Short-Baseline $\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e}$ Oscillations

Carlo Giunti^(a) and Marco Laveder^(b) ^(a) INFN Torino, Italy ^(b) Physics Department, Padova University, Italy

NNN10, Toyama, Japan, 13-16 December 2010

LSND

[LSND, PRL 75 (1995) 2650; PRC 54 (1996) 2685; PRL 77 (1996) 3082; PRD 64 (2001) 112007]

 $ar{
u}_{\mu}
ightarrow ar{
u}_{e} \qquad L \simeq 30 \, \mathrm{m}$

 $20 \,\mathrm{MeV} \le E \le 200 \,\mathrm{MeV}$

MiniBooNE Antineutrinos

[MiniBooNE, PRL 105 (2010) 181801, arXiv:1007.1150]

 $ar{
u}_{\mu}
ightarrow ar{
u}_{e} \qquad L \simeq 541\,\mathrm{m}$

 $475 \,\mathrm{MeV} \le E \lesssim 3 \,\mathrm{GeV}$

Agreement with LSND $\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e}$ signal! Similar L/E but different L and $E \implies$ Oscillations! Giunti & Laveder – Short-Baseline $\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e}$ Oscillations – NNN10, 13-16 Dec 2010 – 3

3+1 Four-Neutrino Schemes

SBL Oscillation Probabilities in 3+1 Schemes

 $(1 - |U_{\alpha 4}|^2)$

3+1 Four-Neutrino Schemes: Strong tension between

- LSND and MiniBooNE $ar{
 u}_{\mu}
 ightarrow ar{
 u}_{e}$
- MiniBooNE $u_{\mu} \rightarrow
 u_{e}$

CPT Violation?[Barger, Marfatia, Whisnant, PLB 576 (2003) 303]Giunti & Laveder - Short-Baseline $\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e}$ Oscillations - NNN10, 13-16 Dec 2010 - 7

 $ar{
u}_{\mu}
ightarrow ar{
u}_{e}$ and $ar{
u}_{e}
ightarrow ar{
u}_{e}$

 $\chi^{2}_{min} = 77.3$ NdF = 82 GoF = 63% $sin^{2} 2\vartheta = 0.014$ $\Delta m^{2} = 0.46 \text{ eV}^{2}$

Parameter Goodness-of-Fit

 $\Delta \chi^2_{\rm min} = 3.0$ NdF = 2 GoF = 22%

[Giunti, Laveder, PRD 82 (2010) 093016. arXiv:1010.1395]

Antineutrino Oscillations in 3+1 Schemes

Conclusions

- Impressive LSND and MiniBooNE agreement on $\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e}$ signal
- Two experimental tensions:
 - LSND and MiniBooNE $\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e}$ vs MiniBooNE $\nu_{\mu} \rightarrow \nu_{e}$
 - LSND and MiniBooNE $\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e}$ vs $\bar{\nu}_{e}$ and ν_{μ} disappearance limits
- CPT-invariant 3+1 Four-Neutrino Mixing is strongly disfavored
- CPT-violating 3+1 Mixing \implies large SBL $\bar{\nu}_{\mu}$ disappearance