vartheta_{\alpha\beta} = 4|U_{\alpha3}|^{2}|U_{\beta3}|^{2}$$

$$P_{\nu_{\alpha} \to \nu_{\alpha}} = 1 - \sin^{2} 2\vartheta_{\alpha\alpha} \sin^{2} \left(\frac{\Delta m^{2}L}{4E}\right)$$

$$\sin^{2} 2\vartheta_{\alpha\alpha} = 4|U_{\alpha3}|^{2} \left(1 - |U_{\alpha3}|^{2}\right)$$

$$U = \begin{pmatrix} U_{e1} & U_{e2} & U_{e3} \\ U_{\mu1} & U_{\mu2} & U_{\mu3} \\ U_{\tau1} & U_{\tau2} & U_{\tau3} \end{pmatrix}$$

$$\lim_{U_{e3}|^{2}} \sum_{\alpha} \frac{\sin^{2} 2\vartheta_{ee}}{4}$$

$$\lim_{U_{e3}|^{2}} \sum_{\alpha} \frac{\sin^{2} 2\vartheta_{ee}}{4}$$

• ν_e disappearance experiments:

$$\sin^2 2\vartheta_{ee} = 4|U_{e3}|^2 \left(1 - |U_{e3}|^2\right) \simeq 4|U_{e3}|^2$$

• ν_{μ} disappearance experiments:

$$\sin^2 2\vartheta_{\mu\mu} = 4|U_{\mu3}|^2 \left(1 - |U_{\mu3}|^2\right)$$

$$|U_{\mu3}|^2 = \frac{1}{2} \left(1 \pm \sqrt{1 - \sin^2 2\vartheta_{\mu\mu}} \right)$$

• $u_{\mu} \rightarrow \nu_{e} \text{ experiments:}$

$$\sin^2 2\vartheta_{\mu e} = 4|U_{e3}|^2|U_{\mu 3}|^2$$

$$U = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13}e^{-i\delta_{13}} \\ 0 & 1 & 0 \\ -s_{13}e^{i\delta_{13}} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & e^{i\lambda_2} & 0 \\ 0 & 0 & e^{i\lambda_3} \end{pmatrix}$$
$$= \begin{pmatrix} c_{12}c_{13} & s_{12}c_{13} & s_{13}e^{-i\delta_{13}} \\ -s_{12}c_{23}-c_{12}s_{23}s_{13}e^{i\delta_{13}} & c_{12}c_{23}-s_{12}s_{23}s_{13}e^{i\delta_{13}} & s_{23}c_{13} \\ s_{12}s_{23}-c_{12}c_{23}s_{13}e^{i\delta_{13}} & -c_{12}s_{23}-s_{12}c_{23}s_{13}e^{i\delta_{13}} & c_{23}c_{13} \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & e^{i\lambda_2} & 0 \\ 0 & 0 & e^{i\lambda_3} \end{pmatrix}$$
$$= \frac{\sin^2 \vartheta_{12} = 0.304^{+0.022}_{-0.016} & \sin^2 \vartheta_{23} = 0.50^{+0.07}_{-0.06} \\ \sin^2 \vartheta_{13} < 0.035 & (90\% \text{ C.L.}) \\ \text{[Schwetz, Tortola, Valle, New J. Phys. 10 (2008) 113011]}$$

Hint of $\vartheta_{13} > 0$

[Fogli, Lisi, Marrone, Palazzo, Rotunno, NO-VE, April 2008] [Balantekin, Yilmaz, JPG 35 (2008) 075007]

 $\sin^2artheta_{13}=0.016\pm0.010$ [Fogli, Lisi, Marrone, Palazzo, Rotunno, PRL 101 (2008) 141801]

future: measure $\vartheta_{13} \neq 0 \Longrightarrow CP$ violation, matter effects, mass hierarchy

Hint of $\vartheta_{13} > 0$

[Fogli, Lisi, Marrone, Palazzo, Rotunno, NO-VE, April 2008] [Balantekin, Yilmaz, JPG 35 (2008) 075007]

 $\sin^2 artheta_{13} = 0.016 \pm 0.010$ [Fogli, Lisi, Marrone, Palazzo, Rotunno, PRL 101 (2008) 141801]

 $P_{\stackrel{(-)}{\nu_e \to \nu_e}} \simeq \begin{cases} \left(1 - \sin^2 \vartheta_{13}\right)^2 \left(1 - 0.5 \sin^2 \vartheta_{12}\right) & \text{SOL low-energy \& KamLAND} \\ \left(1 - \sin^2 \vartheta_{13}\right)^2 \sin^2 \vartheta_{12} & \text{SOL high-energy (matter effect)} \end{cases}$

The Hunt for ϑ_{13}

 3σ sensitivities. Bands reflect dependence of sensitivity on the CP violating phase $\delta_{13}.$

"Branching point" refers to the decision between an upgraded superbeam and/or detector and a neutrino factory program. Neutrino factory is assumed to switch polarity after 2.5 years.

2030

[Physics at a Fermilab Proton Driver, Albrow et al, hep-ex/0509019]

Bilarge Mixing

$$\begin{split} |U_{e3}|^2 \ll 1 \\ U \simeq \begin{pmatrix} c_{\vartheta_S} & s_{\vartheta_S} & 0 \\ -s_{\vartheta_S} c_{\vartheta_A} & c_{\vartheta_S} c_{\vartheta_A} & s_{\vartheta_A} \\ s_{\vartheta_S} s_{\vartheta_A} & -c_{\vartheta_S} s_{\vartheta_A} & c_{\vartheta_A} \end{pmatrix} \Longrightarrow \begin{cases} \nu_e = c_{\vartheta_S} \nu_1 + s_{\vartheta_S} \nu_2 \\ \nu_a^{(S)} = -s_{\vartheta_S} \nu_1 + c_{\vartheta_S} \nu_2 \\ = c_{\vartheta_A} \nu_\mu - s_{\vartheta_A} \nu_\tau \end{cases} \\ \sin^2 2\vartheta_A \simeq 1 \Longrightarrow \vartheta_A \simeq \frac{\pi}{4} \Longrightarrow U \simeq \begin{pmatrix} c_{\vartheta_S} & s_{\vartheta_S} & 0 \\ -s_{\vartheta_S}/\sqrt{2} & c_{\vartheta_S}/\sqrt{2} & 1/\sqrt{2} \\ s_{\vartheta_S}/\sqrt{2} & -c_{\vartheta_S}/\sqrt{2} & 1/\sqrt{2} \end{pmatrix} \\ Solar \nu_e \to \nu_a^{(S)} \simeq \frac{1}{\sqrt{2}} (\nu_\mu - \nu_\tau) \\ \frac{\Phi_{CC}^{SNO}}{\Phi_{\nu_e}^{SSNO}} \simeq \frac{1}{3} \Longrightarrow \Phi_{\nu_e} \simeq \Phi_{\nu_\mu} \simeq \Phi_{\nu_\tau} \text{ for } E \gtrsim 6 \text{ MeV} \\ \sin^2 \vartheta_S \simeq \frac{1}{3} \Longrightarrow U \simeq \begin{pmatrix} \sqrt{2/3} & 1/\sqrt{3} & 0 \\ -1/\sqrt{6} & 1/\sqrt{3} & 1/\sqrt{2} \\ 1/\sqrt{6} & -1/\sqrt{3} & 1/\sqrt{2} \end{pmatrix} \\ \text{Tri-Bimaximal Mixing} \end{split}$$

[Harrison, Perkins, Scott, hep-ph/0202074]

Absolute Scale of Neutrino Masses

- Solar Neutrinos and KamLAND
- Atmospheric and LBL Oscillation Experiments
- Phenomenology of Three-Neutrino Mixing
- Absolute Scale of Neutrino Masses
 - Mass Hierarchy or Degeneracy?
 - Tritium Beta-Decay
 - Neutrinoless Double-Beta Decay
 - Bounds from Neutrino Oscillations
 - $\beta \beta_{0\nu}$ Decay \Leftrightarrow Majorana Neutrino Mass
 - Cosmological Bound on Neutrino Masses
- Experimental Neutrino Anomalies

Mass Hierarchy or Degeneracy?

Quasi-Degenerate for $m_1\simeq m_2\simeq m_3\simeq m_
u\gg \sqrt{\Delta m_{\rm ATM}^2}\simeq 5 imes 10^{-2}\,{\rm eV}$

Tritium Beta-Decay

Neutrino Mixing
$$\implies \mathcal{K}(T) = \left[(Q - T) \sum_{k} |U_{ek}|^{2} \sqrt{(Q - T)^{2} - m_{k}^{2}} \right]^{1/2}$$

analysis of data is
different from the
no-mixing case:
 $2N - 1$ parameters
 $\left(\sum_{k} |U_{ek}|^{2} = 1 \right)$
if experiment is not sensitive to masses $(m_{k} \ll Q - T)$
effective mass:
 $m_{\beta}^{2} = \sum_{k} |U_{ek}|^{2} m_{k}^{2}$
 $\mathcal{K}^{2} = (Q - T)^{2} \sum_{k} |U_{ek}|^{2} \sqrt{1 - \frac{m_{k}^{2}}{(Q - T)^{2}}} \simeq (Q - T)^{2} \sum_{k} |U_{ek}|^{2} \left[1 - \frac{1}{2} \frac{m_{k}^{2}}{(Q - T)^{2}} \right]$

$m_{\beta}^2 = |U_{e1}|^2 m_1^2 + |U_{e2}|^2 m_2^2 + |U_{e3}|^2 m_3^2$

Quasi-Degenerate: $m_1 \simeq m_2 \simeq m_3 \simeq m_\nu \implies m_\beta^2 \simeq m_\nu^2 \sum_k |U_{ek}|^2 = m_\nu^2$ FUTURE: IF $m_\beta \lesssim 4 \times 10^{-2} \text{ eV} \implies$ NORMAL HIERARCHY

Neutrinoless Double-Beta Decay

Two-Neutrino Double- β Decay: $\Delta L = 0$

 $\mathcal{N}(A, Z) \rightarrow \mathcal{N}(A, Z+2) + e^- + e^- + \bar{\nu}_e + \bar{\nu}_e$

 $(T_{1/2}^{2\nu})^{-1} = G_{2\nu} |\mathcal{M}_{2\nu}|^2$

second order weak interaction process in the Standard Model

u
Effective Majorana Neutrino Mass

FUTURE EXPERIMENTSCOBRA, XMASS, CAMEO, CANDLES $|m_{\beta\beta}| \sim \text{few } 10^{-1} \text{ eV}$ EXO, MOON, Super-NEMO, CUORE, Majorana, GEM, GERDA $|m_{\beta\beta}| \sim \text{few } 10^{-2} \text{ eV}$

Bounds from Neutrino Oscillations

$$m_{\beta\beta} = |U_{e1}|^2 m_1 + |U_{e2}|^2 e^{i\alpha_{21}} m_2 + |U_{e3}|^2 e^{i\alpha_{31}} m_3$$

CP conservation

 $lpha_{21} = 0\,,\;\pi \qquad lpha_{31} = 0\,,\;\pi$

CP Conservation: Normal Scheme

CP Conservation: Inverted Scheme

 $m_{\beta\beta} = |U_{e1}|^2 m_1 + |U_{e2}|^2 e^{i\alpha_{21}} m_2 + |U_{e3}|^2 e^{i\alpha_{31}} m_3$

FUTURE: IF $|m_{\beta\beta}| \lesssim 10^{-2} \, \text{eV} \implies$ NORMAL HIERARCHY

Experimental Positive Indication

[Klapdor et al., MPLA 16 (2001) 2409]

$\beta \beta_{0\nu}$ Decay \Leftrightarrow Majorana Neutrino Mass

[Schechter, Valle, PRD 25 (1982) 2951] [Takasugi, PLB 149 (1984) 372]

Majorana Mass Term

$$\mathcal{L}_{eL}^{\mathrm{M}} = -\frac{1}{2} \, m_{ee} \left(\overline{\nu_{eL}^{c}} \, \nu_{eL} + \overline{\nu_{eL}} \, \nu_{eL}^{c} \right)$$

Cosmological Bound on Neutrino Masses

Lyman-alpha Forest

Rest-frame Lyman α , β , γ wavelengths: $\lambda^0_{\alpha} = 1215.67 \text{ Å}$, $\lambda^0_{\beta} = 1025.72 \text{ Å}$, $\lambda^0_{\gamma} = 972.54 \text{ Å}$ Lyman- α forest: The region in which only Ly α photons can be absorbed: $[(1 + z_q)\lambda^0_{\beta}, (1 + z_q)\lambda^0_{\alpha}]$

Relic Neutrinos

neutrinos are in equilibrium in primeval plasma through weak interaction reactions $\nu \bar{\nu} \leftrightarrows e^+ e^- \quad \stackrel{(-)}{\nu} e \leftrightarrows \stackrel{(-)}{\nu} N \stackrel{(-)}{\hookrightarrow} N \stackrel{(-)}{\hookrightarrow} N \quad \nu_e n \leftrightarrows p e^- \quad \bar{\nu}_e p \leftrightarrows n e^+ \quad n \leftrightarrows p e^- \bar{\nu}_e$

weak interactions freeze out

$$\Gamma_{\text{weak}} = N\sigma v \sim G_{\text{F}}^{2}T^{5} \sim T^{2}/M_{P} \sim \sqrt{G_{N}T^{4}} \sim \sqrt{G_{N}\rho} \sim H \implies \frac{T_{\text{dec}} \sim 1 \text{ MeV}}{T_{\text{neutrino decoupling}}}$$

Relic Neutrinos:
$$T_{\nu} = \left(\frac{4}{11}\right)^{\frac{1}{3}} T_{\gamma} \simeq 1.945 \,\mathrm{K} \Longrightarrow k \,T_{\nu} \simeq 1.676 \times 10^{-4} \,\mathrm{eV}$$

number density:
$$n_f = \frac{3}{4} \frac{\zeta(3)}{\pi^2} g_f T_f^3 \implies n_{\nu_k, \bar{\nu}_k} \simeq 0.1827 T_{\nu}^3 \simeq 112 \,\mathrm{cm}^{-3}$$

Power Spectrum of Density Fluctuations

hot dark matter prevents early galaxy formation $\delta(\vec{x}) \equiv \frac{\rho(\vec{x}) - \overline{\rho}}{\overline{c}}$ $\langle \delta(\vec{x}_1)\delta(\vec{x}_2)\rangle = \int \frac{\mathrm{d}^3k}{(2\pi)^3} e^{i\vec{k}\cdot\vec{x}} P(\vec{k})$ small scale suppression $\frac{\Delta P(k)}{P(k)} \approx -8 \frac{\Omega_{\nu}}{\Omega_{m}}$ $\approx -0.8 \left(\frac{\sum_{k} m_{k}}{1 \text{ eV}}\right) \left(\frac{0.1}{\Omega_{m} h^{2}}\right)$ for

$$k\gtrsim k_{
m nr}pprox 0.026\,\sqrt{rac{m_
u}{1\,{
m eV}}}\sqrt{\Omega_m}\,h\,{
m Mpc}^{-1}$$

[Hu, Eisenstein, Tegmark, PRL 80 (1998) 5255]

WMAP (First Year), AJ SS 148 (2003) 175, astro-ph/0302209 CMB (WMAP, ...) + LSS (2dFGRS) + HST + SN-Ia \implies Flat \land CDM $T_0 = 13.7 \pm 0.2 \,\text{Gyr}$ $h = 0.71^{+0.04}_{-0.03}$ $\Omega_0 = 1.02 \pm 0.02$ $\Omega_b = 0.044 \pm 0.004$ $\Omega_m = 0.27 \pm 0.04$ $\Omega_{\nu} h^2 < 0.0076 \quad (95\% \text{ conf.}) \implies \sum_{k=1}^{3} m_k < 0.71 \, \mathrm{eV}$ k=1WMAP (Five Years), AJS 180 (2009) 330, astro-ph/0803.0547 CMB + HST + SN-Ia + BAO $T_0 = 13.72 \pm 0.12 \,\text{Gyr}$ $h = 0.705 \pm 0.013$ $-0.0179 < \Omega_0 - 1 < 0.0081$ (95% C.L.) $\Omega_b = 0.0456 \pm 0.0015$ $\Omega_m = 0.274 \pm 0.013$ $\sum m_k < 0.67 \, {
m eV} \quad (95\% \, {
m C.L.}) \qquad \qquad N_{
m eff} = 4.4 \pm 1.5$ k=1

Fogli, Lisi, Marrone, Melchiorri, Palazzo, Rotunno, Serra, Silk, Slosar

[PRD 78 (2008) 033010, hep-ph/0805.2517]

Flat ACDM

Case	Cosmological data set	Σ (at 2σ)
1	СМВ	$< 1.19 \mathrm{eV}$
2	CMB + LSS	< 0.71 eV
3	CMB + HST + SN-Ia	$< 0.75 { m eV}$
4	CMB + HST + SN-Ia + BAO	< 0.60 eV
5	$CMB + HST + SN-Ia + BAO + Ly\alpha$	< 0.19 eV

 2σ (95% C.L.) constraints on the sum of ν masses Σ .

Indication of $\beta \beta_{0\nu}$ Decay: $0.22 \,\mathrm{eV} \lesssim |m_{\beta\beta}| \lesssim 1.6 \,\mathrm{eV}$ (~ 3σ range)

[Klapdor et al., MPLA 16 (2001) 2409; FP 32 (2002) 1181; NIMA 522 (2004) 371; PLB 586 (2004) 198]

tension among oscillation data, CMB+LSS+BAO(+Ly α) and $\beta\beta_{0\nu}$ signal

Experimental Neutrino Anomalies

- Solar Neutrinos and KamLAND
- Atmospheric and LBL Oscillation Experiments
- Phenomenology of Three-Neutrino Mixing
- Absolute Scale of Neutrino Masses
- Experimental Neutrino Anomalies
 - LSND
 - Four-Neutrino Schemes: 2+2 and 3+1
 - 2+2 Four-Neutrino Schemes
 - 3+1 Four-Neutrino Schemes
 - MiniBooNE
 - CCFR
 - MINOS
 - Gallium Anonacijunti Neutrino Physics Torino, 17–21 May 2010 197

LSND

[PRL 75 (1995) 2650; PRC 54 (1996) 2685; PRL 77 (1996) 3082; PRD 64 (2001) 112007]

 $ar{
u}_{\mu}
ightarrow ar{
u}_{e} \qquad L \simeq 30 \, \mathrm{m} \qquad 20 \, \mathrm{MeV} < E < 200 \, \mathrm{MeV}$

Four-Neutrino Schemes: 2+2 and 3+1

2+2 Four-Neutrino Schemes

2+2 Schemes are strongly disfavored by solar and atmospheric data

[Maltoni, Schwetz, Tortola, Valle, New J. Phys. 6 (2004) 122, arXiv:hep-ph/0405172]

$$\eta_s = |U_{s1}|^2 + |U_{s2}|^2 \qquad 99\% \text{ CL:} \begin{cases} \eta_s < 0.25 \quad (\text{solar} + \text{KamLAND}) \\ \eta_s > 0.75 \quad (\text{atmospheric} + \text{K2K}) \end{cases}$$

3+1 Four-Neutrino Schemes

Effective SBL Oscillation Probability in 3+1 Schemes

$$P_{\nu_{\alpha} \to \nu_{\beta}} = \left| \sum_{k=1}^{4} U_{\alpha k}^{*} U_{\beta k} e^{-iE_{k}t} \right|^{2} * \left| e^{iE_{1}t} \right|^{2}$$
$$= \left| \sum_{k=1}^{4} U_{\alpha k}^{*} U_{\beta k} e^{-i(E_{k}-E_{1})t} \right|^{2} \to \left| \sum_{k=1}^{4} U_{\alpha k}^{*} U_{\beta k} \exp\left(\frac{\Delta m_{k1}^{2}L}{2E}\right) \right|^{2}$$

$$\frac{\Delta m_{21}^2 L}{2E} \ll 1 \qquad \frac{\Delta m_{31}^2 L}{2E} \ll 1 \qquad \Delta m_{41}^2 \to \Delta m^2$$

$$P_{\nu_{\alpha} \to \nu_{\beta}} = \left| U_{\alpha 1}^* U_{\beta 1} + U_{\alpha 2}^* U_{\beta 2} + U_{\alpha 3}^* U_{\beta 3} + U_{\alpha 4}^* U_{\beta 4} \exp\left(\frac{\Delta m^2 L}{2E}\right) \right|^2$$

$$U_{\alpha 1}^* U_{\beta 1} + U_{\alpha 2}^* U_{\beta 2} + U_{\alpha 3}^* U_{\beta 3} = \delta_{\alpha \beta} - U_{\alpha 4}^* U_{\beta 4}$$

$$\begin{split} P_{\nu_{\alpha} \to \nu_{\beta}} &= \left| \delta_{\alpha\beta} - U_{\alpha4}^{*} U_{\beta4} \left[1 - \exp\left(\frac{\Delta m^{2}L}{2E}\right) \right] \right|^{2} \\ &= \delta_{\alpha\beta} + |U_{\alpha4}|^{2} |U_{\beta4}|^{2} \left(2 - 2\cos\frac{\Delta m^{2}L}{2E} \right) \\ &- 2\delta_{\alpha\beta} |U_{\alpha4}|^{2} \left(1 - \cos\frac{\Delta m^{2}L}{2E} \right) \\ &= \delta_{\alpha\beta} - 2|U_{\alpha4}|^{2} \left(\delta_{\alpha\beta} - |U_{\beta4}|^{2} \right) \left(1 - \cos\frac{\Delta m^{2}L}{2E} \right) \\ &= \delta_{\alpha\beta} - 4|U_{\alpha4}|^{2} \left(\delta_{\alpha\beta} - |U_{\beta4}|^{2} \right) \sin^{2}\frac{\Delta m^{2}L}{2E} \\ \alpha \neq \beta \implies P_{\nu_{\alpha} \to \nu_{\beta}} = 4|U_{\alpha4}|^{2} |U_{\beta4}|^{2} \sin^{2}\left(\frac{\Delta m^{2}L}{4E}\right) \\ \alpha = \beta \implies P_{\nu_{\alpha} \to \nu_{\alpha}} = 4|U_{\alpha4}|^{2} \left(1 - |U_{\alpha4}|^{2} \right) \sin^{2}\left(\frac{\Delta m^{2}L}{4E}\right) \\ \hline \text{C. Giunti - Neutrino Physics - Torino, 17-21 May 2010 - 204} \end{split}$$

U =

• ν_e disappearance experiments:

$$\sin^2 2\vartheta_{ee} = 4|U_{e4}|^2 \left(1 - |U_{e4}|^2\right) \simeq 4|U_{e4}|^2$$

• ν_{μ} disappearance experiments:

$$\sin^2 2 artheta_{\mu\mu} = 4 |U_{\mu4}|^2 \left(1 - |U_{\mu4}|^2\right) \simeq 4 |U_{\mu4}|^2$$

• $u_{\mu} \rightarrow \nu_{e}$ experiments:

$$\sin^2 2\vartheta_{\mu e} = 4|U_{e4}|^2|U_{\mu 4}|^2 \simeq \frac{1}{4}\sin^2 2\vartheta_{ee}\sin^2 2\vartheta_{\mu \mu}$$

• Upper bounds on $\sin^2 2\vartheta_{ee}$ and $\sin^2 2\vartheta_{\mu\mu}$ imply strong limit on $\sin^2 2\vartheta_{\mu e}$

ν_e Disappearance

ν_{μ} Disappearance

 $u_{\mu}
ightarrow
u_{e}$

[Maltoni, Schwetz, Tortola, Valle, New J. Phys. 6 (2004) 122, arXiv:hep-ph/0405172]

MiniBooNE

[PRL 98 (2007) 231801]

- The LSND signal is strongly disfavored:
 - ▶ Not seen by other $\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e}$ and $\nu_{\mu} \rightarrow \nu_{e}$ experiments
 - Disfavored by combined fit of data
- ► Possibility of a Δm² ≥ 1 eV² relevant for SBL experiments independent of LSND signal remains interesting: chance to discover Sterile Neutrinos and open powerful window on New Physics
- ► There are also direct searches of active-sterile transitions:
 - Solar + KamLAND: mixing smaller than 0.25 at 99% CL (constrained by matter effects and by SNO NC measurement)
 - Atmospheric + K2K: mixing smaller than 0.25 at 99% CL (constrained by matter effects)
 - Bounds from observation of NC interactions in SBL (CCFR) and LBL (MINOS) experiments

[PRD 59 (1999) 031101, arXiv:hep-ex/9809023]

- \blacktriangleright LBL ν_{μ} disappearance and $\nu_{\mu} \rightarrow \nu_{e}$ experiment with $E \sim 3\,{\rm GeV}$ and
 - Near Detector at 1.04 km
 - Far Detector at 734 km
- Events classified in two groups: CC and NC
- ▶ Information on $\nu_{\mu} \rightarrow \nu_{s}$ from difference between near and far NC energy spectrum
- Analysis complicated because there are five contributions to NC sample:
 - 1. Genuine NC interactions
 - 2. Misidentified ν_{μ} CC interactions
 - 3. ν_{τ} CC interactions
 - 4. Possible u_e CC interactions originating from $u_\mu
 ightarrow
 u_e$ oscillations
 - 5. CC interactions of ν_e beam component
- Assumed 4- ν Mixing with Mixing Matrix

 $U = R_{34}(\theta_{34})R_{24}(\theta_{24}, \delta_2)R_{14}(\theta_{14})R_{23}(\theta_{23})R_{13}(\theta_{13}, \delta_1)R_{12}(\theta_{12}, \delta_3)$

[MINOS, PRD 81 (2010) 052004, arXiv:1001.0336]

Gallium Anomaly

Gallium Radioactive Source Experiments Tests of the solar neutrino detectors GALLEX (Cr1, Cr2) and SAGE (Cr, Ar) $\nu_{\rm o} + {}^{71}\text{Ga} \rightarrow {}^{71}\text{Ge} + e^{-}$ Detection Process: $e^- + {}^{51}Cr \rightarrow {}^{51}V + \nu_e$ $e^- + {}^{37}Ar \rightarrow {}^{37}Cl + \nu_e$ ν_{e} Sources: ⁵¹Cr ³⁷Ar E [keV] 427 747 752 432 811 813 0.8163 0.0849 0.0895 B.R. 0.0093 0.902 0.098 51Cr (27.7 days) 427 keV v (9.0%) ³⁷Ar (35.04 days) 432 keV v (0.9%) 813 keV v (9.8%) 747 keV v (81.6%) 811 keV v (90.2%) 752 keV v (8.5%) 37Cl (stable) 320 keV y [SAGE, PRC 73 (2006) 045805, nucl-ex/0512041] 51 V [SAGE, PRC 59 (1999) 2246, hep-ph/9803418]

[SAGE, PRC 73 (2006) 045805, nucl-ex/0512041]

$$\textit{R}_{Ga} = 0.88 \pm 0.05$$

[SAGE, PRC 59 (1999) 2246, hep-ph/9803418]
- ► Deficit could be partly due to overestimate of $\sigma(\nu_e + {}^{71}\text{Ga} \rightarrow {}^{71}\text{Ge} + e^-)$
- Calculation: Bahcall, PRC 56 (1997) 3391, hep-ph/9710491

• $\sigma_{G.S.}$ related to measured $\sigma(e^- + {}^{71}\text{Ge} \rightarrow {}^{71}\text{Ga} + \nu_e)$:

$$\sigma_{
m G.S.}(^{51}
m Cr) = 55.3 imes 10^{-46}\,
m cm^2\,(1\pm0.004)_{3\sigma}$$

• $\sigma(^{51}\text{Cr}) = \sigma_{G.S.}(^{51}\text{Cr})\left(1 + 0.669 \frac{\text{BGT}_{175 \text{ keV}}}{\text{BGT}_{G.S.}} + 0.220 \frac{\text{BGT}_{500 \text{ keV}}}{\text{BGT}_{G.S.}}\right)$

Contribution of Excited States only 5%!

Bahcall:

from $p + {}^{71}\text{Ga} \rightarrow {}^{71}\text{Ge} + n$ measurements [Krofcheck et al., PRL 55 (1985) 1051] $\frac{\text{BGT}_{175 \text{ keV}}}{\text{BGT}_{CS}} < 0.056 \Rightarrow \frac{\text{BGT}_{175 \text{ keV}}}{\text{BGT}_{CS}} = \frac{0.056}{2} \qquad \frac{\text{BGT}_{500 \text{ keV}}}{\text{BGT}_{CS}} = 0.146$ 3σ lower limit: $\frac{BGT_{175 \text{ keV}}}{BGT_{GS}} = \frac{BGT_{500 \text{ keV}}}{BGT_{GS}} = 0$ 3σ upper limit: $\frac{BGT_{175 \text{ keV}}}{BGT_{CS}} < 0.056 \times 2$ $\frac{BGI_{500 \text{ keV}}}{BGT_{CS}} = 0.146 \times 2$ $\sigma(^{51}{\rm Cr}) = 58.1 \times 10^{-46} \, {\rm cm}^2 \left(1^{+0.036}_{-0.028}\right)_{\rm sc}$

► Haxton: [Hata, Haxton, PLB 353 (1995) 422, nucl-th/9503017; Haxton, PLB 431 (1998) 110, nucl-th/9804011] "a sophisticated shell model calculation is performed ... for the transition to the first excited state in ⁷¹Ge. The calculation predicts destructive interference between the (p, n) spin and spin-tensor matrix elements."

$$\sigma(^{51}{
m Cr}) = 63.9 imes 10^{-46} \, {
m cm}^2 \, (1 \pm 0.106)_{1\sigma}$$

Gallium Radioactive Source Experiments are Short-BaseLine Neutrino Oscillation Experiments

Fig. 1. Region of electron neutrino oscillation parameters ruled out at 90% C.L. by the GALLEX ⁵¹Cr source experiment.

[Bahcall, Krastev, Lisi, PLB 348 (1995) 121]

	GALLEX		SAGE	
	Cr1	Cr2	Cr	Ar
R	0.953 ± 0.11	$0.812\substack{+0.10 \\ -0.11}$	0.95 ± 0.12	$0.79 \pm ^{+0.09}_{-0.10}$
$\langle L \rangle$	1.9 m		0.6 m	

$$\textit{R}_{Ga} = 0.87 \pm 0.05$$

$$P_{\nu_e o \nu_e}(L, E) = 1 - \sin^2 2 \vartheta \, \sin^2 \left(\frac{\Delta m^2 L}{4E} \right)$$

 $L_{\rm osc} \lesssim 0.5 \quad {\rm m} \implies \Delta m^2 \gtrsim 1 \, {\rm eV}^2 \implies \nu_e \to \nu_s$ $R = \frac{\int {\rm d}V \, L^{-2} \sum_i ({\rm B.R.})_i \, \sigma_i \, P_{\nu_e \to \nu_e}(L, E_i)}{\sum_i ({\rm B.R.})_i \, \sigma_i \, \int {\rm d}V \, L^{-2}}$

[Acero, Giunti, Laveder, PRD 78 (2008) 073009, arXiv:0711.4222]

Future Promising Searches of SBL Oscillations

- SAGE is planning a new source experiment (ν_e disappearance)
- Beta-Beam experiments:

$$egin{aligned} &\mathcal{N}(A,Z)
ightarrow \mathcal{N}(A,Z+1) + e^- + ar{
u}_e & (eta^-) \ &\mathcal{N}(A,Z)
ightarrow \mathcal{N}(A,Z-1) + e^+ +
u_e & (eta^+) \end{aligned}$$

Neutrino Factory experiments:

$$\mu^+
ightarrow ar{
u}_\mu + e^+ +
u_e$$
 $\mu^-
ightarrow
u_\mu + e^- + ar{
u}_e$

Neutrino Factory

ic Uncertainties: Cross Section, Detector Normalization, Energy Resolution and Calibration, Backgrounds

ν_e Disappearance

[Giunti, Laveder, Winter, PRD 80 (2009) 073005, arXiv:0907.5487]

Conclusions

- Solar Neutrinos and KamLAND
- Atmospheric and LBL Oscillation Experiments
- Phenomenology of Three-Neutrino Mixing
- Absolute Scale of Neutrino Masses
- Experimental Neutrino Anomalies
- Conclusions
 - Conclusions Three-Neutrino Mixing
 - Conclusions Anomalies

 $\begin{array}{l} \hline \textbf{Conclusions - Three-Neutrino Mixing} \\ \nu_e \rightarrow \nu_{\mu}, \nu_{\tau} \quad \text{with} \quad \Delta m_{\text{SOL}}^2 \simeq 8.3 \times 10^{-5} \, \text{eV}^2 \quad (\text{SOL, KamLAND}) \\ \nu_{\mu} \rightarrow \nu_{\tau} \quad \text{with} \quad \Delta m_{\text{ATM}}^2 \simeq 2.4 \times 10^{-3} \, \text{eV}^2 \quad (\text{ATM, K2K, MINOS}) \\ & \downarrow \\ & \text{Bilarge } 3\nu\text{-Mixing} \quad \text{with} \quad |U_{e3}|^2 \ll 1 \quad (\text{CHOOZ}) \\ & \beta \& \beta \beta_{0\nu} \text{ Decay and Cosmology} \Longrightarrow m_{\nu} \lesssim 1 \, \text{eV} \end{array}$

FUTURETheory: Why lepton mixing \neq quark mixing?
(Due to Majorana nature of ν 's?)
Why only $|U_{e3}|^2 \ll 1$?
Explain experimental neutrino anomalies (sterile ν 's?).Exp.: Measure $|U_{e3}| > 0 \Rightarrow$ CP viol., matter effects, mass hierarchy.
Check experimental neutrino anomalies.
Check $\beta \beta_{0\nu}$ signal at Quasi-Degenerate mass scale.

Improve $\beta \& \beta \beta_{0\nu}$ Decay and Cosmology measurements.

Conclusions - Anomalies

- Existence of sterile neutrinos is possible
- Likely connected with neutrino mass generation
- Active-Sterile transitions have been searched in several experiments and discussed in global phenomenological analyses of data
- LSND indication of 4-Neutrino Mixing is disfavored
- ▶ Gallium Anomaly may be due to $\nu_e \rightarrow \nu_s$ oscillations with sin² 2 $\vartheta \gtrsim 0.1$ and $\Delta m^2 \gtrsim 1 \, {\rm eV}^2$
- SBL oscillations can be explored with high precision in
 - Beta-Beam experiments (pure ν_e or $\bar{\nu}_e$ beam from nuclear decay)
 - ► Neutrino Factory experiments (ν_e and $\bar{\nu}_{\mu}$ from μ^+ decay, or $\bar{\nu}_e$ and ν_{μ} from μ^- decay)