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Part I: Theory of Neutrino Masses and Mixing

Dirac Neutrino Masses and Mixing

Majorana Neutrino Masses and Mixing

Dirac-Majorana Mass Term

Number of Flavor and Massive Neutrinos?

Sterile Neutrinos
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Part Il: Neutrino Oscillations

Neutrino Oscillations in Vacuum

CPT, CP and T Symmetries

Two-Neutrino Oscillations

Neutrino Oscillations in Matter
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Part 1ll: Phenomenology

@ Solar Neutrinos and KamLAND

@ Atmospheric and LBL Oscillation Experiments

@ Phenomenology of Three-Neutrino Mixing

@ Absolute Scale of Neutrino Masses
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Part |

Theory of Neutrino Masses and Mixing

Dirac Neutrino Masses and Mixing
Majorana Neutrino Masses and Mixing
Dirac-Majorana Mass Term

Number of Flavor and Massive Neutrinos?

Sterile Neutrinos
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Dirac Neutrino Masses and Mixing

@ Dirac Neutrino Masses and Mixing
@ Dirac Mass
Higgs Mechanism in SM
Dirac Lepton Masses
Three-Generations Dirac Neutrino Masses
Massive Chiral Lepton Fields
Massive Dirac Lepton Fields
Quantization
Mixing
Flavor Lepton Numbers
@ Total Lepton Number
Mixing Matrix
Standard Parameterization of Mixing Matrix
CP Violation

@ Example: Y12 =0
@ Example: 913 = /2
@ Example: m,, = m,,
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Dirac Mass

Dirac Equation: (i — m)v(x) =0 (@ =~"9,)

Dirac Lagrangian: .Z(x) = 7(x) (i§ — m) v(x)

Chiral decomposition: v; = P, v, Vg = Prr, vV=v]+UR
1— 75 1 + ,75
P = Pr =
L 2 ) R 2

P} =P, Pa=Pgr, P +Pr=1, PPr=PrP, =0
L =i, + VRiugr — m (Vg + URyL)
In SM only v; = no Dirac mass
Oscillation experiments have shown that neutrinos are massive

Simplest extension of the SM: add vg
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Higgs Mechanism in SM

Higgs Doublet: ®(x) = <(Z+((;())> B2 = dTd = ¢1¢+ + ¢Er)¢o
0

Higgs Lagrangian: Zhiggs = (DuCD)T(D“(D) —V(|¢?)

Higgs Potential: V/(|®|?) = 12|12 + \|[*
N 2
R2<0and A>0 = V(o)) =2\ (|<D\2 - V?) . with

2
=/
V= X

Vacuum: Vi for [®]? = V; — (P) = % (8)

Spontaneous Symmetry Breaking: SU(2), x U(1)y — U(1)q

Unitary Gauge: ®(x) = % (v +(,‘)—I(x)>
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Dirac Lepton Masses

LL = (:Z‘) €R VR

Lepton-Higgs Yukawa Lagrangian

gH,L = —yéL_chfR —y”L_LaN/R + H.c.

Unitary Gauge

®(x) = % (V +(,)4(X)> ® =iy &* =

Sl

% — 0
SRR

0
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v+ H(x)
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Y W) ("* H(X)> Vg + Hec.
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vt — y
L U tpH -2 _v[vpH+Hc
V2 FRE TR
v v
m= 7 =Y
oyt omy Yy oom,
géH \/E v gllH \/E v

v = (\/EGF) Y2 = 246 GeV
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Three-Generations Dirac Neutrino Masses
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I Ver / V,QL I Yyt
L= L= L=
) l, =e g Uy =y v, =1
lep = €R wR = 7 lrR=Tg
/ / /
Ver VR ViR
Lepton-Higgs Yukawa Lagrangian
Sup == 3 VAT O le+ YT, O] +He
a7/8:e7u77—
Unitary Gauge
0 ~ v+ H(x)
d(x) = = =iy ®* = L
V2 \v 4 H(x) vz 0




v+ H _ -
LhL = — < NG ) Z [Yéz% O lsr+ Yas Vi VER] +H.c.

a7/8267u77—

_ VHEHN15r v  rmwy
L = < N )[ELY lp+ V] Y Vg +He

/ / / /
(% N e N
_ / _ / _ _
El_ = ,UL ER = HR VL = U/J'I- VR = Z/H'R
/ / / /
T TR VL ViR
" /4 " v v v
f Ye ; Ye él, Yeg Yee Ye 14 Ye T
" — / / / v — v v v
EA Ve Ve U Ll B
14 14 14
YTe YT},L YTT Y’Te Y’T}L YT’T
% %
MIZ _ Y/f M/I/ — Y/I/

V2 V2
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H\ r— _
L = — <V\J/r§ > [K’L Yl + ] Y’”u,’.?] +Hc

Diagonalization of Y’* and Y with unitary V/, V5, V/, V%
/L:VLKEL ,R:VngR VLZanL V;?:VEHR

Unitary transformations are allowed
because they leave invariant the kinetic terms in the Lagrangian

Liin = LLiPl) + LRiPlr + V] iy + VRidVR
= V/ligvie + ...

= LLi@l, + LRiLR + DLidv, + DRiJVR
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H\ r— -
L= — <v\—/F§ ) [E’L Yl + v Y”’u};] + H.c.

/ l / l / v / v

H 1o
L =~ (V\% ) @ V(Y Ve + VY V| + e

Vi vt vh = vt Yis = y.das (o, B =e,pu,7)

(07
VY VE =YY Y=y oy (k.j=1,2,3)
Real and Positive y’, Vi
VLT Y/ VR — Y <“— Y, f— VL Y V,i;
18 9 3 9
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Massive Chiral Lepton Fields

er €rR
b=V = br= Vgt = | g
L TR
V1L "R
n =V v =y ng = Vg v = | g
V3L V3R

gH,L

V2
()

3
> Vilartor +> Vi VL vkr

a=e,[,T

H _
S <L> [EL Y lr +TL Y nR} +He

k=1
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Massive Dirac Lepton Fields

ga = EaL + éaR (Oé =6u, T)

vk =viL +vkr (k=1,2,3)

l 3 v
ya vV yk v __
LHL = — e Y Z Uk U Mass Terms
a=e,[,T \/5 k=1 \/§
vh — >y
— Ll b H— X grvi H Lepton-Higgs Couplings
a;ﬁ\@aa ;\/Ekk p ggs Coupling

Charged Lepton and Neutrino Masses

.yav _y;(/V

me =22 (a=e,uT1 my =

Lepton-Higgs coupling oc Lepton Mass

(k=1,2,3)
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Quantization

d’p (B () omipx o (T ()Y o
) = [ s [0 e o ) o) e

h==+1
0 g P (B~ mi) g (p) =
p = Ex=1/p" + my (¢+mk)vgh)(p):0
’j;,f oP(p) = bl (p)
p@z vP(p) = —hv"(p)
(a7 (p). a7 ()} = {57(p). ) ()} = (2m)* 266°(5 — B') o
(4005) 4100)) = 57 (), () =0
{6 (p). b, (p')} = {6 (p). b<h Hp)} =0
{37 (1), BT} (6)} = {30 (p). by ()} =0
{3 (), 510} = (3 (p). B (p)} = 0
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Mixing
Charged-Current Weak Interaction Lagrangian

,Zj(cc) = ———=jiyW,+Hec

2f

Weak Charged Current: Ay :jﬁw_ +j5V7Q

Leptonic Weak Charged Current

= 30 A=) =2 3D "t =20

a:e’u’T a:e’u’T
L=Vit v = Vn
Hyo=2m Ve Vi =2np vyt viar e, = 2mp Ut P g

Mixing Matrix

4
ut = v/t vf u=v/tvy
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Definition: Left-Handed Flavor Neutrino Fields

, Vel
VL:UHL:VLTV,L: Vul
VrL
They allow us to write the Leptonic Weak Charged Current as in the SM:
JyL =200 80=2 ) Tary’lar
a=e,u,T
Each left-handed flavor neutrino field is associated with the
corresponding charged lepton field which describes a massive charged
lepton:
S = 2T’ L + T’ L + 70 L)
In practice left-handed flavor neutrino fields are useful for calculations in

the SM approximation of massless neutrinos (interactions).
If neutrino masses must be taken into account, it is necessary to use
3
Jpo=200U 0 =23 > Un T lar

k=1 a=e,u,7
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Flavor Lepton Numbers

Flavor Neutrino Fields are useful for defining
Flavor Lepton Numbers
as in the SM

(ve,e”) 41 0 O (vS,et) -1 0 O
(™) 0 41 0 || (w5, put) 0 -1 0
(vpy77) 0O 0 411 (v&,77) 0 0 -1

‘L:L6+LN+LT‘

Standard Model: Lepton numbers are conserved
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D D D
5 mge meDM meDT VeR
L =~ (v 7 VD) (e mpp R | | v | +He
Mre mT,u mz. Vrr

Le, Ly, L; are not conserved

L is conserved:  L(vor) = L(vgL) = |AL| =0
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» Leptonic Weak Charged Current is invariant under the global U(1) gauge
transformations

lor — e've Lol Vol — e've Val (04 = emu>7—)

> If neutrinos are massless (SM), Noether's theorem implies that there is,
for each flavor, a conserved current:

36 = Vel Y Var + a7 la D, =
and a conserved charge:
Lo = /d3xjg(x) doLe =0
Lo = [ ol [ 40 (0) — 12 (9) 65
T (271')32E P)ay, \P v P
_ pMt (h)
+f 2@325/72;1 [51(5) o) — B (6) B (5)]
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» Lepton-Higgs Yukawa Lagrangian:

3
v+ H — y
gH,L = — < ) E yﬁ Lot bR + E Y VkLVKR | + H.c.

\/5 a=e,u,T k=1
3
» Mixing: v = Z Uak Vi — VL = Z Uk VaL
k=1 a=e,u,T
3
v+ H — _
=~ () 5 [ Ttan s Y o] e
a=e,u,T k=1

» Invariant for )
lop — €% oty VaL — e var
3 3
lor = €% lar, Y Unkyi vir — €Y Unk v{ vir
k=1 k=1
» But kinetic part of neutrino Lagrangian is not invariant

3
) . .
gkinetic = E VaLI@VaL + E VkRI@VkR
a=e,,T k=1

because 22:1 Uak Y§ Vkr is not a unitary combination of the v4g's
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Total Lepton Number

» Dirac neutrino masses violate conservation of Flavor Lepton Numbers
> Total Lepton Number is conserved, because Lagrangian is invariant
under the global U(1) gauge transformations
Vil — eicp Vil , VKR — eis& VKR (k = ]., 2, 3)
faL — e"“° ﬁaL s faR — e"“° ﬁaR (a = e, U, T)
» From Noether's theorem

p_ZVk’}/ vk + Z I 0,j’ =0

a=e,u,T

Conserved charge: L, = /d3x1a(x) OoLly, =0
3
-y / yiae 2 [A0)40) - 26 6000
k=1 =+1

i Z /27r32E

a=&,u,T h==%1

[ (p) 2l (p) — b (0) B (p)]

C. Giunti — Neutrino Physics — June 2012 — 26



v

v

v

v

v

Mixing Matrix

Leptonic Weak Charged Current: ij,L =2a UMy,

, U U Uss Uei Uer Ues
U= VLJr VLV = U21 U22 U23 = Uul UH2 UH3
Ui U Uss Ui U Ups

Unitary Nx N matrix depends on N? independent real parameters

N(N -1

% =3 Mixing Angles
N=3 = N(N+1

% =06 Phases

Not all phases are physical observables

Only physical effect of mixing matrix occurs through its presence in the
Leptonic Weak Charged Current
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Weak Charged Current: jij, | = 22 Z UL Upi 7 Lol
k=1a= €, T

Apart from the Weak Charged Current, the Lagrangian is invariant
under the global phase transformations (6 arbitrary phases)
vk — ek (k=1,2,3), by — e ly (a=epu,T)

Performing this transformation, the Charged Current becomes

P . — = * 1Yo
_]WJ_—QZ Z Vgl € pkUakep ’}/pfaL

k 1a=e,u,t
jb=2e —i(pr1—pe) E ’ E Uil e —i(k—¢1) P ol (Pa—we) VP UL
w,L ak H,_/
k 1a= 5'7#7 2

There are 5 arbltrary phases of the fields that can be chosen to eliminate
5 of the 6 phases of the mixing matrix

5 and not 6 phases of the mixing matrix can be eliminated because a
common rephasing of all the fields leaves the Charged Current invariant
<= conservation of Total Lepton Number.
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> The mixing matrix contains 1 Physical Phase.

> It is convenient to express the 3 X 3 unitary mixing matrix only in terms
of the four physical parameters:

3 Mixing Angles and 1 Phase
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Standard Parameterization of Mixing Matrix

Vel Uer Ue2 Ues\ [riL
vt | = (Uit U2 Uss | | vaL
VrL Ui Ura Urz/) \vaL
1 0 0 C13 0 513e_’513 c1p s12 0
U= 0 C23 523 0 1 0 —S512 C12 0
0 —S23 (23 —5136'613 0 C13 0 01
C12€13 512€13 s13e7/013

— is is
= | —si2c3—ci2523513€'°13 o3 —s12523513€'°13 sp3€13

S1253— 1202351367013 —crosp3—s1pco3513€7913 o313
. T
Cap = COSU,p Sap = sin,p 0< v, < 0 0<d13<2rm

3 I\/Iixing Angles ’1912, ’1923, ’1913 and 1 Phase 513
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Standard Parameterization

1 0 0 C13 0 513e_i513 C12
U= 0 23 503 0 1 0 —S512
0 —s3 o3 —s13€/%3 0 13 0
Example of Different Phase Convention
1 0 0 C13 0 513 C12
U= 0 C23 5236'623 0 1 0 —S512
0 —5236_'613 3 —s13 0 c3 0
Example of Different Parameterization
/ I a—id) /
Cio sppe” 12 0 1 0 0 3
YA
U= | —s],e ¢y 0 0 i3 shs 0

0 0 1) \0 —shs o) \—sls

C. Giunti — Neutrino Physics — June 2012 — 31
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C12 0
0 1
512 0
C12 0
0 1
0 si5
1 0
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CP Violation

» U#U* — CP Violation
» General conditions for CP violation (14 conditions):
1. No two charged leptons or two neutrinos are degenerate in mass (6
conditions)
2. No mixing angle is equal to 0 or 7/2 (6 conditions)
3. The physical phase is different from 0 or 7 (2 conditions)

» These 14 conditions are combined into the single condition det C # 0
C — _/ [M/l/ M/VT M/f MIET]

detC =-2J (m,% - mzzzl) (m12/3 - m'%l)

—m2) (m2—m2) (m

(m'%?, B 12/2
2 )

» Jarlskog rephasing invariant: J = c12512c23523c123513 sind13 (stand. par.)
[C. Jarlskog, Phys. Rev. Lett. 55 (1985) 1039, Z. Phys. C 29 (1985) 491]
[O. W. Greenberg, Phys. Rev. D 32 (1985) 1841]

[I. Dunietz, O. W. Greenberg, Dan-di Wu, Phys. Rev. Lett. 55 (1985) 2935]
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Example: 9, =0

U = RazRizWh»

cos V12 sin 9101012
Wis = | —sin9ype 012 cos %1
0 0

1 00
1912:0 — W12: 01 0
0 0 1

real mixing matrix U = Rx3Ry3

C. Giunti — Neutrino Physics — June 2012 — 33
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Example:

?913:7T/2

U = RysWi3R12

cos 13 0 sindqze 013
Wis = 0 1 0
—sin13e3 0 cos 13
0 0
3z = 7T/2 - Wis = 0 1
_elt13
0 0

U=

—s12C3—Cio8p3€%13

s12523—Cro 3’13

C12C3—s12523€/013

—c1o53—5s12623€013
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0 0 e 01
U= (|Uuale™ |Uale™= 0
|Ur1 |6'>‘71 |Ur2| elAr 0

)\ul_)\;ﬂ:)\Tl_)\TZiﬂ' )\Tl_)\u].:)\Tz_)\inTr

v — e (k=1,2,3), lo — €%ty (a=e,uT)

emive 0 0 0. 0 e B\ feer o o
U— 0 e im0 |Up1]e" ™11 [Upale™#2 0 0 e*2 0

0 0 e ) \[Unlet [Unledr2 0 0 0 s
0 0 el(—013—pete3)
U= | |Uu|ePm—enter) |y ,|e/Pu2—ente) 0
|Upi|e/Pr1i=er+01) U o|efAr2—pr+e2) 0

p1=0  wu=Aa or = An1 02 =P — A2 = A1 — Ap2
P2 =¢r —AraET =Ar1 — Ao £ = A — Ap2 OK!

0 0 +1
U= IUal [Ugp| 0
‘U‘rl| _‘U7'2| 0
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Example: m,, = m,,

Jlyy =200 UTAP e

U= RpRisWos = jjj, | =20 W RISR), v £

1 0 0
Wos = 1|0 cos 1923 sin Uo3 e 1023
0 —sindyze 9 cos 923

W23I‘IL = n’L R12R13 = U/ — ja/,L = 2I‘I_IL U/Jr ’Yp EL
v» and v3 are indistinguishable
drop the prime = Jy L =2ng Utyr e,

real mixing matrix U= RiRi3

C. Giunti — Neutrino Physics — June 2012 — 36



v

v

v

v

Jarlskog Rephasing Invariant

Simplest rephasing invariants: Uy, |? = UakUni s Uak U, U5 Ug;
%m[UakU;jngUgj] =4J
J= %m[Uer:3UZ2UM3] =Qm |- x o
In standard parameterization:

2 .
J = c12512023523C13513 5iN 013

1
=3 sin 2912 sin 2923 cos Y13 sin 2113 sin 013

Jarlskog invariant is useful for quantifying CP violation in a
parameterization-independent way

All measurable CP-violation effects depend on J.
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Maximal CP Violation

» Maximal CP violation is defined as the case in which |J| has its
maximum possible value

1
6v3

> In the standard parameterization it is obtained for

‘J|max —

1912:1923:71'/4, 513:1/\/§, sin(513:i1

» This case is called Trimaximal Mixing. All the absolute values of the
elements of the mixing matrix are equal to 1/+/3:

1 i .

T 1 %i :F% 1 :i /6 :'l/6 A

:F 5 :F — —e 1T e:FIT(' 1
2V3 2V3 3 V3

1 1 Fin/6  _ xim/6
5 F e 5 F Ve e e 1

Sl
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GIM Mechanism

[S.L. Glashow, J. lliopoulos, L. Maiani, Phys. Rev. D 2 (1970) 1285]

» The unitarity of V/, V,g and V/" implies that the expression of the
neutral weak current in terms of the lepton fields with definite masses is
the same as that in terms of the primed lepton fields:

JoL =281 V[ v + 28 € 7L, + 28k g7 LR
=28/ g VTP Vg + 28] € VTP V£ + 28k BR VAP Vi g
=2g/ MLy’ n +2g €7 0L+ 28R LRV LR

» The unitarity of U implies the same expression for the neutral weak
current in terms of the flavor neutrino fields v; = Uny:

JQL =2g/ v Un’ Ut v, + 2g[£_L’y”£L + 2g,’;,Evp£R
=28/ UL v +2g[ Ll + 28R RV LR
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Lepton Numbers Violating Processes

Dirac mass term allows L, L,, L. violating processes

Example: pu& — e +~, pt— et +et 4 e

woo—e +v

Z U;k Uek = 0 = only part of v, propagator oc my contributes
k

Gemd 3a . m? W~ W
= 1573 337 | 2 Unk Ve ' \
k w /
" ? V) T e
BR U Uk
Suppression factor: e <107t for my SleV
mwy
(BR)the <107 (BR)exp < 107
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Majorana Neutrino Masses and Mixing

@ Majorana Neutrino Masses and Mixing
Two-Component Theory of a Massless Neutrino
Majorana Equation

Majorana Lagrangian

Majorana Antineutrino?

Lepton Number

CP Symmetry

No Majorana Neutrino Mass in the SM
Effective Majorana Mass

Mixing of Three Majorana Neutrinos
Mixing Matrix

o
9
o
9
o
9
o
9
o
9
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Two-Component Theory of a Massless Neutrino

[L. Landau, Nucl. Phys. 3 (1957) 127], [T.D. Lee, C.N. Yang, Phys. Rev. 105 (1957) 1671], [A. Salam, Nuovo Cim. 5 (1957) 299]
» Dirac Equation:  (iv*9, —m)y =0

» Chiral decomposition of a Fermion Field: ¢ =, + g

» Equations for the Chiral components are coupled by mass:

iOubL = myr
i’yu@;ﬂbﬁ’ =myy

» They are decoupled for a massless fermion: Weyl Equations (1929)

i’yua;ﬂ?bL =0
o hr =0

» A massless fermion can be described by a single chiral field ¢, or Vg
(Weyl Spinor).
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v

11 and ¥R have only two independent components: in the chiral
representation

0 XR1

_(0 = 0 _ XR)Z XR2
L <XL> XL1 VR (0 | 0
XL2 0

The possibility to describe a physical particle with a Weyl spinor was
rejected by Pauli in 1933 because it leads to parity violation (¢, = ¥g)

The discovery of parity violation in 1956-57 invalidated Pauli’s reasoning,
opening the possibility to describe massless particles with Weyl spinor
fields = Two-component Theory of a Massless Neutrino (1957)

V — A Charged-Current Weak Interactions = v/

In the 1960s, the Two-component Theory of a Massless Neutrino was
incorporated in the SM through the assumption of the absence of vg

C. Giunti — Neutrino Physics — June 2012 — 43



Majorana Equation

Can a two-component spinor describe a massive fermion? Yes! (E.
Majorana, 1937)

Trick: ®r and v, are not independent: YR = CET

CPy isright-handed: PrCy =Cih  (CrlCt=—v)

Majorana Equation: IO = mCET

Majorana Field: ¢ = +vYr =19 + CET

Majorana Condition: |9 =C% = ¢C

*

) X12
: * Nk
Only two independent components: 1) = (IU XL> = X1
XL XL1

XL2
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> ) = wc implies the equality of particle and antiparticle
» Only neutral fermions can be Majorana particles

» For a Majorana field, the electromagnetic current vanishes identically:

Pryap = PCrp€ = —pTCIACPT = YOy TClep = —Pyp = 0
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Majorana Lagrangian

Dirac Lagrangian
LP = w(ig—m)v
= ULigdu +URiJug — m (WVL —I-V_LVR)
VR — VLC =Cy "

1
S0 Tijv - g (—VLTCTVL —I-V_LCI/_LT)

Majorana Lagrangian
M = Tr iy — g (—VLTCT " +V_LCV_LT>

. m (—F= __
=vlidv, — 5 (VLCVL+VLVLC)
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Majorana Field: v = v, + vf

v

Majorana Condition: v¢ = v

v

1
Majorana Lagrangian: .M = 5?(/(}9 —m)v

v

v

The factor 1/2 distinguishes the Majorana Lagrangian from the Dirac
Lagrangian

» Quantized Dir3ac Neutrino Field:
_ d°p Y () P (o) e=Px 1 pMVT (oY () () wipx
o) = [ arzE 3o [0 e b0 () ) e

» Quantized Majorana Neutrino Field [b(")(p) = a")(p)]

3
)= | (2%7525 P [2P(p) uP(p) e~ + 2P (p) (M) 7]

» A Majorana field has half the degrees of freedom of a Dirac field
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Majorana Antineutrino?

» A Majorana neutrino is the same as a Majorana antineutrino
» Neutrino interactions are described by the CC and NC Lagrangians
g - _
L5 = ~ <VL Yl W+ by v WJ)

gNC_ &  ou, 7
v 2 cos Yw YL VL A

» In practice, since detectable neutrinos are always ultrarelativistic, the
neutrino mass can be neglected in interactions
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v

v

v

In interaction amplitudes we neglect corrections of order m/E

destroys left-handed neutrinos
creates right-handed antineutrinos

Dirac:
__ | destroys right-handed antineutrinos
L\ creates left-handed neutrinos
destroys left-handed neutrinos
creates right-handed neutrinos
Majorana:

__ | destroys right-handed neutrinos
v .
creates left-handed neutrinos

Common definitions:
Majorana neutrino with negative helicity = neutrino
Majorana neutrino with positive helicity = antineutrino
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Lepton Number
(> — 1>

v, = L=+1 I/LC — L=-1

. m /—~=
M :V_LI@I/L—E (VLCVL+V_LVLC)

Total Lepton Number is not conserved: AL =42

Best process to find violation of Total Lepton Number:

Neutrinoless Double-5 Decay
N(AZ) - N(A Z+2)+2e +28  (BBy,)
N(AZ) = N(AZ-2)+2et +26c (88
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CP Symmetry

» Under a CP transformation

Ucpri(x)Ucp = &7 70 v (xp)

Ucprf ()Ucp = —€57 70 vi(xp)

UepPE(x)Ucp = &7 vE () 1°
Ucprf (0)Ucp = =657 P(xe) 7

with |ESPP2 = 1, xt = (x°,%), and xf = (x°, %)

» The theory is CP-symmetric if there are values of the phase £5P such

that the Lagrangian transforms as
UcpZ(x)Ucp = L (xp)

in order to keep invariant the action | = /d4x Z(x)
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» The Majorana Mass Term

I = 5 m [ () + T vE ()]
transforms as

m |~ (€SP 70 v ()
~(&57 2 E () v )|

1
Ucp mass(X)UCP - = 5

> Ucpgmass

(x)Ucp = Zn:

mass

(xp) for €SP = 4

» The one-generation Majorana theory is CP-symmetric

» The Majorana case is different from the Dirac case, in which the CP
phase £CP is arbitrary
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No Majorana Neutrino Mass in the SM

» Majorana Mass Term o [V,_T ct v — I/_LCV_/_T} involves only the neutrino
left-handed chiral field v, which is present in the SM (one for each
lepton generation)

» Eigenvalues of the weak isospin /, of its third component /3, of the
hypercharge Y and of the charge Q of the lepton and Higgs multiplets:

Il K |Y|Q=h+T

14 1/2 0

lepton doublet L, = 1/2 -1
0 ~1/2 -1
lepton singlet lr 0 0 |-2 -1
X 1/2 1

Higgs doublet ®(x) = 0+ 1/2 / +1
¢o(x) —1/2 0

> Z/LT C'vy has 5 =1 and Y = —2 = needed Higgs triplet with Y =2
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Effective Majorana Mass

Dimensional analysis:  Fermion Field ~ [E]*/? Boson Field ~ [E]
Dimensionless action: | = /d4x$(x) — Z(x) ~ [E]*

Kinetic terms:  idy ~ [E]", ((‘9uqb)Jr Mo ~ [E]*

Mass terms:  m¢ip ~ [E]*,  m?¢plo ~ [E]*

CC weak interaction: g oy £, W, ~ [E]*

Yukawa couplings:  y L, &l ~ [E]*

Product of fields &, with energy dimension d = dim-d operator
Loy = ConOa = Cuy~IE]"°

O4~4 are not renormalizable
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SM Lagrangian includes all 0y<4 invariant under SU(2); x U(1)y
SM cannot be considered as the final theory of everything
SM is an effective low-energy theory

It is likely that SM is the low-energy product of the symmetry breaking
of a high-energy unified theory

It is plausible that at low-energy there are effective non-renormalizable

ﬁd>4 [S. Weinberg, Phys. Rev. Lett. 43 (1979) 1566]

All 04 must respect SU(2), x U(1)y, because they are generated by the
high-energy theory which must include the gauge symmetries of the SM
in order to be effectively reduced to the SM at low energies
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O g4 is suppressed by a coefficient M*~9, where M is a heavy mass
characteristic of the symmetry breaking scale of the high-energy unified
theory:

85 86
L = % == 0O = 0,
VRGN VERC

: cc _ _
Analogy with Zﬁe(ff ) Gr (Very”er) (ervpveL) + - -
86 GF &

= —
M2 2 8md,

2

O — (Terv"er) (€LvpveL) + - -
M*=9 is a strong suppression factor which limits the observability of the
low-energy effects of the new physics beyond the SM

The difficulty to observe the effects of the effective low-energy
non-renormalizable operators increase rapidly with their dimensionality

Os = Majorana neutrino masses (Lepton number violation)

U¢ = Baryon number violation (proton decay)
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» Only one dim-5 operator:

Os = (L] oo ®)CT (T 0o L))+ H.c.

1
=5 (L] CTopd L)) (®T 025 ®) +Hec

L = 2M (L] CTopGLy)-(®T 007 )+ Hec

» Electroweak Symmetry Breaking: & = <(§;> SEZ:%%:Z} (V/(i/§>

2
Symmetry M 1 gsv T ot g5V
> L ———— L = = v C'vp+He — |m=
> Breaking mass 2 M L L M
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» The study of Majorana neutrino masses provides the most accessible
low-energy window on new physics beyond the SM

V2 m2D
> mX — —_—

x natural explanation of smallness of neutrino masses

(special case: See-Saw Mechanism)

» Example: mp ~ v ~ 10?>GeV and M ~ 10*® GeV = m ~ 107?eV
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Mixing of Three Majorana Neutrinos

1
M =T CTME Y+ Hee

V;L mass 2
> U = Z/LL .
/
UTL :E E CMﬁV/BL"i_HC

a,f=e,u,T

» In general, the matrix M’ is a complex symmetric matrix
L L
ZUQLC M ﬁV,BL = ZV/BL MO[,B CT

T L
Z”,IBLC Mag Var = Z” C" M5 v

MLy =ML, — ME=mtT
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v

v

v

v

v

v

1
M ="My +He

mass 2

1
vi=Vn = LM =_uvT(VHTCTM- VY +HC

mass 2
(V)T Mt vy =M, My = m oy (k,j=1,2,3)
V1L
Left-handed chiral fields with definite mass: n; = VL”T V,’_ = | vy
I
1
L = 5 (n[cT Mn, —n_LI\/lCnLT>
13
= 5 ka (V,Z—LCT ViL _V_kLCVIZ—L)
k=1
Majorana fields of massive neutrinos: vy = vy + I/kCL I/kC = Uy
141 1 3 1
3 =
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v

v

Mixing Matrix

Leptonic Weak Charged Current:

Jyp=2aUNyP e with  U=VV

Definition of the left-handed flavor neutrino fields:

; Vel
I/L:UI’IL: VLTV/L: i
VrL

Leptonic Weak Charged Current has the SM form

Syl =209l =2 Y Tyl

a=e,[,T

Important difference with respect to Dirac case:
Two additional CP-violating phases: Majorana phases
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» Majorana Mass Term ZM

3
1
=5 Z my Z/,Z—L CT vk + H.c. is not invariant
k=1
under the global U(1) gauge transformations
vkl — € vy (k=1,2,3)

» Left-handed massive neutrino fields cannot be rephased in order to
eliminate two Majorana phases factorized on the right of mixing matrix:

1 0 0
pM= (0 ¥ o
0 0 e

» UP is analogous to a Dirac mixing matrix, with one Dirac phase

» Standard parameterization:

c12€13 S12€13 size” 1 1 0 0
is is ix
U= | —si2c3 — cros3s13€’”®  crocs — siose3size’™s $23C13 0 e 0
is iS5 i
51253 — Cl2C23513€'°1 —C12523 — S12023513€"°13 c23C13 0 0 €%

» Jarlskog rephasing invariant: J = C12$12C23523C123513 sind13
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DM = diag(e’.)‘1 , e ei)‘3>, but only two Majorana phases are physical

All measurable quantities depend only on the differences of the
Majorana phases

by — %0, = e — /(M%)
e/(M=%) remains constant

Our convention: \; =0 =— DM = diag(l, e ei)‘3)

CP is conserved if all the elements of each column of the mixing matrix
are either real or purely imaginary:
d13=0orm and X, =0ormw/2or7or3m/2
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Dirac-Majorana Mass Term

@ Dirac-Majorana Mass Term
One Generation

Real Mass Matrix

Maximal Mixing

Dirac Limit

Pseudo-Dirac Neutrinos
See-Saw Mechanism
Majorana Neutrino Mass?
Fundamental Fields in QFT
Right-Handed Neutrino Mass Term
@ Singlet Majoron Model

@ Three-Generation Mixing

C. Giunti — Neutrino Physics — June 2012 — 64

¢ € ¢ ¢ ¢ ¢ ¢ ¢

<




One Generation

If vg exists, the most general mass term is the

Dirac-Majorana Mass Term

D+M D L R
jma—is_s = "gmass + "g/ﬂmass + fmass
LD = _—mpURy +Hec Dirac Mass Term
1
-i”rﬁass =5 mg VLT C'v, +Hec Majorana Mass Term
1
92”“5355 =3 mg V,I ¢t vr +H.c. New Majorana Mass Term!
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» Column matrix of left-handed chiral fields: N, = (Zl(‘;) = ( L >

R CTR'
1
Lmats' =5 N[ CTMNL +He M= (ZS Zi)

» The Dirac-Majorana Mass Term has the structure of a Majorana Mass
Term for two chiral neutrino fields coupled by the Dirac mass

» Diagonalization: n; = Ut N, = (ZM)
2L

uTmu=(m™ O Real m, >0
my

0
DM _ 1 3 T ot 1 _
> gmass :E mka[_C VkL"‘H-C-:—E E my Vg Vi
k=1,2 k=1,2
C
Vg = Vil + Vi
» Massive neutrinos are Majorana! Ve = vf
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Real Mass Matrix

CP is conserved if the mass matrix is real: M = M*
mg m . -

M = < L D> we consider real and positive mg and mp and real m;
mp mgr

A real symmetric mass matrix can be diagonalized with U = O p

[ cos?y  sind _(p1 O 2
O_<—sinz9 cosz9> p—<0 p2> P=+1

/
2
OTIVI(’):<m1 0,) tan29 = — 0 __
0 my mr — mgp

1
m§71 = 5 |:mL + mp £ \/(mL — mR)2 —|-4-m2D:|

m is negative if mymg < mj

UTMU = pTOTMOp = (1T 0 = o m|
=p r=1"" P2 = | Mk = Pj My
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» mj is always positive:

1
m2:m/2:§ [mL+mR+\/(mL—mR)2+4m2D}

> If mpmg > m2D, then m}; >0 and p? =1

1
m1:5 [mL+mR—\/(mL—mR)2+4m2D]

cos?  sind
pp=landpp=1 = U_<_sin79 cos79>

> If mpmg < m3, then mj <0 and p? = —1

my = 5 |:\/(mL — mg)? +4md — (m, + mR)]

b —iand pp=1 — U:</cosz9 S|n19>

—isintY cosd
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» If Am? is small, there are oscillations between active v, generated by v,
and sterile vs generated by I/,gi

Am? L
P, (L, E) = sin®29 sin? <L>

4E

Am? =m3 — m? = (m, + mg) \/(mL— mR)2+4m2D
» It can be shown that the CP parity of vy is {EP = ipi:
Ucprk(x)Ucp = i pi7° vi(xp)

» Special cases:
» m = mgr =— Maximal Mixing
» m =mr =0 = Dirac Limit
> |my|,mr < mp = Pseudo-Dirac Neutrinos

» m =0 mp < mgp = See-Saw Mechanism
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Maximal Mixing

v =mr/4
/
my 1 = mp £ mp

pi=+1, m=m —mp if mg>mp
p%:—l, m=mp—mg if mg<mp
my = myg + mp

m; < mp
1% = (l/ VC)
1L — —= L— VR
V2
1 c
vy = ﬁ (VL + I/R)
—i
vy = vyL —l—l/lcl_ = % [(1/1_ +vR) — (I/LC —I—Z/,g>]
1
Uy = Upp —|—I/2C)_ = % |:(Z/L —|—Z/R) + (I/LC —|—l/’g>]
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v

Dirac Limit

p; =1, my = mp

p% = +1’ mp = mp

The two Majorana fields 1 and v, can be combined to give one Dirac
field:

/

.
v=—\(rn+t1n)=v +v
\/5( 1 2) L R

A Dirac field v can always be split in two Majorana fields:
1
v=a (=) (),
i ( .I/—I/C>+ 1 <I/+I/C> 1 (i1 + 1)
- (= — | —— ) = —= (i1 + v
va\ o ve2 ) velve ) v

A Dirac field is equivalent to two Majorana fields with the same mass
and opposite CP parities
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Pseudo-Dirac Neutrinos

“mL\,mR<<mD‘

m; + mg
méylzfimD
mg+m
m<0 — pi=-1 — m2,1:mD:|:%

The two massive Majorana neutrinos have opposite CP parities and are
almost degenerate in mass

The best way to reveal pseudo-Dirac neutrinos are active-sterile neutrino
oscillations due to the small squared-mass difference

Am? ~ mp (mg + mg)

The oscillations occur with practically maximal mixing:

2
tan29 = ™ 51 — ¥~ /4

mgr —mg
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See-Saw Mechanism

[Minkowski, PLB 67 (1977) 42; Yanagida (1979); Gell-Mann, Ramond, Slansky (1979); Mohapatra, Senjanovic, PRL 44 (1980) 912]

>

>

>

v

v

v

v

‘mL:0 mD<<mR‘

L is forbidden by SM symmetries = m; = 0

mp < v~ 100 GeV is generated by SM Higgs Mechanism
(protected by SM symmetries)

mpg is not protected by SM symmetries =— mr ~ Mgyt > v

2 2
/ mp 2 Mp
my ~ ——— =—-1, mx~—
1 - — P; ) 1 -
/
My >~ MR P 1’ my >~ mg

Natural explanation of smallness of neutrino masses

.. . m

Mixing angle is very small: tan 29 = 2 2«1
mg

v1 is composed mainly of active v;: vy >~ —ivy;

15 is composed mainly of sterile vg: vy >~ u,g
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Connection with Effective Lagrangian Approach

» Dirac—Majorana neutrino mass term with m; = O:
LPM — _mp (TR + 7L vR) + % mgr (V;-CT VR + V,T?C VE)
» Above the electroweak symmetry-breaking scale:
LOTM — (W&DT Ly +L_L$I/R) + % mg (V;-CT VR + VLCV,’Q)

» If mp > v = vg is static = kinetic term in equation of motion can

be neglected:
8$D+M

e mrvg Ct—y/ L, ®

0

1 v)2
5 (;) (L] oo ®)CT (&7 0p L)) + Hec.
R
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L = %(LZ@CD)CT (T o5 L)+ Hee
1 v\2
LM~ -3 (fmz (L] oo ®)CT (®T 0n L)) +Hec
v\2
g:_(y2) M= mp

> See-saw mechanism is a particular case of the effective Lagrangian

approach.

» See-saw mechanism is obtained when dimension-five operator is
generated only by the presence of vg with mg ~ M.

> In general, other terms can contribute to .%5.
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Majorana Neutrino Mass?

V3 s c t

R N

1074 1072 1072 107* 10° 10' 10% 10® 10* 10° 106 107 108 109 1010 10" 102
m [eV]

known natural explanation of smallness of v masses

See-Saw Mechanism (if vg's exist)

New High Energy Scale M = { 5-D Non-Renormaliz. Eff. Operator
Majorana v masses <= |AL| =2 <= [, decay

both imply _ Mz
see-saw type relation m, ~

Majorana neutrino masses provide the most accessible
window on New Physics Beyond the Standard Model
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Fundamental Fields in QFT

» Each elementary particle is described by a field which is an irreducible
representation of the Poincaré group (Lorentz group + space-time
translations).

» In this way

» Under Poincaré transformation an elementary particle remains itself.
» Lagrangian is constructed with invariant products of elementary fields.
» Spinorial structure of a particle is determined by its representation under

the restricted Lorentz group of proper and orthochronous Lorentz
transformation (no space or time inversions).
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v

v

v

v

Restricted Lorentz group is isomorphic to SU(2) x SU(2).
Classification of fundamental representations:
(0,0) scalar ¢
(1/2,0) left-handed Weyl spinor x; (Majorana if massive)

(0,1/2) right-handed Weyl spinor x g (Majorana if massive)

All representations are constructed combining the two fundamental Weyl
spinor representations.

(1/2,1/2) four-vector v* (irreducible)

(1/2,0) +(0,1/2) four-component Dirac spinor 1) (reducible)

Two-component Weyl (Majorana if massive) spinor is more fundamental
than four-component Dirac spinor.
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» Two-component left-handed Weyl (Majorana if massive) spinor:

_ [ XLu
L <XL2>

» Two-component right-handed Weyl (Majorana if massive) spinor:

_ ([ XR1
R <XR2>

XR1

» Four-component Dirac spinor: 1) = (XR> = | AR
XL XL1

XL2
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» Lorentz transformation: vh = VI = NE, VY

guw Ny N o = 8o g = diag(1,-1,-1,-1)

> Restricted Lorentz transformation: ~ A¥, = [e¥]") Wy = —Wyp
0 %1 V2 V3
w o —Vi 0 93 —92
By = — Vo —93 0 91

—v3 60 —6; O
> 6 parameters:
» 3 for rotations: 6 = (61, 02,03)
» 3 for boosts: V= (v, va, v3)

ol (0-i7)3/2

— oi(0+iv)3/2

XL — XL =Noxe AL
XR = Xr = NRXR AR
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» Four-component form of two-component left-handed Weyl (Majorana if
massive) spinor:

» Majorana mass term:

1 1 .
f,ﬁass = §meZ—CTwL +H.c = —EmLXZ—'UZXL + H.c.
four-component form two-component form
(1/2,0) x (1/2,0) = (1,0) + (0,0) o2 is antisymmetric!

symmetric antisymmetric

» Anticommutativity of spinors is necessary, otherwise

.
X[ io*xL = (XLTffszL) =—x[io*x =0
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Right-Handed Neutrino Mass Term

Majorana mass term for v respects the SU(2), x U(1)y Standard Model
Symmetry!

1 _
M _ -5 m (VI%Z/R—I—WV,C?)

Majorana mass term for vr breaks Lepton number conservation!

» Lepton number can be explicitly broken

» Lepton number is spontaneously broken
locally, with a massive vector boson coupled

Three possibilities: to the lepton number current

» Lepton number is spontaneously broken
globally and a massless Goldstone boson
appears in the theory (Majoron)

\
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Singlet Majoron Model

[Chikashige, Mohapatra, Peccei, Phys. Lett. B98 (1981) 265, Phys. Rev. Lett. 45 (1980) 1926]

Lo=—yg(LLOvgr+TR® L) —— —mp (VL vg+TVRVL)

o ()0 -
Ly = —ys(nvgvr +n' TR vR) v —3 mg (Vi vr + TR VE)
Y
_ ) 1,
n=2 1/2(<77>+p+IX) ['mass:__(l’fV_R) ’T?D ﬂg Zé + H.c.
2 R

2

mpg > mp — See-Saw: |my ~ %

scale of L violation EW scale R

p = massive scalar, x = Majoron (massless pseudoscalar Goldstone boson)

The Majoron is weakly coupled to the light neutrino

. 2
I . mp __ _ mp\ __
Ly—y = 2 X |72y ve — — [V2’75V1 + V175V2) + <—> V1’75V1]
mg mg

V2
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Three-Generation Mixing

D+M __ D L R
jmass - zmass + "g/ﬂmass + fmass

s=1 a=e,u,7

1
Loo_ Z 1T ot pgL
gmass = 5 I/O(LC Maﬁ Vﬂl_ + H.C.
a7ﬁ:e7“77—
1 &
R _ Z IT ot gR ./
gmass = E VSR C MSS/ VS/R + H.C.
s,s'=1
1C
/ V;L V1R
r [V r / 1C _ .
L=\ ¢ V=Y Vr = :
R v 1€
TL NsR

1 L
LR = SNTCIMPMNG +He MM = A";’D
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Diagonalization of the Dirac-Majorana Mass Term = massive
Majorana neutrinos

See-Saw Mechanism = right-handed neutrinos have large Majorana
masses and are decoupled from the low-energy phenomenology.

If all right-handed neutrinos have large Majorana masses, at low energy
we have an effective mixing of three Majorana neutrinos.

It is possible that not all right-handed neutrinos have large Majorana
masses: some right-handed neutrinos may correspond to low-energy
Majorana particles which belong to new physics beyond the Standard
Model (as a light neutralino in supersymmetric models).

Light anti-vg are called sterile neutrinos

VR— Vsl (left-handed)
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Number of Flavor and Massive Neutrinos?

~10° —_
-é T T T T T T i Py
o
o kel
B4 £l ALEPH
5% e'e ~ hadrons 3 DELPH
5] L3
I OPAL
103k 20
E + average measurements,
error barsincreased
F by factor 10
2| CESR
107 EBoRis 1, 10
L A I
N o TRISTAN SLC
g o LEPI  LEPIl 3 o= ‘ ‘ ‘ .
0 20 40 60 80 100 120 140 160 180 200 220 86 88 %0 22 G 9\;‘
Centre-of-mass energy (GeV) cm [ € ]

[LEP, Phys. Rept. 427 (2006) 257, arXiv:hep-ex/0509008]

Tz= > Tz,4+Y Tzqg+ i Fiw = Ny T 2505
l=e,u,m qF#t

| N, = 2.9840 =+ 0.0082
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_ invisible —
ete” - Z E Vallg = Ve Vy Vr

a=active

3 light active flavor neutrinos

N
mixin = U e N=3
Vol = E v o= T .
& ok akPkL  Hh no upper limit!
k=1
Mass Basis: V1 Vo U3 Uy Us
Flavor Basis: Ve Vy Vr Us Vs,

ACTIVE STERILE

N
Vol = E UakaL o =e, U, T,5,5,...
k=1
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Sterile Neutrinos

Sterile means no standard model interactions
Obviously no electromagnetic interactions as normal active neutrinos

Thus sterile means no standard weak interactions
But sterile neutrinos are not absolutely sterile:
» Gravitational Interactions

» New non-standard interactions of the physics beyond the Standard Model
which generates the masses of sterile neutrinos

Active neutrinos (ve, v, v-) can oscillate into sterile neutrinos (vs)

Observables:
» Disappearance of active neutrinos
> Indirect evidence through combined fit of data

Powerful window on new physics beyond the Standard Model
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