Sterile Neutrinos in July 2010 Carlo Giunti

INFN, Sezione di Torino

Presidenza INFN, Roma, 19 July 2010

Collaboration with Marco Laveder (Padova University)

#### **Standard Model: Massless Neutrinos**

► Standard Model:  $\nu_L, \nu_R^c \implies$  no Dirac mass term

 $\mathcal{L}^{\mathsf{D}} = m^{\mathsf{D}} \left( \overline{\nu_L} \nu_R + \overline{\nu_R} \nu_L \right)$ 

- Majorana Neutrino:  $\nu^c = \nu$
- $\nu_R^c = \nu_R \implies$  Majorana mass term

$$\mathcal{L}^{\mathsf{M}} = rac{1}{2} m^{\mathsf{M}} \left( \overline{
u_L} 
u_R^{\mathsf{c}} + \overline{
u_R^{\mathsf{c}}} 
u_L 
ight)$$

 Standard Model: Majorana mass term not allowed by SU(2)<sub>L</sub> × U(1)<sub>Y</sub> (no Higgs triplet)

- Neutrinos are special in the Standard Model: the only neutral fermions
- In extensions of SM neutrinos can mix with non-SM fermions

$$L_{\alpha L} = \begin{pmatrix} \nu_{\alpha L} \\ \alpha_L \end{pmatrix} \qquad \qquad \tilde{\Phi} = i\sigma_2 \, \Phi^* = \begin{pmatrix} \phi^0 \\ \phi^- \end{pmatrix} \xrightarrow{\text{Symmetry}} \begin{pmatrix} v/\sqrt{2} \\ 0 \end{pmatrix} \\ (\alpha = e, \mu, \tau)$$

 $\overline{L_{\alpha L}} \Phi$  can be coupled to new non-SM chiral fermion fields  $f_{\beta R}$ Dirac mass terms  $\sim \overline{L_{\alpha L}} \Phi f_{\beta R}$  + Majorana mass terms  $\sim \overline{f_{\beta R}^C} f_{\beta R}$  $f_{\beta R}$  are often called Right-Handed Neutrinos:  $f_{\beta R} \rightarrow \nu_{\beta R}$ 

• If  $f_{\beta R}$  are light, they are called Sterile Neutrinos:

$$\nu_{s_{\beta}L} = f_{\beta R}^{C}$$

# **Sterile Neutrinos**

- Sterile means No Standard Model Interactions
- Obviously no electromagnetic interactions as normal active neutrinos
- Thus Sterile means No Standard Weak Interactions
- But Sterile Neutrinos are not absolutely sterile:
  - Gravitational Interactions
  - New Non-Standard Interactions of the Physics Beyond the Standard Model which generates the masses of sterile neutrinos
- Extremely interesting and powerful window on Physics Beyond the SM
- Active Neutrinos  $(\nu_e, \nu_\mu, \nu_\tau)$  can oscillate into Sterile Neutrinos  $(\nu_s)$
- Observable: disappearance of Active Neutrinos or indirect evidence through combined fit of data

#### How many Sterile Neutrinos?

 $e^+e^- 
ightarrow Z 
ightarrow 
u ar{
u} \Rightarrow 
u_e 
u_\mu 
u_ au$  3 active flavor neutrinos

mixing 
$$\Rightarrow \nu_{\alpha L} = \sum_{k=1}^{N} U_{\alpha k} \nu_{kL}$$
  $\alpha = e, \mu, \tau$   $N \ge 3$   
no upper limit!

# **Experimental Evidences of Neutrino Oscillations**



#### **Three-Neutrino Mixing**

$$u_{lpha L} = \sum_{k=1}^{3} U_{lpha k} \, 
u_{kL} \qquad (lpha = e, \mu, au)$$

three flavor fields:  $u_e$ ,  $u_\mu$ ,  $u_ au$ 

three massive fields:  $\nu_1$ ,  $\nu_2$ ,  $\nu_3$ 

$$\Delta m_{21}^2 + \Delta m_{32}^2 + \Delta m_{13}^2 = m_2^2 - m_1^2 + m_3^2 - m_2^2 + m_1^2 - m_3^2 = 0$$

$$\Delta m^2_{
m SOL} = \Delta m^2_{
m 21} \simeq 7.6 imes 10^{-5} \, {
m eV}^2$$

 $\Delta m^2_{
m ATM} \simeq |\Delta m^2_{
m 31}| \simeq |\Delta m^2_{
m 32}| \simeq 2.4 imes 10^{-3} \, {
m eV^2}$ 

#### **Allowed Three-Neutrino Schemes**



#### different signs of $\Delta m_{31}^2 \simeq \Delta m_{32}^2$

absolute scale is not determined by neutrino oscillation data

- $\blacktriangleright$  Interesting possibility: a new  $\Delta m^2_{\rm SBL}\gtrsim 1\,{\rm eV}^2$
- It has been studied in connection with searches of neutrino oscillations in Short-BaseLine Experiments

$$\frac{L}{E} \lesssim 1 \frac{\mathsf{m}}{\mathsf{MeV}} \qquad \Longrightarrow \qquad \Delta m_{\mathsf{SBL}}^2 \gtrsim 1 \, \mathsf{eV}^2$$

• Necessary introduction of at least one new massive neutrino:  $4-\nu$  Mixing

$$\Delta m_{\rm SBL}^2 = \Delta m_{41}^2$$

## Four-Neutrino Schemes: 2+2 and 3+1



LSND

[PRL 75 (1995) 2650; PRC 54 (1996) 2685; PRL 77 (1996) 3082; PRD 64 (2001) 112007]

 $ar{
u}_{\mu} 
ightarrow ar{
u}_{e} \qquad L \simeq 30 \, \mathrm{m} \qquad 20 \, \mathrm{MeV} < E < 200 \, \mathrm{MeV}$ 



### 2+2 Four-Neutrino Schemes



2+2 Schemes are strongly disfavored by solar and atmospheric data



[Maltoni, Schwetz, Tortola, Valle, New J. Phys. 6 (2004) 122, arXiv:hep-ph/0405172]

$$\eta_s = |U_{s1}|^2 + |U_{s2}|^2$$
 99% CL:   
 $\begin{cases} \eta_s < 0.25 & (\text{solar} + \text{KamLAND}) \\ \eta_s > 0.75 & (\text{atmospheric} + \text{K2K}) \end{cases}$ 

## 3+1 Four-Neutrino Schemes



Effective SBL Oscillation Probability in 3+1 Schemes

$$P_{\nu_{\alpha} \to \nu_{\beta}} = \sin^2 2\vartheta_{\alpha\beta} \sin^2 \left(\frac{\Delta m^2 L}{4E}\right) \qquad (\alpha \neq \beta)$$

 $\sin^2 2\vartheta_{\alpha\beta} = 4|U_{\alpha4}|^2|U_{\beta4}|^2$  No CP Violation!

$$P_{\nu_{\alpha} \to \nu_{\alpha}} = 1 - \sin^2 2\vartheta_{\alpha\alpha} \sin^2 \left(\frac{\Delta m^2 L}{4E}\right)$$

$$\sin^2 2\vartheta_{\alpha\alpha} = 4|U_{\alpha4}|^2 \left(1 - |U_{\alpha4}|^2\right)$$



•  $\nu_e$  disappearance experiments:

$$\sin^2 2\vartheta_{ee} = 4|U_{e4}|^2 \left(1 - |U_{e4}|^2\right) \simeq 4|U_{e4}|^2$$

•  $\nu_{\mu}$  disappearance experiments:

$$\sin^2 2\vartheta_{\mu\mu} = 4|U_{\mu4}|^2 (1-|U_{\mu4}|^2) \simeq 4|U_{\mu4}|^2$$

•  $u_{\mu} \rightarrow \nu_{e} \text{ experiments:}$ 

$$\sin^2 2\vartheta_{e\mu} = 4|U_{e4}|^2|U_{\mu4}|^2 \simeq \frac{1}{4}\sin^2 2\vartheta_{ee}\sin^2 2\vartheta_{\mu\mu}$$

• Upper bounds on  $\sin^2 2\vartheta_{ee}$  and  $\sin^2 2\vartheta_{\mu\mu}$  imply strong limit on  $\sin^2 2\vartheta_{e\mu}$ 

#### $\bar{\nu}_e$ Disappearance



[Savannah River (SRP), PRD 53 (1996) 6054]

# $\stackrel{(-)}{ u}_{\mu}$ Disappearance



 $\stackrel{(-)}{\nu}_{\mu} \rightarrow \stackrel{(-)}{\nu}_{e}$ 



[Maltoni, Schwetz, Tortola, Valle, New J. Phys. 6 (2004) 122, arXiv:hep-ph/0405172]

#### **MiniBooNE** Neutrinos

[PRL 98 (2007) 231801]

 $L \simeq 541 \,\mathrm{m}$  $475 \,\mathrm{MeV} < E \lesssim 3 \,\mathrm{GeV}$  $u_{\mu} 
ightarrow 
u_{e}$ ~10² E ⊽ Events / MeV 6.462E20 POT Data from u rom K<sup>4</sup> from K<sup>C</sup> ficial E>475MeV 90%CL misic  $\Delta \rightarrow N\gamma$ trik 10 other Total Background 0.5 1.5 E<sup>QE</sup> (GeV) Excess Events / MeV data - expected background best-fit  $v_{\mu} \rightarrow v_{e}$ sin<sup>2</sup>20=0.004.  $\Delta$  m<sup>2</sup>=1.0eV<sup>2</sup> 10<sup>-1</sup>  $sin^2 2\theta = 0.2 \wedge m^2 = 0.1 eV^2$ 0.2 -0.2 10<sup>-2</sup> E<sub>v</sub><sup>QE</sup> (GeV) 10-3 10-2 10<sup>-1</sup> sin²(20) [PRL 102 (2009) 101802, arXiv:0812.2243] [arXiv:0901.1648] Low-Energy Anomaly!

# MiniBooNE Antineutrinos

 $\bar{\nu}_{\mu} 
ightarrow \bar{\nu}_{e}$   $L \simeq 541 \,\mathrm{m}$   $475 \,\mathrm{MeV} < E \lesssim 3 \,\mathrm{GeV}$  $10^{2}$ 68% CL 90% CL Events/MeV 99% CL 0.6 Fit Region ······ KARMEN2 90% CI 10 BUGEY 90% CL 04 Constr. Syst. Error Δm<sup>2</sup>| (eV<sup>2</sup>/c<sup>4</sup>) Best Fit (E>475MeV) 0.2 Events/MeV 0.2 Data - expected background Best Fit sin<sup>2</sup>20=0.004. ∆m<sup>2</sup>=1.0eV<sup>2</sup> sin<sup>2</sup>20=0.03. Am<sup>2</sup>=0.3eV<sup>2</sup> 0.1 10<sup>-1</sup> LSND 90% CL 0.0 -0.1 LSND 99% CL 1.4 1.5 3.0 E<sup>QE</sup> (GeV) 10<sup>-2</sup> 10-3 10<sup>-2</sup>  $10^{-1}$ sin<sup>2</sup>(20)

Agreement with LSND  $\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e}$  signal! Similar L/E but different L and  $E \implies$  Oscillations! C. Giunti – Sterile Neutrinos in July 2010 – Presidenza INFN. Roma. 19 July 2010 – 21



- Most of LSND and MiniBooNE  $\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e}$  allowed region excluded by MiniBooNE  $\nu_{\mu} \rightarrow \nu_{e}$
- Tension between LSND and MiniBooNE *v
  <sub>µ</sub>* → *v
  <sub>e</sub>* appearance and *v
  <sub>e</sub>* (Bugey) + <sup>(-)</sup>/<sub>*ν*<sub>µ</sub></sub> (CDHSW+CCFR) disappearance limits
- Marginally preferred:  $\Delta m_{\rm SBL}^2 \simeq 0.9 \, {\rm eV}^2 \quad \sin^2 2 \vartheta_{e\mu} \simeq 2 \times 10^{-3}$

- $m_1 m_2 m_3 \ll m_4 \implies m_4 \simeq \sqrt{\Delta m_{41}^2} = \Delta m_{\rm SBL}^2$
- $\Delta m_{\rm SBL}^2 \simeq 0.9 \, {\rm eV}^2 \implies m_4 \simeq 0.9 \, {\rm eV}$
- Marginally allowed by cosmological limit in  $\Lambda$ CDM (thermalized  $\nu_s$ 's)



[Hamann, Hannestad, Raffelt, Tamborra, Wong, arXiv:1006.5276]

• Note preference for  $N_s > 0$  indicated also by BBN

#### The primordial abundance of <sup>4</sup>He: evidence for non-standard BBN

[Izotov, Thuan, Astrophysical Journal Letters 710 (2010) L67, arXiv:1001.4440]



# 3+2 Five-Neutrino Mixing?



 $7\% \rightarrow 3\%$  in a (3+2) CPV hypothesis

[Georgia Karagiorgi, Neutrino 2010, 14 June 2010]

# **CPT Violation?**

- Masses and mixing of neutrinos and antineutrinos may be different
- In CDHSW mainly  $\nu_{\mu}$ 's
- ► No limit on SBL  $\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e}$ transitions from disappearance experiments

[Barger, Marfatia, Whisnant, PLB 576 (2003) 303]

 LSND and MiniBooNE allowed regions are limited only by KARMEN and Bugey



# **Gallium Anomaly**







[Giunti, Laveder, arXiv:1005.4599]

 $\Delta m_{SBL}^2 \simeq 0.9 \,\mathrm{eV}^2$  is OK  $\sin^2 2\vartheta_{\nu} > \sin^2 2\vartheta_{\bar{\nu}}$  CPT violation?

### MINOS Hint of CPT Violation

LBL  $u_{\mu}$  disappearance

 $E\sim 3\,{
m GeV}$ 

Near Detector at 1.04 km

Far Detector at 734 km



[MINOS, Neutrino 2010, 14 June 2010]

## **Conclusions**

- Existence of sterile neutrinos is possible and likely connected with neutrino mass generation
- Impressive LSND and MiniBooNE agreement on  $\bar{\nu}_{\mu} 
  ightarrow \bar{\nu}_{e}$  signal
- Three experimental tensions:
  - LSND and MiniBooNE  $\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e}$  vs MiniBooNE  $\nu_{\mu} \rightarrow \nu_{e}$
  - LSND and MiniBooNE  $\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e}$  vs  $\bar{\nu}_{e}$  and  $\stackrel{(-)}{\nu}_{\mu}$  disappearance limits
  - Gallium Anomaly ( $\nu_e$  disappearance) vs Bugey ( $\bar{\nu}_e$  disappearance)
- Interpretation of experimental results is difficult:
  - ▶ 3+1 Four-Neutrino Mixing or more?
  - CPT violation?
  - ▶ ...?
- $\Lambda$  CDM cosmology and BBN indicate  $N_s > 0$
- New experiments are needed!

#### MiniBooNE Low-Energy Anomaly



[PRL 102 (2009) 101802, arXiv:0812.2243]

 $\mathsf{Our Hypothesis:} \quad \mathsf{N}^{\mathsf{the}}_{\nu,j} = \mathit{f}_{\nu} \left( \mathsf{P}_{\nu_e \rightarrow \nu_e} \mathsf{N}^{\mathsf{cal}}_{\nu_e,j} + \mathsf{N}^{\mathsf{cal}}_{\nu_\mu,j} \right)$ 

[Giunti, Laveder, PRD 77 (2008) 093002, arXiv:0707.4593; PRD 80 (2009) 013005, arXiv:0902.1992] C. Giunti – Sterile Neutrinos in July 2010 – Presidenza INFN, Roma, 19 July 2010 – 31

$$N_{
u,j}^{ ext{the}} = f_{
u} \left( P_{
u_e 
ightarrow 
u_e} N_{
u_e,j}^{ ext{cal}} + N_{
u_\mu,j}^{ ext{cal}} 
ight)$$

- Estimated 15% uncertainty of the calculated neutrino flux [MiniBooNE, PRD 79 (2009) 072002, arXiv:0806.1449] is consistent with measured ratio 1.21  $\pm$  0.24 of detected and predicted charged-current quasi-elastic  $\nu_{\mu}$  events [MiniBooNE, PRL 100 (2008) 032301, arXiv:0706.0926]
- We fit MiniBooNE ν<sub>e</sub> and ν<sub>μ</sub> data using the info at http://www-boone.fnal.gov/for\_physicists/data\_release/lowe/





- Note similar best-fit values of  $\sin^2 2\vartheta$  and  $\Delta m^2$
- Gallium best fit:  $\sin^2 2\vartheta = 0.27$  and  $\Delta m^2 = 2.09 \,\mathrm{eV}^2$
- MiniBooNE best fit:  $\sin^2 2\vartheta = 0.32$  and  $\Delta m^2 = 1.84 \text{ eV}^2$
- ► Parameter Goodness of Fit of combined analysis:  $\Delta \chi^2_{min} = 0.14 \qquad \text{NDF} = 2 \qquad \text{GoF} = 93\%$

## MiniBooNE + Gallium



[Giunti, Laveder, 2010, arXiv:1005.4599]

 $\chi^{2}_{min} = 2.3 + 9.2$ NdF = 20 GoF = 93% sin<sup>2</sup> 2 $\vartheta$  = 0.27  $\Delta m^{2}$  = 1.92 eV<sup>2</sup>