Sterile Neutrinos and Short-Baseline $ar{
u}_{\mu}
ightarrow ar{
u}_e$ Oscillations Carlo Giunti INFN, Sezione di Torino CSN2, Lecce, 22 November 2010

Standard Model

- Neutrinos are the only massless fermions
- Neutrinos are the only fermions with only left-handed component ν_L

Extension of the SM: Massive Neutrinos

- Simplest extension: introduce right-handed component ν_R
- Neutrinos become massive
- Dirac mass $m_D \overline{\nu_R} \nu_L$ + Majorana mass $m_M \overline{\nu_R^c} \nu_R$
- It is likely that right-handed neutrinos are connected with new physics beyond the Standard Model

Sterile Neutrinos

Light right-handed antineutrinos are called sterile neutrinos

 $\nu_R^c \rightarrow \nu_s$ (left-handed)

- Sterile means no standard model interactions
- Active neutrinos $(\nu_e, \nu_\mu, \nu_\tau)$ can oscillate into sterile neutrinos (ν_s)
- Observables:
 - Disappearance of active neutrinos
 - Indirect evidence through combined fit of data
- Extremely interesting and powerful window on new physics beyond the Standard Model

How many Sterile Neutrinos?

 $e^+e^-
ightarrow Z
ightarrow
u ar{
u} \Rightarrow
u_e
u_\mu
u_ au$ 3 active flavor neutrinos

mixing
$$\Rightarrow \nu_{\alpha L} = \sum_{k=1}^{N} U_{\alpha k} \nu_{kL}$$
 $\alpha = e, \mu, \tau$ $N \ge 3$
no upper limit!

Mass Basis: ν_1 ν_2 ν_3 ν_4 ν_5 \cdots Flavor Basis: ν_e ν_μ ν_τ ν_{s_1} ν_{s_2} \cdots ACTIVESTERILE

Solar and Atmospheric Neutrino Oscillations

Two scales of $\Delta m^2 \iff$ Three-Neutrino Mixing $\Delta m^2_{\text{SOL}} = \Delta m^2_{21} \simeq 7.6 \times 10^{-5} \text{ eV}^2$ $\Delta m^2_{\text{ATM}} \simeq |\Delta m^2_{31}| \simeq |\Delta m^2_{32}| \simeq 2.4 \times 10^{-3} \text{ eV}^2$

- ► New Short-BaseLine Oscillations: $\frac{L}{E} \lesssim 1 \frac{m}{\text{MeV}} \implies \Delta m_{\text{SBL}}^2 \gtrsim 1 \text{ eV}^2$
- Necessary introduction of at least one new massive neutrino: $4-\nu$ Mixing

Mass Basis: $\nu_1 \quad \nu_2 \quad \nu_3 \quad \nu_4$

Flavor Basis: $\nu_e \quad \nu_\mu \quad \nu_\tau \quad \nu_s$

 $\Delta m_{\rm SBL}^2 = \Delta m_{41}^2$

LSND

[PRL 75 (1995) 2650; PRC 54 (1996) 2685; PRL 77 (1996) 3082; PRD 64 (2001) 112007]

 $ar{
u}_{\mu}
ightarrow ar{
u}_{e} \qquad L \simeq 30 \, {
m m}$

 $20 \,\mathrm{MeV} \le E \le 200 \,\mathrm{MeV}$

 $\Delta m^2_{\mathsf{LSND}} \gtrsim 0.2 \, \mathrm{eV}^2 \quad (\gg \Delta m^2_{\mathsf{ATM}} \gg \Delta m^2_{\mathsf{SOL}})$

CMB and LLS in ΛCDM:

[Hamann, Hannestad, Raffelt, Tamborra, Wong, arXiv:1006.5276]

► BBN: Λ

 $N_s = 0.68^{+0.80}_{-0.70}$

[Izotov, Thuan, ApJL 710 (2010) L67, arXiv:1001.4440]

Four-Neutrino Schemes: 2+2 and 3+1

SBL Oscillation Probabilities in 3+1 Schemes

$$P_{\nu_{\alpha} \to \nu_{\alpha}} = 1 - \sin^2 2\vartheta_{\alpha\alpha} \sin^2 \left(\frac{\Delta m^2 L}{4E}\right)$$

$$\sin^2 2 \vartheta_{lpha lpha} = 4 |U_{lpha 4}|^2 \left(1 - |U_{lpha 4}|^2\right)$$

Perturbation of 3ν Mixing

 $|U_{e4}|^2 \ll 1$, $|U_{\mu4}|^2 \ll 1$, $|U_{\tau4}|^2 \ll 1$, $|U_{s4}|^2 \simeq 1$

• ν_e disappearance experiments:

$$\sin^2 2\vartheta_{ee} = 4|U_{e4}|^2 \left(1 - |U_{e4}|^2\right) \simeq 4|U_{e4}|^2$$

• ν_{μ} disappearance experiments:

$$\sin^2 2 artheta_{\mu\mu} = 4 |U_{\mu4}|^2 \left(1 - |U_{\mu4}|^2\right) \simeq 4 |U_{\mu4}|^2$$

• $u_{\mu} \rightarrow \nu_{e} \text{ experiments:}$

$$\sin^2 2\vartheta_{e\mu} = 4|U_{e4}|^2|U_{\mu4}|^2 \simeq \frac{1}{4}\sin^2 2\vartheta_{ee}\sin^2 2\vartheta_{\mu\mu}$$

• Upper bounds on $\sin^2 2\vartheta_{ee}$ and $\sin^2 2\vartheta_{\mu\mu} \Longrightarrow$ strong limit on $\sin^2 2\vartheta_{e\mu}$

$\bar{\nu}_e$ Disappearance

[CHOOZ, Eur. Phys. J. C27 (2003) 331, hep-ex/0301017]

$u_{\mu} \text{ and } \bar{\nu}_{\mu} \text{ Disappearance}$

$u_{\mu} ightarrow u_{e}$ and $ar{ u}_{\mu} ightarrow ar{ u}_{e}$ in 3+1 Schemes

[Maltoni, Schwetz, Tortola, Valle, New J. Phys. 6 (2004) 122, arXiv:hep-ph/0405172]

MiniBooNE Neutrinos

[PRL 98 (2007) 231801]

 $L\simeq541\,{
m m}$ $u_{\mu}
ightarrow
u_{e}$ ~10² E ⊽ Events / MeV Data from µ from K $\Delta \rightarrow N\gamma$ 1.5 10 other Total Background 0.5 E^{QE} (GeV) Excess Events / MeV 0.8 data - expected background best-fit v_u→v_e 0. sin²20=0.004, Δ m²=1.0eV² sin²20=0.2, Δ m²=0.1eV² 10⁻¹ 0.2 -0.2 10⁻² 0.4 0.6 0.8 1.2 1.4 1.5 E_vQE (GeV) 10-3 [PRL 102 (2009) 101802, arXiv:0812.2243]

$475 \,\mathrm{MeV} < E \lesssim 3 \,\mathrm{GeV}$

MiniBooNE Antineutrinos

Agreement with LSND $ar
u_\mu o ar
u_e$ signal!

Similar L/E but different L and $E \implies$ Oscillations!

3+1 Schemes

Strong tension between LSND and MiniBooNE $\bar{
u}_{\mu}
ightarrow \bar{
u}_e$ and

- $\bar{\nu}_e$ (Bugey) $+ \stackrel{(-)}{\nu_{\mu}}$ (CDHSW+ATM) disappearance limits
- KARMEN $\bar{
 u}_{\mu}
 ightarrow ar{
 u}_{e}$ and MiniBooNE $u_{\mu}
 ightarrow
 u_{e}$

PGoF = 0.27%

3+1 Schemes: Strong tension between

- LSND and MiniBooNE $\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e}$
- MiniBooNE $\nu_{\mu} \rightarrow \nu_{e}$

CP Violation: 3+2 Five-Neutrino Mixing?

Implications of new antineutrino results from MiniBooNE

New antineutrino results from MiniBooNE support conclusions in previous sterile neutrino fits:

In a (3+1) fit, antineutrino experiments are still compatible at 20% (from 30%), and still strongly exclude the no oscillations hypothesis.

Compatibility among all datasets (SBL+atm) decreases further:

 $\begin{array}{ll} 0.11\% \rightarrow \textbf{0.04\%} & \quad \mbox{in a (3+1) hypothesis} \\ 7\% \rightarrow \textbf{3\%} & \quad \mbox{in a (3+2) CPV hypothesis} \end{array}$

Preliminary

[Georgia Karagiorgi, Neutrino 2010, 14 June 2010]

Other Approaches

- Evgeny Akhmedov, Thomas Schwetz, arXiv:1007.4171, "MiniBooNE and LSND data: non-standard neutrino interactions in a (3+1) scheme versus (3+2) oscillations": 1 or 2 sterile neutrinos and non-standard interactions
- Sergei Gninenko, arXiv:1009.5536, "A resolution of puzzles from the LSND, KARMEN, and MiniBooNE experiments": radiative decay of a heavy sterile neutrino
- Ann E Nelson, arXiv:1010.3970, "Effects of CP Violation from Neutral Heavy Fermions on Neutrino Oscillations, and the LSND/MiniBooNE Anomalies": heavy sterile neutrinos and non-unitarity of mixing matrix

All these possibilities involve sterile neutrinos!

CPT Violation?

- Masses and mixing of neutrinos and antineutrinos may be different
- In CDHSW mainly ν_{μ} 's
- ► No limit on SBL $\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e}$ transitions from disappearance experiments

[Barger, Marfatia, Whisnant, PLB 576 (2003) 303]

 LSND and MiniBooNE allowed regions are limited only by KARMEN and Bugey

MINOS Hint of CPT Violation

LBL ν_{μ} disappearance

 $E\sim 3\,{
m GeV}$

Near Detector at 1.04 km

Far Detector at 734 km

[MINOS, Neutrino 2010, 14 June 2010]

Phenomenological Approach: Consider $\bar{\nu}$'s Only

 $\chi^{2}_{min} = 14.7$ NdF = 18 GoF = 68% $sin^{2} 2\vartheta = 0.006$ $\Delta m^{2} = 4.57 \text{ eV}^{2}$

Parameter Goodness-of-Fit

 $\Delta \chi^2_{min} = 1.6$ NdF = 2 GoF = 44%

[Giunti, Laveder, arXiv:1010.1395]

 $\chi^{2}_{min} = 25.7$ NdF = 26 GoF = 48% $sin^{2} 2\vartheta = 1.00$ $\Delta m^{2} = 0.052 \text{ eV}^{2}$

Parameter Goodness-of-Fit

 $\Delta \chi^2_{\rm min} = 6.3$ NdF = 4 GoF = 18%

[Giunti, Laveder, arXiv:1010.1395]

Conservation of Probability

$$\sum_{\alpha} P_{\bar{\nu}_{\alpha} \to \bar{\nu}_{e}} = 1$$

$$P_{\bar{\nu}_e \to \bar{\nu}_e} + P_{\bar{\nu}_\mu \to \bar{\nu}_e} + P_{\bar{\nu}_\tau \to \bar{\nu}_e} + P_{\bar{\nu}_s \to \bar{\nu}_e} = 1$$

$$P_{\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e}} = 1 - P_{\bar{\nu}_{e} \rightarrow \bar{\nu}_{e}} - P_{\bar{\nu}_{\tau} \rightarrow \bar{\nu}_{e}} - P_{\bar{\nu}_{s} \rightarrow \bar{\nu}_{e}}$$

$$P_{ar{
u}_{\mu}
ightarrowar{
u}_{e}}\leq 1-P_{ar{
u}_{e}
ightarrowar{
u}_{e}}$$

Reactor $\bar{\nu}_e$ disappearance bound is unavoidable!

 $\chi^{2}_{min} = 77.3$ NdF = 82 GoF = 63% $sin^{2} 2\vartheta = 0.014$ $\Delta m^{2} = 0.46 \text{ eV}^{2}$

Parameter Goodness-of-Fit

 $\Delta \chi^2_{\rm min} = 3.0$ NdF = 2 GoF = 22%

[Giunti, Laveder, arXiv:1010.1395]

Antineutrino Oscillations in 3+1 Schemes

Conclusions

- Existence of sterile neutrinos is a very interesting possibility: powerful window on new physics beyond the Standard Model
- ACDM cosmology and BBN hint at $N_s > 0$
- ▶ Impressive LSND and MiniBooNE agreement on $\bar{
 u}_{\mu}
 ightarrow \bar{
 u}_e$ signal
- Two experimental tensions:
 - LSND and MiniBooNE $\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e}$ vs MiniBooNE $\nu_{\mu} \rightarrow \nu_{e}$
 - ▶ LSND and MiniBooNE $\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e}$ vs $\bar{\nu}_{e}$ and ν_{μ} disappearance limits
- Interpretation of experimental results is difficult:
 - ▶ 3+1 Four-Neutrino Mixing is strongly disfavored (no CP violation)
 - ► CP violation ⇒ 3+2 Five-Neutrino Mixing or more?
 - CPT violation?
 - ▶ ...?
- ▶ New short-baseline neutrino oscillation experiments are needed!

Backup Slides

2+2 Four-Neutrino Schemes

2+2 Schemes are strongly disfavored by solar and atmospheric data

[Maltoni, Schwetz, Tortola, Valle, New J. Phys. 6 (2004) 122, arXiv:hep-ph/0405172]

$$\eta_s = |U_{s1}|^2 + |U_{s2}|^2$$
 99% CL:
 $\begin{cases} \eta_s < 0.25 & (\text{solar} + \text{KamLAND}) \\ \eta_s > 0.75 & (\text{atmospheric} + \text{K2K}) \end{cases}$

3+1 Four-Neutrino Schemes

