Neutrino Masses and Mixing Carlo Giunti

16th Lomonosov Conference on Elementary Particle Physics Moscow State University 22-28 August 2013

Experimental Evidences of Neutrino Oscillations

Three-Neutrino Mixing Paradigm

$$U = \begin{pmatrix} c_{12}c_{13} & s_{12}c_{13} & s_{13}e^{-i\delta_{13}} \\ -s_{12}c_{23} - c_{12}s_{23}s_{13}e^{i\delta_{13}} & c_{12}c_{23} - s_{12}s_{23}s_{13}e^{i\delta_{13}} & s_{23}c_{13} \\ s_{12}s_{23} - c_{12}c_{23}s_{13}e^{i\delta_{13}} & -c_{12}s_{23} - s_{12}c_{23}s_{13}e^{i\delta_{13}} & c_{23}c_{13} \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & e^{i\lambda_2} & 0 \\ 0 & 0 & e^{i\lambda_3} \end{pmatrix}$$

$$= \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13}e^{-i\delta_{13}} \\ 0 & 1 & 0 \\ -s_{13}e^{i\delta_{13}} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & e^{i\lambda_2} & 0 \\ 0 & 0 & e^{i\lambda_3} \end{pmatrix}$$
$$\frac{\vartheta_{23}}{\vartheta_{23}} = \vartheta_{A} \qquad \text{Chooz, Palo Verde} \qquad \vartheta_{12} = \vartheta_{S} \qquad \beta\beta_{0\nu}$$
$$\sin^2 \vartheta_{23} \simeq 0.4 - 0.6 \qquad \text{T2K, MINOS} \qquad \sin^2 \vartheta_{12} = 0.30 \pm 0.01$$
$$\text{Daya Bay, RENO}$$
$$\sin^2 \vartheta_{13} = 0.023 \pm 0.002$$

$$\frac{\delta \sin^2 \vartheta_{23}}{\sin^2 \vartheta_{23}} \simeq 40\% \qquad \frac{\delta \sin^2 \vartheta_{13}}{\sin^2 \vartheta_{13}} \simeq 10\% \qquad \frac{\delta \sin^2 \vartheta_{12}}{\sin^2 \vartheta_{12}} \simeq 5\%$$

Global Comparison of ϑ_{13} Measurements

Daya Bay - 22 August 2013

[Soeren Jetter, NuFact 2013]

C. Giunti – Neutrino Masses and Mixing – Lomonosov 2013 – 28 August 2013 – 8/29

Open Problems

- ► $\vartheta_{23} \stackrel{<}{_{>}} 45^{\circ}$?
 - Atmospheric ν , T2K, NO ν A,
- Mass Hierarchy ?
 - NO ν A, Atmospheric ν , Day Bay II, RENO-50, Supernova ν , ...
- CP violation ?
 - ► NOvA, LAGUNA-LBNO, LBNE (USA), HyperK, ...
- Absolute Mass Scale ?
 - ▶ β Decay, Neutrinoless Double- β Decay, Cosmology, . . .
- Dirac or Majorana ?
 - Neutrinoless Double- β Decay, . . .
- Beyond Three-Neutrino Mixing ? Sterile Neutrinos ?

Mass Hierarchy

- 1. Matter Effect: Atmospheric, Long-Baseline, Supernova Experiments
 - $\nu_e \leftrightarrows \nu_\mu \text{ MSW resonance:} \quad V = \frac{\Delta m_{13}^2 \cos 2\vartheta_{13}}{\frac{2E}{2E}} \iff \Delta m_{13}^2 > 0 \quad \text{NH}$ $\nu_e \leftrightarrows \bar{\nu}_\mu \text{ MSW resonance:} \quad V = -\frac{\Delta m_{13}^2 \cos 2\vartheta_{13}}{2E} \iff \Delta m_{13}^2 < 0 \quad \text{IH}$
- 2. Phase Difference: Reactor $\bar{\nu}_e \rightarrow \bar{\nu}_e$: JUNO Daya Bay II (China), RENO-50 (Korea)

S.T. Petcov et al., PLB533(2002)94 S.Choubey et al., PRD68(2003)113006 J. Learned et al., hep-ex/0612022

L. Zhan, Y. Wang, J. Cao, L. Wen, PRD78:111103, 2008 PRD79:073007, 2009

Precision energy spectrum measurement: Looking for interference between P₃₁and P₃₂ → relative measurement

[Miao He, NuFact 2013]

C. Giunti – Neutrino Masses and Mixing – Lomonosov 2013 – 28 August 2013 – 11/29

CP Violation

$$P_{\nu_{\alpha} \to \nu_{\beta}} - P_{\bar{\nu}_{\alpha} \to \bar{\nu}_{\beta}} = -16J_{\alpha\beta}\sin\left(\frac{\Delta m_{21}^2 L}{4E}\right)\sin\left(\frac{\Delta m_{31}^2 L}{4E}\right)\sin\left(\frac{\Delta m_{32}^2 L}{4E}\right)$$
$$J_{\alpha\beta} = \operatorname{Im}(U_{\alpha 1}U_{\alpha 2}^*U_{\beta 1}^*U_{\beta 2}) = \pm J$$
$$J = s_{12}c_{12}s_{23}c_{23}s_{13}c_{13}^2\sin\delta_{13}$$

Necessary conditions for observation of CP violation:

- Sensitivity to all mixing angles: ϑ_{12} , ϑ_{23} and smaller ϑ_{13}
- ► Sensitivity to oscillations due to small Δm_{21}^2 and large Δm_{31}^2 $(\Delta m_{32}^2 = \Delta m_{31}^2 - \Delta m_{21}^2)$

Absolute Scale of Neutrino Masses

Effective Neutrino Mass in Beta-Decay

 $m_{\beta}^2 = |U_{e1}|^2 m_1^2 + |U_{e2}|^2 m_2^2 + |U_{e3}|^2 m_3^2$

Majorana ν : Neutrinoless Double-Beta Decay

$$(T_{1/2}^{0\nu})^{-1} = G_{0\nu} |\mathcal{M}_{0\nu}|^2 m_{\beta\beta}^2$$

Effective Majorana Mass

$$m_{\beta\beta} = \left| \sum_{k=1}^{3} U_{ek}^2 m_k \right|$$

$$\begin{split} & \mathsf{EXO} + \mathsf{KamLAND-Zen} \\ {}^{136}_{54} \mathsf{Xe} \to {}^{136}_{56} \mathsf{Ba} + e^- + e^- \\ {}^{[\mathsf{PRL 109 (2012) 032505; \ \mathsf{PRL 110 (2013) 062502]}} \\ & |m_{\beta\beta}| \lesssim 0.12 - 0.25 \, \mathrm{eV} \quad (90\% \mathrm{C.L.}) \end{split}$$

 $\begin{array}{c} {\sf GERDA} \\ {}^{76}_{32}{\sf Ge} \to {}^{76}_{34}{\sf Se} + e^- + e^- \\ {}^{[arXiv:1307.4720]} \\ |m_{\beta\beta}| \lesssim 0.2 - 0.6 \, {\sf eV} \quad (90\% {\sf C.L.}) \end{array}$

Effective Majorana Neutrino Mass

Beyond Three-Neutrino Mixing: Sterile Neutrinos

Sterile Neutrinos from Physics Beyond the SM

- ► Neutrinos are special in the Standard Model: the only neutral fermions
- In extensions of SM neutrinos can mix with non-SM fermions

► SM:
$$L_L = \begin{pmatrix} \nu_L \\ \ell_L \end{pmatrix}$$
 $\widetilde{\Phi} = i\sigma_2 \Phi^* = \begin{pmatrix} \phi^0 \\ \phi^- \end{pmatrix} \xrightarrow{\text{Symmetry}} \begin{pmatrix} v/\sqrt{2} \\ 0 \end{pmatrix}$

- SM singlet $\overline{L_L}\Phi$ can couple to new singlet chiral fermion field ν_R (right-handed neutrino) related to physics beyond the SM
- Known examples: SUSY, new symmetries, extra dimensions, mirror world, ... [see http://www.nu.to.infn.it/Sterile_Neutrinos/]
- Dirac mass term $\sim \overline{L_L} \widetilde{\Phi} \nu_R + Majorana mass term <math>\sim \overline{\nu_R^c} \nu_R$

Light Sterile Neutrinos

• Light anti- ν_R are called sterile neutrinos

 $\nu_R^c \rightarrow \nu_{sL}$ (left-handed)

Sterile means no standard model interactions

[Pontecorvo, Sov. Phys. JETP 26 (1968) 984]

- Active neutrinos $(\nu_e, \nu_\mu, \nu_\tau)$ can oscillate into light sterile neutrinos (ν_s)
- Observables:
 - Disappearance of active neutrinos (neutral current deficit)
 - Indirect evidence through combined fit of data (current indication)
- Short-baseline anomalies $+ 3\nu$ -mixing:

$$\begin{array}{c|c} \Delta m_{21}^2 \ll |\Delta m_{31}^2| \ll |\Delta m_{41}^2| \leq \dots \\ \nu_1 & \nu_2 & \nu_3 & \nu_4 & \dots \\ \nu_e & \nu_\mu & \nu_\tau & \nu_{s_1} & \dots \end{array}$$

LSND

[PRL 75 (1995) 2650; PRC 54 (1996) 2685; PRL 77 (1996) 3082; PRD 64 (2001) 112007]

CCFF

NOMA

 $\sin^2 2\theta$

 10^{-1}

 $\bar{
u}_{\mu}
ightarrow \bar{
u}_{e}$ $L \simeq 30 \, {
m m}$ $20 \,\mathrm{MeV} \le E \le 200 \,\mathrm{MeV}$ Δm² (eV²/c⁴) 01 10 Beam Excess 17.5 Beam Excess $p(\bar{v}_{\mu} \rightarrow \bar{v}_{e}, e^{+})n$ 15 p(v e+)n 12.5 Karmen other 10 Buge 7.5 5 10 2.5 90% (L_{max} -L < 2.3) 99% (L_{max} -L < 4.6) 0 10 0.4 0.6 0.8 1.2 1.4 10 -3 10^{-2} L/E, (meters/MeV)

3.8 σ excess $\Delta m_{\text{LSND}}^2 \gtrsim 0.2 \,\text{eV}^2 \quad (\gg \Delta m_{\text{A}}^2 \gg \Delta m_{\text{S}}^2)$

C. Giunti – Neutrino Masses and Mixing – Lomonosov 2013 – 28 August 2013 – 20/29

MiniBooNE

- Agreement with LSND signal?
- CP violation?
- Low-energy anomaly!

Reactor Electron Antineutrino Anomaly

[Mention et al, PRD 83 (2011) 073006] [update in White Paper, arXiv:1204.5379]

new reactor $\bar{\nu}_e$ fluxes [Mueller et al, PRC 83 (2011) 054615]

[Huber, PRC 84 (2011) 024617]

 $\sim 2.8\sigma$ anomaly

[see also: Ciuffoli, Evslin, Li, JHEP 12 (2012) 110; Zhang, Qian, Vogel, PRD 87 (2013) 073018; Ivanov et al, arXiv:1306.1995]

Gallium Anomaly

Gallium Radioactive Source Experiments: GALLEX and SAGE

Detection Process: $\nu_e + {}^{71}\text{Ga} \rightarrow {}^{71}\text{Ge} + e^-$

 $u_e \text{ Sources:} \qquad e^- + {}^{51}\text{Cr} \rightarrow {}^{51}\text{V} + \nu_e \qquad e^- + {}^{37}\text{Ar} \rightarrow {}^{37}\text{Cl} + \nu_e$

Anomaly supported by new $^{71}\mbox{Ga}(^{3}\mbox{He},{}^{3}\mbox{H})^{71}\mbox{Ge}$ cross section measurement

[Frekers et al., PLB 706 (2011) 134]

 $E \sim 0.7 \, {
m MeV}$

 $\langle L \rangle_{\text{GALLEX}} = 1.9 \text{ m}$ $\langle L \rangle_{\text{SAGE}} = 0.6 \text{ m}$

 $\sim 2.9\sigma$ anomaly

C. Giunti – Neutrino Masses and Mixing – Lomonosov 2013 – 28 August 2013 – 23/29

Effective SBL Oscillation Probabilities in 3+1 Schemes

$$P_{\substack{(-) \quad (-) \\ \nu_{\alpha} \to \nu_{\beta}}} = \sin^2 2\vartheta_{\alpha\beta} \sin^2 \left(\frac{\Delta m_{41}^2 L}{4E}\right)$$

 $\sin^2 2\vartheta_{\alpha\beta} = 4|U_{\alpha4}|^2|U_{\beta4}|^2$

No CP Violation!

 $\sin^2 2\vartheta_{\alpha\alpha} = 4|U_{\alpha4}|^2 \left(1 - |U_{\alpha4}|^2\right)$

Perturbation of 3ν Mixing

 $|U_{e4}|^2 \ll 1$, $|U_{\mu4}|^2 \ll 1$, $|U_{\tau4}|^2 \ll 1$, $|U_{s4}|^2 \simeq 1$

3+1: Appearance vs Disappearance

• ν_e disappearance experiments:

$$\sin^2 2\vartheta_{ee} = 4|U_{e4}|^2 \left(1 - |U_{e4}|^2\right) \simeq 4|U_{e4}|^2$$

• ν_{μ} disappearance experiments:

$$\sin^2 2artheta_{\mu\mu} = 4 |U_{\mu4}|^2 \left(1 - |U_{\mu4}|^2\right) \simeq 4 |U_{\mu4}|^2$$

• $\nu_{\mu} \rightarrow \nu_{e}$ experiments:

$$\sin^2 2\vartheta_{e\mu} = 4|U_{e4}|^2|U_{\mu4}|^2 \simeq \frac{1}{4}\sin^2 2\vartheta_{ee}\sin^2 2\vartheta_{\mu\mu}$$

▶ Upper bounds on $\sin^2 2\vartheta_{ee}$ and $\sin^2 2\vartheta_{\mu\mu} \implies$ strong limit on $\sin^2 2\vartheta_{e\mu}$

[Okada, Yasuda, Int. J. Mod. Phys. A12 (1997) 3669-3694]

[Bilenky, Giunti, Grimus, Eur. Phys. J. C1 (1998) 247]

C. Giunti – Neutrino Masses and Mixing – Lomonosov 2013 – 28 August 2013 – 25/29

3+1 Global Fit

[different approach and conclusions: Kopp, Machado, Maltoni, Schwetz, JHEP 1305 (2013) 050]

MiniBooNE Impact on SBL Oscillations?

Many Exciting New Experiments and Projects

- Reactor $\bar{\nu}_e$ Disappearance:
 - ► Nucifer (OSIRIS, Saclay), Stereo (ILL, Grenoble) [arXiv:1204.5379]
 - DANSS (Kalinin Nuclear Power Plant, Russia) [arXiv:1304.3696], POSEIDON (PIK, Gatchina, Russia) [arXiv:1204.2449]
 - SCRAAM (San Onofre, California) [arXiv:1204.5379]
 - CARR (China Advanced Research Reactor) [arXiv:1303.0607]
 - ▶ Neutrino-4 (SM-3, Dimitrovgrad, Russia), SOLID (BR2, Belgium), Hanaro (Korea) [D. Lhuillier, EPSHEP 2013]
- Radioactive Source ν_e and $\bar{\nu}_e$ Disappearance:
 - ► SOX (Borexino, Gran Sasso, Italy) [arXiv:1304.7721]
 - CeLAND (¹⁴⁴Ce@KamLAND, Japan) [arXiv:1107.2335]
 - SAGE (Baksan, Russia) [arXiv:1006.2103]
 - ► IsoDAR (DAEδALUS, USA) [arXiv:1210.4454, arXiv:1307.2949]
 - ► SNO+, Daya Bay, RENO [T. Lasserre, Neutrino 2012]
- Accelerator $\overset{(-)}{\nu_{\mu}} \rightarrow \overset{(-)}{\nu_{e}}$ Appearance:
 - ICARUS/NESSIE (CERN) [arXiv:1304.2047, arXiv:1306.3455]
 - nuSTORM [arXiv:1308.0494]
 - OscSNS (Oak Ridge, USA) [arXiv:1305.4189, arXiv:1307.7097]

Conclusions

- ► Robust Three-Neutrino Mixing Paradigm. Open problems: ∂₂₃ ≤ 45°?, CP Violation, Mass Hierarchy, Absolute Mass Scale, Dirac or Majorana?
- ▶ Short-Baseline ν_e and $\bar{\nu}_e$ 3+1 Disappearance:
 - Reactor $\bar{\nu}_e$ anomaly is alive and exciting
 - Gallium ν_e anomaly strengthened by new cross-section measurements
 - ► Many promising projects to test short-baseline v_e and v
 _e disappearance in a few years with reactors and radioactive sources
 - ▶ Independent tests through effect of m_4 in β -decay and $(\beta\beta)_{0\nu}$ -decay
- Short-Baseline $\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e}$ LSND Signal:
 - MiniBooNE experiment has been inconclusive
 - ▶ If $|U_{e4}| > 0$ why not $|U_{\mu4}| > 0$? \implies Maybe LSND luckily observed a fluctuation of a small $\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e}$ transition probability with amplitude $\sin^{2} 2\vartheta_{e\mu} = 4|U_{e4}|^{2}|U_{\mu4}|^{2}$, which has not been seen by other appearance experiments
 - Better experiments are needed to check LSND signal
- Cosmology:
 - Important effects of sterile neutrinos
 - Implications depend on theoretical framework and considered data set
 - Cosmological indications must be checked by laboratory experiments

Backup Slides

		LOW	HIG	noMB	noLSND	
No	χ^2	339.2	308.0	283.2	286.7	
Osc.	NDF	259	253	221	255	
	GoF	0.06 %	1 %	0.3 %	8 %	
3+1	$\chi^2_{\sf min}$	291.7	261.8	236.1	278.4	
Osc.	NDF	256	250	218	252	
	GoF	6 %	29 %	19 %	12 %	
	Δm_{41}^2 [eV ²]	1.6	1.6	1.6	1.7	
	$ U_{e4} ^2$	0.033	0.03	0.03	0.024	
	$ U_{\mu 4} ^2$	0.012	0.013	0.014	0.0073	
	$\sin^2 2\vartheta_{e\mu}$	0.0016	0.0015	0.0017	0.0007	
	$\sin^2 2\vartheta_{ee}$	0.13	0.11	0.12	0.093	
	$\sin^2 2artheta_{\mu\mu}$	0.048	0.049	0.054	0.03	
	$(\chi^2_{min})_{APP}$	99.3	77.0	50.9	91.8	
	$(\chi^2_{min})_{DIS}$	180.1	180.1	180.1	180.1	
	$\Delta \chi^2_{PG}$	12.7	4.8	5.1	6.4	
	NDF _{PG}	2	2	2	2	
	GoF_{PG}	0.2 %	9 %	8 %	4 %	
	p-val _{No Osc.}	$3 imes 10^{-10}$	$5 imes 10^{-10}$	$3 imes 10^{-10}$	$4 imes 10^{-2}$	
	$n\sigma_{ m No~Osc.}$	6.3σ	6.2σ	6.3σ	2.1σ	
[Giunti Laveder, Y.E. Li, H.W. Long, arXiv:1308,5288]						

[Giunti, Laveder, Y.F. Li, H.W. Long, arXiv:1308.5288]

C. Giunti – Neutrino Masses and Mixing – Lomonosov 2013 – 28 August 2013 – 31/29

MiniBooNE Low-Energy Excess?

No fit of low-energy excess for realistic

 $\Delta m^2_{41}\gtrsim 0.8\,{
m eV}^2$ and $\sin^22artheta_{e\mu}\lesssim 5 imes10^{-3}$

- APP-DIS PGoF = 0.1%
- Neutrino energy reconstruction problem?

[Martini, Ericson, Chanfray, PRD 85 (2012) 093012; PRD 87 (2013) 013009]

C. Giunti – Neutrino Masses and Mixing – Lomonosov 2013 – 28 August 2013 – 32/29

Effective SBL Oscillation Probabilities in 3+2 Schemes

$$\phi_{kj} = \Delta m_{kj}^2 L/4E$$

$$\eta = \arg[U_{e4}^* U_{\mu4} U_{e5} U_{\mu5}^*]$$

$$P_{\substack{\nu_{\mu} \to \nu_{e}}}^{(-)} = 4|U_{e4}|^{2}|U_{\mu4}|^{2}\sin^{2}\phi_{41} + 4|U_{e5}|^{2}|U_{\mu5}|^{2}\sin^{2}\phi_{51} + 8|U_{\mu4}U_{e4}U_{\mu5}U_{e5}|\sin\phi_{41}\sin\phi_{51}\cos(\phi_{54}\overset{(+)}{-}\eta)$$

$$P_{\substack{(-) \ \nu_{\alpha} \to \nu_{\alpha}}} = 1 - 4(1 - |U_{\alpha 4}|^2 - |U_{\alpha 5}|^2)(|U_{\alpha 4}|^2 \sin^2 \phi_{41} + |U_{\alpha 5}|^2 \sin^2 \phi_{51}) \\ - 4|U_{\alpha 4}|^2|U_{\alpha 5}|^2 \sin^2 \phi_{54}$$

[Sorel, Conrad, Shaevitz, PRD 70 (2004) 073004; Maltoni, Schwetz, PRD 76 (2007) 093005; Karagiorgi et al, PRD 80 (2009) 073001; Kopp, Maltoni, Schwetz, PRL 107 (2011) 091801; Giunti, Laveder, PRD 84 (2011) 073008; Donini et al, JHEP 07 (2012) 161; Conrad, Ignarra, Karagiorgi, Shaevitz, Spitz, AHEP 2013 (2013) 163897; Kopp, Machado, Maltoni, Schwetz, JHEP 1305 (2013) 050]

- Good: CP violation
- Bad: Two massive sterile neutrinos at the eV scale!

4 more parameters: $\Delta m_{41}^2, |U_{e4}|^2, |U_{\mu4}|^2, \Delta m_{51}^2, |U_{e5}|^2, |U_{\mu5}|^2, \eta$

3 + 1

<u>3+2</u>

- 3+2 should be preferred to 3+1 only if
 - there is evidence of two peaks of the probability corresponding to two Δm^2 's
 - or
 - ▶ there is CP-violating difference of $\nu_{\mu} \rightarrow \nu_{e}$ and $\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e}$ transitions
- ► 2008 ν + 2010 $\bar{\nu}$ MiniBooNE data indicated $\nu \bar{\nu}$ difference \downarrow reasonable and useful to consider 3+2
- $\nu \bar{\nu}$ difference almost disappeared with 2012 $\bar{\nu}$ data
- Okkam razor: 3+1 is enough!
- Different approach and conclusions:
 - Kopp, Machado, Maltoni, Schwetz, JHEP 1305 (2013) 050: Use all MiniBooNE data. No 3+1 global fit. 3+2 slightly preferred? Small allowed region.
 - Conrad, Ignarra, Karagiorgi, Shaevitz, Spitz, AHEP 2013 (2013) 163897: Use all MiniBooNE data. 3+2 strongly preferred. Very small allowed regions.

MiniBooNE Low-Energy Excess?

	3+2	3+2	3+1+1	3+1+1
	LOW	HIG	LOW	HIG
$\chi^2_{\rm min}$	284.4	256.4	289.8	259.0
NDF	252	246	253	247
GoF	8 %	31 %	6 %	29 %
Δm_{41}^2 [eV ²]	1.9	0.93	1.6	1.6
$ U_{e4} ^2$	0.03	0.015	0.026	0.023
$ U_{\mu 4} ^2$	0.012	0.0097	0.011	0.012
Δm_{51}^2 [eV ²]	4.1	1.6		
$ U_{e5} ^2$	0.013	0.018	0.0088	0.0092
$ U_{\mu 5} ^2$	0.0065	0.0091	0.0049	0.0052
η/π	0.51	1.6	0.4	0.45
$(\chi^2_{min})_{APP}$	87.7	69.8	94.8	75.5
$(\chi^2_{min})_{DIS}$	179.1	179.1	180.1	180.1
$\Delta \chi^2_{PG}$	17.7	7.5	14.9	3.4
NDF _{PG}	4	4	3	3
GoF_{PG}	0.1 %	11 %	0.2 %	34 %
p-val ₃₊₁	0.12	0.25	0.59	0.42
$n\sigma_{3+1}$	1.6σ	1.2σ	0.54σ	0.81σ

[Giunti, Laveder, Y.F. Li, H.W. Long, arXiv:1308.5288]

C. Giunti – Neutrino Masses and Mixing – Lomonosov 2013 – 28 August 2013 – 36/29

Global ν_e and $\bar{\nu}_e$ **Disappearance**

C. Giunti – Neutrino Masses and Mixing – Lomonosov 2013 – 28 August 2013 – 37/29

Mainz Limit on m_4^2

[Kraus, Singer, Valerius, Weinheimer, EPJC 73 (2013) 2323]

C. Giunti - Neutrino Masses and Mixing - Lomonosov 2013 - 28 August 2013 - 38/29

Troitsk: Surprising Much Better Limit on m_4^2

[Belesev et al, JETP Lett. 97 (2013) 67; arXiv:1307.5687]

$$2\sigma: 0.85 \lesssim \Delta m_{41}^2 \lesssim 43 \,\mathrm{eV}^2 \implies 6 \,\mathrm{cm} \lesssim \frac{L_{41}^{\mathrm{osc}}}{E \,[\mathrm{MeV}]} \lesssim 3 \,\mathrm{m}$$

[Giunti, Laveder, Y.F. Li, H.W. Long, PRD 87 (2013) 013004]

C. Giunti – Neutrino Masses and Mixing – Lomonosov 2013 – 28 August 2013 – 39/29

KATRIN Sensitivity

[see also Sejersen Riis, Hannestad, JCAP (2011) 1475; Sejersen Riis, Hannestad, Weinheimer, PRC 84 (2011) 045503]

Neutrinoless Double- β **Decay**

$$|m_{etaeta}| = \left|\sum_{k=1}^4 U_{ek}^2 m_k\right|$$

$$m^{(4)}_{etaeta} = |U_{e4}|^2 \sqrt{\Delta m^2_{41}}$$

caveat: possible cancellation with $m^{(3
u-IH)}_{\beta\beta}$

[Barry et al, JHEP 07 (2011) 091] [Li, Liu, PLB 706 (2012) 406] [Rodejohann, JPG 39 (2012) 124008]