Neutrinos: from Particle to Astroparticle Physics Part II: Neutrino Oscillations Carlo Giunti

INFN, Sezione di Torino and Dipartimento di Fisica Teorica, Università di Torino giunti@to.infn.it

Neutrino Unbound: http://www.nu.to.infn.it

Torino Graduate School in Physics and Astrophysics, January 2016

http://www.nu.to.infn.it/slides/2016/giunti-160112-phd-2.pdf

C. Giunti and C.W. Kim Fundamentals of Neutrino Physics and Astrophysics Oxford University Press 15 March 2007 – 728 pages

Part II: Neutrino Oscillations

- Neutrino Oscillations
- Neutrino Oscillations in Vacuum
- Two-Neutrino Oscillations
- Neutrino Oscillations in Matter
- Wave-Packet Theory of NuOsc
- Common Question: Do Charged Leptons Oscillate?
- Mistake: Oscillation Phase Larger by a Factor of 2

Neutrino Oscillations

- ▶ 1957: Pontecorvo proposed Neutrino Oscillations in analogy with $K^0 \leftrightarrows \bar{K}^0$ oscillations (Gell-Mann and Pais, 1955) $\implies \nu \leftrightarrows \bar{\nu}$
- In 1957 only one neutrino $\nu = \nu_e$ was known!
- ▶ 1958: Goldhaber, Grodzins and Sunyar measure neutrino helicity: $\nu(h = -1)$
- ▶ Then, in weak interactions $\nu(h = -1)$ and $\bar{\nu}(h = +1)$
- ▶ Helicity conservation $\implies \nu(h = -1) \leftrightarrows \overline{\nu}(h = -1)$
- $\bar{\nu}(h = -1)$ is a sterile neutrino (Pontecorvo, 1967)
- ▶ 1962: Lederman, Schwartz and Steinberger discover ν_{μ}
- 1962: Maki, Nakagava, Sakata proposed a model with neutrino mixing:

 $\nu_e = \cos \vartheta \, \nu_1 + \sin \vartheta \, \nu_2$ $\nu_\mu = -\sin \vartheta \, \nu_1 + \cos \vartheta \, \nu_2$

"weak neutrinos are not stable due to the occurrence of a virtual transmutation $\nu_e\leftrightarrows \nu_\mu$ "

▶ 1967: Pontecorvo: $\nu_e \leftrightarrows \nu_\mu$ oscillations and applications (solar neutrinos)

- Flavor Neutrinos: ν_e , ν_μ , ν_τ produced in Weak Interactions
- ▶ Massive Neutrinos: ν_1 , ν_2 , ν_3 propagate from Source to Detector
- A Flavor Neutrino is a superposition of Massive Neutrinos

$$\begin{aligned} |\nu_e\rangle &= U_{e1} |\nu_1\rangle + U_{e2} |\nu_2\rangle + U_{e3} |\nu_3\rangle \\ |\nu_\mu\rangle &= U_{\mu1} |\nu_1\rangle + U_{\mu2} |\nu_2\rangle + U_{\mu3} |\nu_3\rangle \\ |\nu_\tau\rangle &= U_{\tau1} |\nu_1\rangle + U_{\tau2} |\nu_2\rangle + U_{\tau3} |\nu_3\rangle \end{aligned}$$

• U is the 3×3 Neutrino Mixing Matrix

$$|
u(t=0)
angle = |
u_{\mu}
angle = U_{\mu1} |
u_1
angle + U_{\mu2} |
u_2
angle + U_{\mu3} |
u_3
angle$$

$$\begin{split} |\nu(t>0)\rangle &= U_{\mu 1} e^{-iE_{1}t} |\nu_{1}\rangle + U_{\mu 2} e^{-iE_{2}t} |\nu_{2}\rangle + U_{\mu 3} e^{-iE_{3}t} |\nu_{3}\rangle \neq |\nu_{\mu}\rangle \\ E_{k}^{2} &= p^{2} + m_{k}^{2} \qquad t \simeq L \\ P_{\nu_{\mu} \rightarrow \nu_{e}}(t>0) &= |\langle \nu_{e} | \nu(t>0) \rangle|^{2} \sim \sum_{k>j} \operatorname{Re} \left[U_{ek} U_{\mu k}^{*} U_{ej}^{*} U_{\mu j} \right] \sin^{2} \left(\frac{\Delta m_{kj}^{2} L}{4E} \right) \\ \text{transition probabilities depend on } U \text{ and } \Delta m_{kj}^{2} \equiv m_{k}^{2} - m_{j}^{2} \end{split}$$

$$\begin{array}{cccc} \nu_e \rightarrow \nu_\mu & \nu_e \rightarrow \nu_\tau & \nu_\mu \rightarrow \nu_e & \nu_\mu \rightarrow \nu_\tau \\ \overline{\nu}_e \rightarrow \overline{\nu}_\mu & \overline{\nu}_e \rightarrow \overline{\nu}_\tau & \overline{\nu}_\mu \rightarrow \overline{\nu}_e & \overline{\nu}_\mu \rightarrow \overline{\nu}_\tau \end{array}$$

- Neutrino Oscillations are due to interference of different phases of massive neutrinos: pure quantum-mechanical effect!
- Phases of massive neutrinos depend on distance on distance L

Ultrarelativistic Approximation

Only neutrinos with energy $\gtrsim 0.1 MeV$ are detectable!

Charged-Current Processes: Threshold

$$\begin{array}{c}
\nu + A \to B + C \\
\downarrow \\
s = 2Em_A + m_A^2 \ge (m_B + m_C)^2 \\
\downarrow \\
E_{\text{th}} = \frac{(m_B + m_C)^2}{2m_A} - \frac{m_A}{2}
\end{array}$$

$$\begin{array}{c}
\nu_e + {}^{71}\text{Ga} \to {}^{71}\text{Ge} + e^- & E_{\text{th}} = 0.233 \text{ MeV} \\
\nu_e + {}^{37}\text{CI} \to {}^{37}\text{Ar} + e^- & E_{\text{th}} = 0.81 \text{ MeV} \\
\nu_e + {}^{37}\text{CI} \to {}^{37}\text{Ar} + e^- & E_{\text{th}} = 1.8 \text{ MeV} \\
\nu_\mu + n \to p + \mu^- & E_{\text{th}} = 110 \text{ MeV} \\
\nu_\mu + e^- \to \nu_e + \mu^- & E_{\text{th}} \simeq \frac{m_{\mu}^2}{2m_e} = 10.9 \text{ GeV}
\end{array}$$

Elastic Scattering Processes: Cross Section \propto Energy

 $u + e^- \rightarrow \nu + e^- \qquad \sigma(E) \sim \sigma_0 E/m_e \qquad \sigma_0 \sim 10^{-44} \text{ cm}^2$ Background $\implies E_{\text{th}} \simeq 5 \text{ MeV} (\text{SK, SNO}), 0.25 \text{ MeV} (\text{Borexino})$

Laboratory and Astrophysical Limits $\implies m_{\nu} \lesssim 1\,{
m eV}$

Simple Example of Neutrino Production

 $\pi^+ \to \mu^+ + \nu_\mu$ $u_{\mu} = \sum_{k} U_{\mu k} \nu_{k}$ $E_k^2 = p_k^2 + m_k^2$ two-body decay \implies fixed kinematics $\pi \text{ at rest: } \begin{cases} p_k^2 = \frac{m_\pi^2}{4} \left(1 - \frac{m_\mu^2}{m_\pi^2} \right)^2 - \frac{m_k^2}{2} \left(1 + \frac{m_\mu^2}{m_\pi^2} \right) + \frac{m_k^4}{4 m_\pi^2} \\ E_k^2 = \frac{m_\pi^2}{4} \left(1 - \frac{m_\mu^2}{m_\pi^2} \right)^2 + \frac{m_k^2}{2} \left(1 - \frac{m_\mu^2}{m_\pi^2} \right) + \frac{m_k^4}{4 m_\pi^2} \end{cases}$ 0th order: $m_k = 0 \Rightarrow p_k = E_k = E = \frac{m_\pi}{2} \left(1 - \frac{m_\mu^2}{m^2} \right) \simeq 30 \text{ MeV}$ 1st order: $E_k \simeq E + \xi \frac{m_k^2}{2F}$ $p_k \simeq E - (1 - \xi) \frac{m_k^2}{2F}$ $\xi = \frac{1}{2} \left(1 - \frac{m_{\mu}^2}{m_{\pi}^2} \right) \simeq 0.2$

C. Giunti – Neutrinos: from Particle to Astroparticle Physics – II – Torino PhD Course – January 2016 – 8/73

Neutrino Oscillations in Vacuum

[Eliezer, Swift, NPB 105 (1976) 45] [Fritzsch, Minkowski, PLB 62 (1976) 72] [Bilenky, Pontecorvo, SJNP 24 (1976) 316]

$$\mathcal{L}_{\mathsf{CC}} \sim W_{\rho} \left(\overline{\nu_{eL}} \gamma^{\rho} e_{L} + \overline{\nu_{\mu L}} \gamma^{\rho} \mu_{L} + \overline{\nu_{\tau L}} \gamma^{\rho} \tau_{L} \right)$$

Fields $\nu_{\alpha L} = \sum_{k} U_{\alpha k} \nu_{kL} \implies |\nu_{\alpha}\rangle = \sum_{k} U_{\alpha k}^{*} |\nu_{k}\rangle$ States

initial flavor: $\alpha = e$ or μ or au

$$|
u_k(t,x)
angle = e^{-iE_kt+ip_kx} |
u_k
angle \implies |
u_{lpha}(t,x)
angle = \sum_k U^*_{lpha k} e^{-iE_kt+ip_kx} |
u_k
angle$$

$$|\nu_{k}\rangle = \sum_{\beta=e,\mu,\tau} U_{\beta k} |\nu_{\beta}\rangle \quad \Rightarrow \quad |\nu_{\alpha}(t,x)\rangle = \sum_{\beta=e,\mu,\tau} \underbrace{\left(\sum_{k} U_{\alpha k}^{*} e^{-iE_{k}t + ip_{k}x} U_{\beta k}\right)}_{\mathcal{A}_{\nu_{\alpha} \to \nu_{\beta}}(t,x)} |\nu_{\beta}\rangle$$

$$\mathcal{A}_{
u_{lpha} o
u_{eta}}(0,0) = \sum_{k} U^{*}_{lpha k} U_{eta k} = \delta_{lpha eta} \qquad \qquad \mathcal{A}_{
u_{lpha} o
u_{eta}}(t > 0, x > 0)
eq \delta_{lpha eta}$$

$$P_{\nu_{\alpha} \to \nu_{\beta}}(t,x) = \left| \mathcal{A}_{\nu_{\alpha} \to \nu_{\beta}}(t,x) \right|^{2} = \left| \sum_{k} U_{\alpha k}^{*} e^{-iE_{k}t + ip_{k}x} U_{\beta k} \right|^{2}$$

ultra-relativistic neutrinos $\implies t \simeq x = L$ source-detector distance

$$E_{k}t - p_{k}x \simeq (E_{k} - p_{k})L = \frac{E_{k}^{2} - p_{k}^{2}}{E_{k} + p_{k}}L = \frac{m_{k}^{2}}{E_{k} + p_{k}}L \simeq \frac{m_{k}^{2}}{2E}L$$

$$P_{\nu_{\alpha} \rightarrow \nu_{\beta}}(L, E) = \left|\sum_{k} U_{\alpha k}^{*} e^{-im_{k}^{2}L/2E} U_{\beta k}\right|^{2}$$

$$= \sum_{k,j} U_{\alpha k}^{*} U_{\beta k} U_{\alpha j} U_{\beta j}^{*} \exp\left(-i\frac{\Delta m_{k j}^{2}L}{2E}\right)$$

$$\Delta m_{k j}^{2} \equiv m_{k}^{2} - m_{j}^{2}$$

Neutrinos and Antineutrinos

Right-handed antineutrinos are described by CP-conjugated fields:

$$\nu_{\alpha L}^{\mathsf{CP}} = \gamma^0 \, \mathcal{C} \, \overline{\nu_{\alpha L}}^T$$

Fields:
$$\nu_{\alpha L} = \sum_{k} U_{\alpha k} \nu_{kL} \xrightarrow{\mathsf{CP}} \nu_{\alpha L}^{\mathsf{CP}} = \sum_{k} U_{\alpha k}^{*} \nu_{kL}^{\mathsf{CP}}$$

States: $|\nu_{\alpha}\rangle = \sum_{k} U_{\alpha k}^{*} |\nu_{k}\rangle \xrightarrow{\mathsf{CP}} |\bar{\nu}_{\alpha}\rangle = \sum_{k} U_{\alpha k} |\bar{\nu}_{k}\rangle$

<u>NEUTRINOS</u> $U \hookrightarrow U^*$ <u>ANTINEUTRINOS</u>

$$P_{\nu_{\alpha} \to \nu_{\beta}}(L, E) = \sum_{k,j} U_{\alpha k}^{*} U_{\beta k} U_{\alpha j} U_{\beta j}^{*} \exp\left(-i\frac{\Delta m_{k j}^{2} L}{2E}\right)$$
$$P_{\bar{\nu}_{\alpha} \to \bar{\nu}_{\beta}}(L, E) = \sum_{k,j} U_{\alpha k} U_{\beta k}^{*} U_{\alpha j}^{*} U_{\beta j} \exp\left(-i\frac{\Delta m_{k j}^{2} L}{2E}\right)$$

CPT Symmetry

$$\begin{array}{lll} P_{\nu_{\alpha} \rightarrow \nu_{\beta}} & \stackrel{\mathsf{CPT}}{\longrightarrow} & P_{\bar{\nu}_{\beta} \rightarrow \bar{\nu}_{\alpha}} \\ \\ \mathsf{CPT} \ \mathsf{Asymmetries:} & & A_{\alpha\beta}^{\mathsf{CPT}} = P_{\nu_{\alpha} \rightarrow \nu_{\beta}} - P_{\bar{\nu}_{\beta} \rightarrow \bar{\nu}_{\alpha}} \\ \\ \mathsf{Local} \ \mathsf{Quantum} \ \mathsf{Field} \ \mathsf{Theory} & \Longrightarrow & A_{\alpha\beta}^{\mathsf{CPT}} = 0 & \mathsf{CPT} \ \mathsf{Symmetry} \\ \\ & P_{\nu_{\alpha} \rightarrow \nu_{\beta}}(L, E) = \sum_{k,j} U_{\alpha k}^{*} U_{\beta k} U_{\alpha j} U_{\beta j}^{*} \exp\left(-i\frac{\Delta m_{k j}^{2} L}{2E}\right) \\ \\ & \mathsf{is invariant under} \ \mathsf{CPT:} \quad U \ \leftrightarrows \quad U^{*} \quad \alpha \ \leftrightarrows \quad \beta \\ \\ & P_{\nu_{\alpha} \rightarrow \nu_{\beta}} = P_{\bar{\nu}_{\beta} \rightarrow \bar{\nu}_{\alpha}} \\ \\ \hline & P_{\nu_{\alpha} \rightarrow \nu_{\alpha}} = P_{\bar{\nu}_{\alpha} \rightarrow \bar{\nu}_{\alpha}} \end{array}$$
(solar ν_{e} , reactor $\bar{\nu}_{e}$, accelerator ν_{μ})

CP Symmetry

$$P_{\nu_{\alpha} o \nu_{\beta}} \xrightarrow{\mathsf{CP}} P_{\bar{\nu}_{\alpha} o \bar{\nu}_{\beta}}$$

CP Asymmetries: $A_{\alpha\beta}^{CP} = P_{\nu_{\alpha} \rightarrow \nu_{\beta}} - P_{\bar{\nu}_{\alpha} \rightarrow \bar{\nu}_{\beta}}$

$$A_{\alpha\beta}^{\mathsf{CP}}(L,E) = 4\sum_{k>j} \operatorname{Im}\left[U_{\alpha k}^* U_{\beta k} U_{\alpha j} U_{\beta j}^*\right] \sin\left(\frac{\Delta m_{kj}^2 L}{2E}\right)$$

Jarlskog rephasing invariant: $Im \begin{bmatrix} U_{\alpha k}^* U_{\beta k} U_{\alpha j} U_{\beta j}^* \end{bmatrix} = \pm J$ $J = c_{12} s_{12} c_{23} s_{23} c_{13}^2 s_{13} \sin \delta_{13}$ $J \neq 0 \iff \vartheta_{12}, \vartheta_{23}, \vartheta_{13} \neq 0, \pi/2 \quad \delta_{13} \neq 0, \pi$

 $\begin{array}{rcl} \mathsf{CPT} & \Longrightarrow & \mathbf{0} = A_{\alpha\beta}^{\mathsf{CPT}} \\ & = P_{\nu_{\alpha} \to \nu_{\beta}} - P_{\bar{\nu}_{\beta} \to \bar{\nu}_{\alpha}} \\ & = P_{\nu_{\alpha} \to \nu_{\beta}} - P_{\bar{\nu}_{\alpha} \to \bar{\nu}_{\beta}} \leftarrow A_{\alpha\beta}^{\mathsf{CP}} \\ & + P_{\bar{\nu}_{\alpha} \to \bar{\nu}_{\beta}} - P_{\nu_{\beta} \to \nu_{\alpha}} \leftarrow -A_{\beta\alpha}^{\mathsf{CPT}} = \mathbf{0} \\ & + P_{\nu_{\beta} \to \nu_{\alpha}} - P_{\bar{\nu}_{\beta} \to \bar{\nu}_{\alpha}} \leftarrow A_{\beta\alpha}^{\mathsf{CP}} \\ & = A_{\alpha\beta}^{\mathsf{CP}} + A_{\beta\alpha}^{\mathsf{CP}} \qquad \Longrightarrow \qquad \boxed{A_{\alpha\beta}^{\mathsf{CP}} = -A_{\beta\alpha}^{\mathsf{CP}}} \end{array}$

T Symmetry

$$P_{\nu_{\alpha} \to \nu_{\beta}} \xrightarrow{\mathsf{T}} P_{\nu_{\beta} \to \nu_{\alpha}}$$

$$\mathsf{T} \text{ Asymmetries:} \quad A_{\alpha\beta}^{\mathsf{T}} = P_{\nu_{\alpha} \to \nu_{\beta}} - P_{\nu_{\beta} \to \nu_{\alpha}}$$

$$\mathsf{CPT} \implies 0 = A_{\alpha\beta}^{\mathsf{CPT}}$$

$$= P_{\nu_{\alpha} \to \nu_{\beta}} - P_{\bar{\nu}_{\beta} \to \bar{\nu}_{\alpha}}$$

$$= P_{\nu_{\alpha} \to \nu_{\beta}} - P_{\nu_{\beta} \to \nu_{\alpha}} \leftarrow A_{\alpha\beta}^{\mathsf{T}}$$

$$+ P_{\nu_{\beta} \to \nu_{\alpha}} - P_{\bar{\nu}_{\beta} \to \bar{\nu}_{\alpha}} \leftarrow A_{\beta\alpha}^{\mathsf{CP}}$$

$$= A_{\alpha\beta}^{\mathsf{T}} + A_{\beta\alpha}^{\mathsf{CP}}$$

$$= A_{\alpha\beta}^{\mathsf{T}} - A_{\alpha\beta}^{\mathsf{CP}} \implies A_{\alpha\beta}^{\mathsf{T}} = A_{\alpha\beta}^{\mathsf{CP}}$$

Two-Neutrino Oscillations

oscillation phase

$$\frac{\Delta m^2 L}{4E} = 1.27 \frac{\Delta m^2 [\text{eV}^2] L[\text{m}]}{E[\text{MeV}]} = 1.27 \frac{\Delta m^2 [\text{eV}^2] L[\text{km}]}{E[\text{GeV}]}$$

oscillation length

$$L^{\text{osc}} = \frac{4\pi E}{\Delta m^2} = 2.47 \frac{E \,[\text{MeV}]}{\Delta m^2 \,[\text{eV}^2]} \,\text{m} = 2.47 \frac{E \,[\text{GeV}]}{\Delta m^2 \,[\text{eV}^2]} \,\text{km}$$

Types of Experiments

transitions due to Δm^2 observable only if $\frac{\Delta m^2 L}{E} \gtrsim 1 \Leftrightarrow \Delta m^2 \gtrsim \left(\frac{L}{E}\right)^{-1}$

 $\frac{\text{SBL}}{L/E} \lesssim 10 \text{ eV}^{-2} \Rightarrow \Delta m^2 \gtrsim 0.1 \text{ eV}^2 \qquad \text{Reactor: } L \sim 10 \text{ m} \text{ , } E \sim 1 \text{ MeV}$ Accelerator: $L \sim 1 \text{ km} \text{ , } E \gtrsim 0.1 \text{ GeV}$

 $\underbrace{ \text{ATM \& LBL} }_{L/E \lesssim 10^4 \, \text{eV}^{-2} }^{\text{Rea.: } L \sim 1 \, \text{km}}, E \sim 1 \, \text{MeV} \text{ Daya Bay, RENO, Double Chooz} \\ \text{Acc.: } L \sim 10^3 \, \text{km}, E \gtrsim 1 \, \text{GeV} \text{ K2K, MINOS, OPERA, T2K, NO}$

 $\Delta m^2 \gtrsim 10^{-4} \text{ eV}^2 \frac{\text{Atmospheric: } L \sim 10^2 - 10^4 \text{ km} , E \sim 0.1 - 10^2 \text{ GeV}}{\text{Kamiokande, IMB, Super-Kamiokande, Soudan-2, MACRO}}$

 $\label{eq:loss} \begin{array}{c} \underline{Solar} & L\sim 10^8 \ \mathrm{km} \,, \quad E\sim 0.1-10 \ \mathrm{MeV} \\ \frac{L}{E}\sim 10^{11} \ \mathrm{eV}^{-2} \Rightarrow \Delta m^2 \gtrsim 10^{-11} \ \mathrm{eV}^2 \ \begin{array}{c} \mathrm{Homestake, \ Kamiokande, \ GALLEX, \ SAGE, \ Super-Kamiokande, \ GNO, \ SNO, \ Borexino} \\ \mathrm{Matter \ Effect} \ (\mathrm{MSW}) \Rightarrow 10^{-4} \lesssim \sin^2 2\vartheta \lesssim 1 \,, \ 10^{-8} \ \mathrm{eV}^2 \lesssim \Delta m^2 \lesssim 10^{-4} \ \mathrm{eV}^2 \\ \hline \frac{\mathrm{VLBL}}{L/E} \lesssim 10^5 \ \mathrm{eV}^{-2} \Rightarrow \Delta m^2 \gtrsim 10^{-5} \ \mathrm{eV}^2 \qquad \mathrm{KamLAND} \end{array}$

Average over Energy Resolution of the Detector

 $\Delta m^{2} = 10^{-3} \text{ eV} \qquad \sin^{2} 2\vartheta = 0.8 \qquad L = 10^{3} \text{ km} \qquad \sigma_{E} = 0.01 \text{ GeV}$ $\langle P_{\nu_{\alpha} \to \nu_{\beta}}(L, E) \rangle = \frac{1}{2} \sin^{2} 2\vartheta \left[1 - \int \cos \left(\frac{\Delta m^{2} L}{2E} \right) \phi(E) \, \mathrm{d}E \right] \qquad (\alpha \neq \beta)$

Observations of Neutrino Oscillations

[Super-Kamiokande, PRL 93 (2004) 101801, hep-ex/0404034]

[MINOS, PRD 77 (2008) 072002, arXiv:0711.0769]

Exclusion Curves

$$\langle P_{\nu_{\alpha} \to \nu_{\beta}}(L, E) \rangle = \frac{1}{2} \sin^{2} 2\vartheta \left[1 - \int \cos\left(\frac{\Delta m^{2}L}{2E}\right) \phi(E) \, \mathrm{d}E \right] \qquad (\alpha \neq \beta)$$

$$\langle P_{\nu_{\alpha} \to \nu_{\beta}}(L, E) \rangle \leq P_{\nu_{\alpha} \to \nu_{\beta}}^{\max} \implies \sin^{2} 2\vartheta \leq \frac{2P_{\nu_{\alpha} \to \nu_{\beta}}^{\max}}{1 - \int \cos\left(\frac{\Delta m^{2}L}{2E}\right) \phi(E) \, \mathrm{d}E}$$

C. Giunti – Neutrinos: from Particle to Astroparticle Physics – II – Torino PhD Course – January 2016 – 24/73

Anatomy of Exclusion Plots

C. Giunti – Neutrinos: from Particle to Astroparticle Physics – II – Torino PhD Course – January 2016 – 26/73

Off-Axis Experiments

high-intensity WB beam detector shifted by a small angle from axis of beam almost monochromatic neutrino energy

cm

 $\gamma = (1$

$$E_{\rm cm} = p_{\rm cm} = \frac{m_{\pi}}{2} \left(1 - \frac{m_{\mu}^2}{m_{\pi}^2} \right) \simeq 29.79 \,{\rm MeV}$$

$$(-v^2)^{-1/2} = E_{\pi}/m_{\pi} \gg 1 \qquad \begin{cases} z = \gamma (z_{\rm cm} + v_{\rm pm}) \\ p^z = \gamma (v E_{\rm cm} + p_{\rm cm}^z) \end{cases}$$

 $E = \frac{E_{\rm cm}}{\gamma \left(1 - v \, \cos \theta\right)}$ $p^z = p \cos \theta = E \cos \theta$

C. Giunti – Neutrinos: from Particle to Astroparticle Physics – II – Torino PhD Course – January 2016 – 27/73

$$\cos\theta \simeq 1 - \theta^2/2 \quad \text{and} \quad v \simeq 1$$

$$E = \frac{E_{\text{cm}}}{\gamma \left(1 - v \cos\theta\right)} \simeq \frac{\gamma \left(1 + v\right)}{1 + \gamma^2 \theta^2 v \left(1 + v\right)/2} E_{\text{cm}} \simeq \frac{2\gamma}{1 + \gamma^2 \theta^2} E_{\text{cm}}$$

$$E \simeq \left(1 - \frac{m_{\mu}^2}{m_{\pi}^2}\right) \frac{E_{\pi}}{1 + \gamma^2 \theta^2} = \left(1 - \frac{m_{\mu}^2}{m_{\pi}^2}\right) \frac{E_{\pi} m_{\pi}^2}{m_{\pi}^2 + E_{\pi}^2 \theta^2}$$

• $\theta = 0 \implies E \propto E_{\pi}$ WB beam

• $E_{\pi}\theta \gg m_{\pi} \implies E \propto \frac{m_{\pi}^2}{E_{\pi}\theta^2}$ high-energy π^+ give low-energy ν_{μ} $\frac{\mathrm{d}E}{\mathrm{d}E_{\pi}} \simeq \left(1 - \frac{m_{\mu}^2}{m_{\pi}^2}\right) \frac{1 - \gamma^2 \theta^2}{(1 + \gamma^2 \theta^2)^2}$ $\frac{\mathrm{d}E}{\mathrm{d}E_{\pi}} \simeq 0 \quad \text{for} \quad \theta = \gamma^{-1} = \frac{m_{\pi}}{E_{\pi}} \implies E \simeq \left(1 - \frac{m_{\mu}^2}{m_{\pi}^2}\right) \frac{m_{\pi}}{2\theta} \simeq \frac{29.79 \,\mathrm{MeV}}{\theta}$

C. Giunti – Neutrinos: from Particle to Astroparticle Physics – II – Torino PhD Course – January 2016 – 28/73

off-axis angle
$$\theta \simeq m_{\pi}/\langle E_{\pi} \rangle \implies E \simeq \frac{29.79 \text{ MeV}}{\theta}$$

• *E* can be tuned on oscillation peak $E_{\text{peak}} = \Delta m^2 L/2\pi$

• small $E \implies$ short $L_{\rm osc} = \frac{4\pi E}{\Delta m^2} \implies$ sensitivity to small values of Δm^2

C. Giunti – Neutrinos: from Particle to Astroparticle Physics – II – Torino PhD Course – January 2016 – 29/73

$$\frac{\phi(\theta)}{\phi(0)} = \frac{1}{4} \left(\frac{2}{1+\gamma^2 \theta^2}\right)^2$$

 $\theta = 0.0^{\circ}, 0.5^{\circ}, 1.0^{\circ}, 1.5^{\circ}, 2.0^{\circ}$

flux suppression requires superbeam

C. Giunti – Neutrinos: from Particle to Astroparticle Physics – II – Torino PhD Course – January 2016 – 30/73

Neutrino Oscillations in Matter

- Neutrino Oscillations
- Neutrino Oscillations in Vacuum
- Two-Neutrino Oscillations
- Neutrino Oscillations in Matter
 - Effective Potentials in Matter
 - Evolution of Neutrino Flavors in Matter
 - Two-Neutrino Mixing
 - Constant Matter Density
 - MSW Effect (Resonant Transitions in Matter)
- Wave-Packet Theory of NuOsc
- Common Question: Do Charged Leptons Oscillate?

Effective Potentials in Matter

coherent interactions with medium: forward elastic CC and NC scattering

 $V_e = V_{\rm CC} + V_{\rm NC} \qquad \qquad V_\mu = V_\tau = V_{\rm NC}$

only $V_{\mathsf{CC}} = V_e - V_\mu = V_e - V_ au$ is important for flavor transitions

antineutrinos: $\overline{V}_{CC} = -V_{CC}$ $\overline{V}_{NC} = -V_{NC}$

C. Giunti – Neutrinos: from Particle to Astroparticle Physics – II – Torino PhD Course – January 2016 – 32/73

Evolution of Neutrino Flavors in Matter

Flavor neutrino ν_{α} with momentum *p*:

$$|
u_lpha({p})
angle = \sum_k U^*_{lpha k} \ket{
u_k({p})}$$

- Evolution is determined by Hamiltonian
- Hamiltonian in vacuum: $\mathcal{H} = \mathcal{H}_0$

$$\left|\mathcal{H}_{0}\left|
u_{k}(p)
ight
angle=E_{k}\left|
u_{k}(p)
ight
angle \qquad E_{k}=\sqrt{p^{2}+m_{k}^{2}}$$

• Hamiltonian in matter: $\mathcal{H} = \mathcal{H}_0 + \mathcal{H}_I$

$$\mathcal{H}_{I} \ket{
u_{lpha}(p)} = V_{lpha} \ket{
u_{lpha}(p)}$$

- Schrödinger evolution equation: $i \frac{d}{dt} |\nu(p, t)\rangle = \mathcal{H} |\nu(p, t)\rangle$
- Initial condition: $|
 u(p,0)\rangle = |
 u_{\alpha}(p)\rangle$
- For t > 0 the state $|\nu(p, t)\rangle$ is a superposition of all flavors:

$$|
u({m p},t)
angle = \sum_eta arphi_eta({m p},t)|
u_eta({m p})
angle$$

• Transition probability: $P_{\nu_{\alpha} \rightarrow \nu_{\beta}} = |\varphi_{\beta}|^2$

evolution equation of states

 $i \frac{d}{dt} |\nu(p,t)\rangle = \mathcal{H} |\nu(p,t)\rangle, \qquad |\nu(p,0)\rangle = |\nu_{\alpha}(p)\rangle$ flavor transition amplitudes $\varphi_{\beta}(p,t) = \langle \nu_{\beta}(p) | \nu(p,t) \rangle, \qquad \varphi_{\beta}(p,0) = \delta_{\alpha\beta}$ evolution of flavor transition amplitudes $i \frac{\mathsf{d}}{\mathsf{d}t} \varphi_{\beta}(p, t) = \langle \nu_{\beta}(p) | \mathcal{H} | \nu(p, t) \rangle$ $i \frac{d}{dt} \varphi_{\beta}(p,t) = \langle \nu_{\beta}(p) | \mathcal{H}_0 | \nu(p,t) \rangle + \langle \nu_{\beta}(p) | \mathcal{H}_I | \nu(p,t) \rangle$

$$i \frac{d}{dt} \varphi_{\beta}(p, t) = \langle \nu_{\beta}(p) | \mathcal{H}_{0} | \nu(p, t) \rangle + \langle \nu_{\beta}(p) | \mathcal{H}_{I} | \nu(p, t) \rangle$$
$$\langle \nu_{\beta}(p) | \mathcal{H}_{0} | \nu(p, t) \rangle =$$
$$\sum_{\rho} \sum_{k,j} \underbrace{\langle \nu_{\beta}(p) | \nu_{k}(p) \rangle}_{U_{\beta k}} \underbrace{\langle \nu_{k}(p) | \mathcal{H}_{0} | \nu_{j}(p) \rangle}_{\delta_{kj} E_{k}} \underbrace{\langle \nu_{j}(p) | \nu_{\rho}(p) \rangle}_{U_{\rho j}^{*}} \underbrace{\langle \nu_{\rho}(p) | \nu(p, t) \rangle}_{\varphi_{\rho}(p, t)}$$
$$= \sum_{\rho} \sum_{k} U_{\beta k} E_{k} U_{\rho k}^{*} \varphi_{\rho}(p, t)$$
$$\langle \nu_{\beta}(p) | \mathcal{H}_{I} | \nu(p, t) \rangle = \sum_{\rho} \underbrace{\langle \nu_{\beta}(p) | \mathcal{H}_{I} | \nu_{\rho}(p) \rangle}_{\delta_{\beta \rho} V_{\beta}} \underbrace{\langle \nu_{\rho}(p) | \nu(p, t) \rangle}_{\varphi_{\rho}(p, t)}$$
$$= \sum_{\rho} \delta_{\beta \rho} V_{\beta} \varphi_{\rho}(p, t)$$

$$i \frac{\mathrm{d}}{\mathrm{d}t} \varphi_{\beta} = \sum_{\rho} \left(\sum_{k} U_{\beta k} E_{k} U_{\rho k}^{*} + \delta_{\beta \rho} V_{\beta} \right) \varphi_{\rho}$$

 $E_k = p + \frac{m_k^2}{2E}$ E = p t = xultrarelativistic neutrinos: $V_e = V_{CC} + V_{NC}$ $V_{\mu} = V_{\tau} = V_{NC}$ $i\frac{d}{dx}\varphi_{\beta}(p,x) = (p+V_{\rm NC})\varphi_{\beta}(p,x) + \sum \left(\sum_{r} U_{\beta k}\frac{m_{k}^{2}}{2E}U_{\rho k}^{*} + \delta_{\beta e}\delta_{\rho e}V_{\rm CC}\right)\varphi_{\rho}(p,x)$

$$i\frac{\mathrm{d}}{\mathrm{d}x}\psi_{\beta} = \sum_{\rho} \left(\sum_{k} U_{\beta k} \frac{m_{k}}{2E} U_{\rho k}^{*} + \delta_{\beta e} \delta_{\rho e} V_{\mathrm{CC}}\right)\psi_{\rho}$$

$$P_{\nu_{\alpha} \to \nu_{\beta}} = |\varphi_{\beta}|^2 = |\psi_{\beta}|^2$$
evolution of flavor transition amplitudes in matrix form

$$i\frac{\mathrm{d}}{\mathrm{d}x}\Psi_{\alpha}=\frac{1}{2E}\left(U\,\mathbb{M}^{2}\,U^{\dagger}+\mathbb{A}\right)\Psi_{\alpha}$$

$$\Psi_{\alpha} = \begin{pmatrix} \psi_{e} \\ \psi_{\mu} \\ \psi_{\tau} \end{pmatrix} \qquad \mathbb{M}^{2} = \begin{pmatrix} m_{1}^{2} & 0 & 0 \\ 0 & m_{2}^{2} & 0 \\ 0 & 0 & m_{3}^{2} \end{pmatrix} \qquad \mathbb{A} = \begin{pmatrix} A_{CC} & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

$$A_{\rm CC} = 2EV_{\rm CC} = 2\sqrt{2}EG_{\rm F}N_{\rm e}$$

 $\underset{\text{in vacuum}}{\overset{\text{effective}}{\text{mass-squared}}} \mathbb{M}_{\text{VAC}}^2 = U \mathbb{M}^2 U^{\dagger} \xrightarrow{\text{matter}} U \mathbb{M}^2 U^{\dagger} + 2 E \mathbb{V} = \mathbb{M}_{\text{MAT}}^2 \xrightarrow{\text{effective}}_{\uparrow} \underset{\text{matrix}}{\overset{\text{matrix}}{\text{forward elastic scattering}}} \mathbb{M}_{\text{VAC}}^2 = U \mathbb{M}^2 U^{\dagger} \xrightarrow{\text{matter}} U \mathbb{M}^2 U^{\dagger} + 2 E \mathbb{V} = \mathbb{M}_{\text{MAT}}^2$

Two-Neutrino Mixing

 $u_e
ightarrow
u_\mu$ transitions with $U = \begin{pmatrix} \cos \vartheta & \sin \vartheta \\ -\sin \vartheta & \cos \vartheta \end{pmatrix}$

$$U \mathbb{M}^{2} U^{\dagger} = \begin{pmatrix} \cos^{2} \vartheta m_{1}^{2} + \sin^{2} \vartheta m_{2}^{2} & \cos \vartheta \sin \vartheta \left(m_{2}^{2} - m_{1}^{2} \right) \\ \cos \vartheta \sin \vartheta \left(m_{2}^{2} - m_{1}^{2} \right) & \sin^{2} \vartheta m_{1}^{2} + \cos^{2} \vartheta m_{2}^{2} \end{pmatrix}$$
$$= \frac{1}{2} \Sigma m^{2} + \frac{1}{2} \begin{pmatrix} -\Delta m^{2} \cos 2\vartheta & \Delta m^{2} \sin 2\vartheta \\ \Delta m^{2} \sin 2\vartheta & \Delta m^{2} \cos 2\vartheta \end{pmatrix}$$
$$\uparrow$$

irrelevant common phase

$$\Sigma m^2 \equiv m_1^2 + m_2^2$$
 $\Delta m^2 \equiv m_2^2 - m_1^2$

$$i\frac{d}{dx}\begin{pmatrix}\psi_{e}\\\psi_{\mu}\end{pmatrix} = \frac{1}{4E}\begin{pmatrix}-\Delta m^{2}\cos 2\vartheta + 2A_{CC} & \Delta m^{2}\sin 2\vartheta\\\Delta m^{2}\sin 2\vartheta & \Delta m^{2}\cos 2\vartheta\end{pmatrix}\begin{pmatrix}\psi_{e}\\\psi_{\mu}\end{pmatrix}$$

initial
$$\nu_e \implies \begin{pmatrix} \psi_e(0) \\ \psi_\mu(0) \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$egin{aligned} &\mathcal{P}_{
u_e
ightarrow
u_\mu}(x) = |\psi_\mu(x)|^2 \ &\mathcal{P}_{
u_e
ightarrow
u_e}(x) = |\psi_e(x)|^2 = 1 - \mathcal{P}_{
u_e
ightarrow
u_\mu}(x) \end{aligned}$$

Constant Matter Density

$$i\frac{d}{dx}\begin{pmatrix}\psi_{e}\\\psi_{\mu}\end{pmatrix} = \frac{1}{4E}\begin{pmatrix}-\Delta m^{2}\cos 2\vartheta + 2A_{CC} & \Delta m^{2}\sin 2\vartheta \\ \Delta m^{2}\sin 2\vartheta & \Delta m^{2}\cos 2\vartheta\end{pmatrix}\begin{pmatrix}\psi_{e}\\\psi_{\mu}\end{pmatrix}$$
$$= \frac{dA_{CC}}{dx} = 0$$
diagonalization of effective hamiltonian: $\begin{pmatrix}\psi_{e}\\\psi_{\mu}\end{pmatrix} = \begin{pmatrix}\cos\vartheta_{M} & \sin\vartheta_{M}\\ -\sin\vartheta_{M} & \cos\vartheta_{M}\end{pmatrix}\begin{pmatrix}\psi_{1}^{M}\\\psi_{2}^{M}\end{pmatrix}$ $\begin{pmatrix}\cos\vartheta_{M} - \sin\vartheta_{M}\\\sin\vartheta_{M} & \cos\vartheta_{M}\end{pmatrix}\begin{pmatrix}-\Delta m^{2}\cos 2\vartheta + 2A_{CC} & \Delta m^{2}\sin 2\vartheta\\\Delta m^{2}\sin 2\vartheta & \Delta m^{2}\cos 2\vartheta\end{pmatrix}\begin{pmatrix}\cos\vartheta_{M} & \sin\vartheta_{M}\\ -\sin\vartheta_{M} & \cos\vartheta_{M}\end{pmatrix} = = \begin{pmatrix}A_{CC} - \Delta m_{M}^{2} & 0\\0 & A_{CC} + \Delta m_{M}^{2}\end{pmatrix}$ $i\frac{d}{dx}\begin{pmatrix}\psi_{1}^{M}\\\psi_{2}^{M}\end{pmatrix} = \begin{bmatrix}A_{CC} + \frac{1}{4E}\begin{pmatrix}-\Delta m_{M}^{2} & 0\\0 & \Delta m_{M}^{2}\end{pmatrix}\end{bmatrix}\begin{pmatrix}\psi_{1}^{M}\\\psi_{2}^{M}\end{pmatrix}$ irrelevant common phase

Effective Mixing Angle in Matter

$$an 2artheta_{\mathsf{M}} = rac{ an 2artheta}{1 - rac{ extsf{A}_{\mathsf{CC}}}{ extsf{\Delta}m^2\cos 2artheta}}$$

Effective Squared-Mass Difference

$$\Delta m_{\mathsf{M}}^2 = \sqrt{\left(\Delta m^2 \cos 2\vartheta - A_{\mathsf{CC}}\right)^2 + \left(\Delta m^2 \sin 2\vartheta\right)^2}$$

Resonance
$$(\vartheta_{\rm M} = \pi/4)$$

 $A_{\rm CC}^{\rm R} = \Delta m^2 \cos 2\vartheta \implies N_e^{\rm R} = \frac{\Delta m^2 \cos 2\vartheta}{2\sqrt{2}EG_{\rm F}}$

$$i\frac{d}{dx}\begin{pmatrix}\psi_{1}^{M}\\\psi_{2}^{M}\end{pmatrix} = \frac{1}{4E}\begin{pmatrix}-\Delta m_{M}^{2} & 0\\ 0 & \Delta m_{M}^{2}\end{pmatrix}\begin{pmatrix}\psi_{1}^{M}\\\psi_{2}^{M}\end{pmatrix}$$
$$\begin{pmatrix}\psi_{e}^{M}\\\psi_{\mu}^{M}\end{pmatrix} = \begin{pmatrix}\cos\vartheta_{M} & \sin\vartheta_{M}\\-\sin\vartheta_{M} & \cos\vartheta_{M}\end{pmatrix}\begin{pmatrix}\psi_{1}^{M}\\\psi_{2}^{M}\end{pmatrix} \Rightarrow \begin{pmatrix}\psi_{1}^{M}\\\psi_{2}^{M}\end{pmatrix} = \begin{pmatrix}\cos\vartheta_{M} & -\sin\vartheta_{M}\\\sin\vartheta_{M}\end{pmatrix}\begin{pmatrix}\psi_{e}\\\psi_{\mu}\end{pmatrix}$$
$$\nu_{e} \rightarrow \nu_{\mu} \implies \begin{pmatrix}\psi_{e}(0)\\\psi_{\mu}(0)\end{pmatrix} = \begin{pmatrix}1\\0\end{pmatrix} \implies \begin{pmatrix}\psi_{1}^{M}(0)\\\psi_{2}^{M}(0)\end{pmatrix} = \begin{pmatrix}\cos\vartheta_{M}\\\sin\vartheta_{M}\end{pmatrix}$$
$$\psi_{1}^{M}(x) = \cos\vartheta_{M}\exp\left(i\frac{\Delta m_{M}^{2}x}{4E}\right)$$
$$\psi_{2}^{M}(x) = \sin\vartheta_{M}\exp\left(-i\frac{\Delta m_{M}^{2}x}{4E}\right)$$
$$P_{\nu_{e}\rightarrow\nu_{\mu}}(x) = |\psi_{\mu}(x)|^{2} = \left|-\sin\vartheta_{M}\psi_{1}^{M}(x) + \cos\vartheta_{M}\psi_{2}^{M}(x)\right|^{2}$$
$$\boxed{P_{\nu_{e}\rightarrow\nu_{\mu}}(x) = \sin^{2}2\vartheta_{M}\sin^{2}\left(\frac{\Delta m_{M}^{2}x}{4E}\right)}$$

MSW Effect (Resonant Transitions in Matter)

$$\begin{split} i\frac{d}{dx}\begin{pmatrix}\psi_{e}\\\psi_{\mu}\end{pmatrix} &= \frac{1}{4E}\begin{pmatrix}-\Delta m^{2}\cos 2\vartheta + 2A_{\text{CC}} & \Delta m^{2}\sin 2\vartheta & (\psi_{e})\\\Delta m^{2}\sin 2\vartheta & \Delta m^{2}\cos 2\vartheta\end{pmatrix}\begin{pmatrix}\psi_{e}\\\psi_{\mu}\end{pmatrix}\\ \text{tentative diagonalization:} \begin{pmatrix}\psi_{e}\\\psi_{\mu}\end{pmatrix} &= \begin{pmatrix}\cos\vartheta_{\text{M}} & \sin\vartheta_{\text{M}}\\-\sin\vartheta_{\text{M}} & \cos\vartheta_{\text{M}}\end{pmatrix}\begin{pmatrix}\psi_{1}^{\text{M}}\\\psi_{2}^{\text{M}}\end{pmatrix}\\ i\frac{d}{dx}\begin{pmatrix}\cos\vartheta_{\text{M}} & \sin\vartheta_{\text{M}}\\-\sin\vartheta_{\text{M}} & \cos\vartheta_{\text{M}}\end{pmatrix}\begin{pmatrix}\psi_{1}^{\text{M}}\\\psi_{2}^{\text{M}}\end{pmatrix} &= \\ &= \frac{1}{4E}\begin{pmatrix}-\Delta m^{2}\cos 2\vartheta + 2A_{\text{CC}} & \Delta m^{2}\sin 2\vartheta \\\Delta m^{2}\sin 2\vartheta & \Delta m^{2}\cos 2\vartheta\end{pmatrix}\begin{pmatrix}\cos\vartheta_{\text{M}} & \sin\vartheta_{\text{M}}\\-\sin\vartheta_{\text{M}} & \cos\vartheta_{\text{M}}\end{pmatrix}\begin{pmatrix}\psi_{1}^{\text{M}}\\\psi_{2}^{\text{M}}\end{pmatrix}\\ &\text{if matter densitity is not constant } d\vartheta_{\text{M}}/dx \neq 0 \\ &i\frac{d}{dx}\begin{pmatrix}\psi_{1}^{\text{M}}\\\psi_{2}^{\text{M}}\end{pmatrix} &= \begin{bmatrix}\frac{A_{\text{CC}}}{4E} + \frac{1}{4E}\begin{pmatrix}-\Delta m_{\text{M}}^{2} & 0 \\ 0 & \Delta m_{\text{M}}^{2}\end{pmatrix} + \begin{pmatrix}0 & -i\frac{d\vartheta_{\text{M}}}{dx} \\i\frac{d\vartheta_{\text{M}}}{dx} & 0\end{pmatrix}\end{bmatrix} \begin{pmatrix}\psi_{1}^{\text{M}}\\\psi_{2}^{\text{M}}\end{pmatrix}\\ &\text{irrelevant common phase \end{split}$$

$$i\frac{d}{dx}\begin{pmatrix}\psi_{1}^{M}\\\psi_{2}^{M}\end{pmatrix} = \begin{bmatrix}\frac{1}{4E}\begin{pmatrix}-\Delta m_{M}^{2} & 0\\ 0 & \Delta m_{M}^{2}\end{pmatrix} + \begin{pmatrix}0 & -i\frac{d\vartheta_{M}}{dx}\\i\frac{d\vartheta_{M}}{dx} & 0\end{pmatrix}\end{bmatrix}\begin{pmatrix}\psi_{1}^{M}\\\psi_{2}^{M}\end{pmatrix}$$

$$\uparrow$$
adiabatic
$$\uparrow$$
non-adiabatic
maximum at resonance

initial conditions:

$$\begin{pmatrix} \psi_1^{\mathsf{M}}(0) \\ \psi_2^{\mathsf{M}}(0) \end{pmatrix} = \begin{pmatrix} \cos\vartheta_{\mathsf{M}}^0 & -\sin\vartheta_{\mathsf{M}}^0 \\ \sin\vartheta_{\mathsf{M}}^0 & \cos\vartheta_{\mathsf{M}}^0 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} \cos\vartheta_{\mathsf{M}}^0 \\ \sin\vartheta_{\mathsf{M}}^0 \end{pmatrix}$$

solution approximating all non-adiabatic $\nu_1^\mathsf{M} \leftrightarrows \nu_2^\mathsf{M}$ transitions in resonance

$$\begin{split} \psi_{1}^{\mathsf{M}}(\mathbf{x}) &\simeq \left[\cos\vartheta_{\mathsf{M}}^{0}\exp\left(i\int_{0}^{x_{\mathsf{R}}}\frac{\Delta m_{\mathsf{M}}^{2}(\mathbf{x}')}{4E}\,\mathsf{d}\mathbf{x}'\right)\mathcal{A}_{11}^{\mathsf{R}}+\sin\vartheta_{\mathsf{M}}^{0}\exp\left(-i\int_{0}^{x_{\mathsf{R}}}\frac{\Delta m_{\mathsf{M}}^{2}(\mathbf{x}')}{4E}\,\mathsf{d}\mathbf{x}'\right)\mathcal{A}_{21}^{\mathsf{R}}\right] \\ &\times \exp\left(i\int_{x_{\mathsf{R}}}^{x}\frac{\Delta m_{\mathsf{M}}^{2}(\mathbf{x}')}{4E}\,\mathsf{d}\mathbf{x}'\right) \\ \psi_{2}^{\mathsf{M}}(\mathbf{x}) &\simeq \left[\cos\vartheta_{\mathsf{M}}^{0}\exp\left(i\int_{0}^{x_{\mathsf{R}}}\frac{\Delta m_{\mathsf{M}}^{2}(\mathbf{x}')}{4E}\,\mathsf{d}\mathbf{x}'\right)\mathcal{A}_{12}^{\mathsf{R}}+\sin\vartheta_{\mathsf{M}}^{0}\exp\left(-i\int_{0}^{x_{\mathsf{R}}}\frac{\Delta m_{\mathsf{M}}^{2}(\mathbf{x}')}{4E}\,\mathsf{d}\mathbf{x}'\right)\mathcal{A}_{22}^{\mathsf{R}}\right] \\ &\times \exp\left(-i\int_{x_{\mathsf{R}}}^{x}\frac{\Delta m_{\mathsf{M}}^{2}(\mathbf{x}')}{4E}\,\mathsf{d}\mathbf{x}'\right) \end{split}$$

C. Giunti – Neutrinos: from Particle to Astroparticle Physics – II – Torino PhD Course – January 2016 – 45/73

Averaged ν_e Survival Probability on Earth

$$\psi_e(x) = \cos \vartheta \, \psi_1^{\mathsf{M}}(x) + \sin \vartheta \, \psi_2^{\mathsf{M}}(x)$$

neglect interference (averaged over energy spectrum)

$$\begin{split} \overline{P}_{\nu_e \to \nu_e}(x) &= |\langle \psi_e(x) \rangle|^2 = \cos^2 \vartheta \, \cos^2 \vartheta_{\mathsf{M}}^0 \, |\mathcal{A}_{11}^{\mathsf{R}}|^2 + \cos^2 \vartheta \, \sin^2 \vartheta_{\mathsf{M}}^0 \, |\mathcal{A}_{21}^{\mathsf{R}}|^2 \\ &+ \sin^2 \vartheta \, \cos^2 \vartheta_{\mathsf{M}}^0 \, |\mathcal{A}_{12}^{\mathsf{R}}|^2 + \sin^2 \vartheta \, \sin^2 \vartheta_{\mathsf{M}}^0 \, |\mathcal{A}_{22}^{\mathsf{R}}|^2 \end{split}$$

conservation of probability (unitarity)

 $|\mathcal{A}_{12}^{\mathsf{R}}|^2 = |\mathcal{A}_{21}^{\mathsf{R}}|^2 = P_{\mathsf{c}}$ $|\mathcal{A}_{11}^{\mathsf{R}}|^2 = |\mathcal{A}_{22}^{\mathsf{R}}|^2 = 1 - P_{\mathsf{c}}$

 $P_{\rm c} \equiv {\rm crossing \ probability}$

$$\overline{P}_{\nu_e \to \nu_e}(\mathbf{x}) = \frac{1}{2} + \left(\frac{1}{2} - P_{\mathsf{c}}\right) \cos 2\vartheta_{\mathsf{M}}^0 \, \cos 2\vartheta$$

[Parke, PRL 57 (1986) 1275]

Crossing Probability

$$P_{\rm c} = \frac{\exp\left(-\frac{\pi}{2}\gamma F\right) - \exp\left(-\frac{\pi}{2}\gamma \frac{F}{\sin^2\vartheta}\right)}{1 - \exp\left(-\frac{\pi}{2}\gamma \frac{F}{\sin^2\vartheta}\right)}$$

[Kuo, Pantaleone, PRD 39 (1989) 1930]

adiabaticity parameter:
$$\gamma = \left. \frac{\Delta m_{\rm M}^2 / 2E}{2 |{\rm d}\vartheta_{\rm M}/{\rm d}x|} \right|_{\rm R} = \frac{\Delta m^2 \sin^2 2\vartheta}{2E \cos 2\vartheta \left| \frac{{\rm d} \ln A_{\rm CC}}{{\rm d}x} \right|_{\rm R}}$$

 $A \propto x$ F = 1 (Landau-Zener approximation) [Parke, PRL 57 (1986) 1275] $A \propto 1/x$ $F = (1 - \tan^2 \vartheta)^2 / (1 + \tan^2 \vartheta)$ [Kuo, Pantaleone, PRD 39 (1989) 1930]

[Pizzochero, PRD 36 (1987) 2293]

 $A \propto \exp(-x)$ $F = 1 - \tan^2 \vartheta$ [Toshev, PLB 196 (1987) 170] [Petcov, PLB 200 (1988) 373]

Review: [Kuo, Pantaleone, RMP 61 (1989) 937]

C. Giunti – Neutrinos: from Particle to Astroparticle Physics – II – Torino PhD Course – January 2016 – 47/73

Solar Neutrinos

Electron Neutrino Regeneration in the Earth

$$P_{\nu_e \to \nu_e}^{\text{sun}+\text{earth}} = \overline{P}_{\nu_e \to \nu_e}^{\text{sun}} + \frac{\left(1 - 2\overline{P}_{\nu_e \to \nu_e}^{\text{sun}}\right)\left(P_{\nu_2 \to \nu_e}^{\text{earth}} - \sin^2\vartheta\right)}{\cos 2\vartheta}$$

[Mikheev, Smirnov, Sov. Phys. Usp. 30 (1987) 759], [Baltz, Weneser, PRD 35 (1987) 528]

 $P_{\nu_2 \rightarrow \nu_e}^{\text{earth}}$ is usually calculated numerically approximating the Earth density profile with a step function.

Effective massive neutrinos propagate as plane waves in regions of constant density.

Wave functions of flavor neutrinos are joined at the boundaries of steps.

Solar Neutrino Oscillations

 $\Delta m^2 \sim 5 \times 10^{-5} \,\mathrm{eV}^2$. $\tan^2 \vartheta \sim 0.8$ LMA (Large Mixing Angle): $\Delta m^2 \sim 7 \times 10^{-8} \,\mathrm{eV}^2$, $\tan^2 \vartheta \sim 0.6$ LOW (LOW Δm^2): $\Delta m^2 \sim 5 imes 10^{-6} \, \mathrm{eV}^2$, $\tan^2 \vartheta \sim 10^{-3}$ SMA (Small Mixing Angle): $an^2 artheta \sim 1$ QVO (Quasi-Vacuum Oscillations): $\Delta m^2 \sim 10^{-9}\,{
m eV}^2$, $\Delta m^2 \le 5 \times 10^{-10} \, {\rm eV}^2$. VAC (VACuum oscillations): $\tan^2 \vartheta \sim 1$ 10-3 10-4 10-4 LMA LMA SMA 10-5 10-6 10-6 10-6 Δm² (eV²) .m² (eV²) 10-7 90 % C.L IOW 10-7 95 % C.L 10-8 99 % C L 10-8 99.73 % C.L. 10⁻⁹ 10⁻⁹ Cl + Ga + SK + Sp(D) + Sp(N)10-10 B free + BP2000 VAC 10-10 10-11 Just So^a 10-18 10-3 10-2 10-1 100 10-4 101 0.001 0.01 0.1 1 10 tan²(θ) tan² θ

[de Gouvea, Friedland, Murayama, PLB 490 (2000) 125]

[Bahcall, Krastev, Smirnov, JHEP 05 (2001) 015]

C. Giunti – Neutrinos: from Particle to Astroparticle Physics – II – Torino PhD Course – January 2016 – 51/73

In Neutrino Oscillations Dirac = Majorana

[Bilenky, Hosek, Petcov, PLB 94 (1980) 495; Doi, Kotani, Nishiura, Okuda, Takasugi, PLB 102 (1981) 323]

[Langacker, Petcov, Steigman, Toshev, NPB 282 (1987) 589]

Evolution of Amplitudes:
$$i \frac{d\psi_{\alpha}}{dx} = \frac{1}{2E} \sum_{\beta} \left(UM^2 U^{\dagger} + 2EV \right)_{\alpha\beta} \psi_{\beta}$$

difference:
$$\begin{cases} \text{Dirac:} & U^{(D)} \\ \text{Majorana:} & U^{(M)} = U^{(D)} D(\lambda) \end{cases}$$

$$D(\lambda) = \begin{pmatrix} 1 & 0 & \cdots & 0 \\ 0 & e^{i\lambda_{21}} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & e^{i\lambda_{N1}} \end{pmatrix} \Rightarrow D^{\dagger} = D^{-1}$$

$$M^2 = \begin{pmatrix} m_1^2 & 0 & \cdots & 0 \\ 0 & m_2^2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & m_N^2 \end{pmatrix} \implies DM^2 = M^2 D \implies DM^2 D^{\dagger} = M^2$$

$$U^{(M)} M^2 (U^{(M)})^{\dagger} = U^{(D)} DM^2 D^{\dagger} (U^{(D)})^{\dagger} = U^{(D)} M^2 (U^{(D)})^{\dagger}$$

C. Giunti – Neutrinos: from Particle to Astroparticle Physics – II – Torino PhD Course – January 2016 – 53/73

Wave-Packet Theory of NuOsc

 $t \simeq x = L \iff$ Wave Packets

Space-Time uncertainty Localization of production and detection processes

Energy-Momentum uncertainty

Coherent creation and detection of different massive neutrinos

[Kayser, PRD 24 (1981) 110] [CG, FPL 17 (2004) 103]

The size of the massive neutrino wave packets is determined by the coherence time $\delta t_{\rm P}$ of the Production Process $(\delta t_{\rm P} \gtrsim \delta x_{\rm P})$, because the coherence region must be causally connected) velocity of neutrino wave packets: $v_k = \frac{p_k}{F_k} \simeq 1 - \frac{m_k^2}{2F^2}$

Coherence Length

[Nussinov, PLB 63 (1976) 201] [Kiers, Nussinov, Weiss, PRD 53 (1996) 537]

Wave Packets have different velocities and separate

different massive neutrinos can interfere if and only if wave packets arrive with $\delta t_{kj} \lesssim \sqrt{(\delta t_{\rm P})^2 + (\delta t_{\rm D})^2}$

C. Giunti – Neutrinos: from Particle to Astroparticle Physics – II – Torino PhD Course – January 2016 – 56/73

Quantum Mechanical Wave Packet Model

[CG, Kim, Lee, PRD 44 (1991) 3635] [CG, Kim, PRD 58 (1998) 017301]

neglecting mass effects in amplitudes of production and detection processes

$$\begin{split} |\nu_{\alpha}\rangle &= \sum_{k} U_{\alpha k}^{*} \int \mathrm{d}p \,\psi_{k}^{P}(p) \,|\nu_{k}(p)\rangle \qquad |\nu_{\beta}\rangle = \sum_{k} U_{\beta k}^{*} \int \mathrm{d}p \,\psi_{k}^{D}(p) \,|\nu_{k}(p)\rangle \\ \mathcal{A}_{\alpha\beta}(x,t) &= \langle \nu_{\beta} | \,e^{-i\widehat{E}t + i\widehat{P}x} \,|\nu_{\alpha}\rangle \\ &= \sum_{k} U_{\alpha k}^{*} \,U_{\beta k} \int \mathrm{d}p \,\psi_{k}^{P}(p) \,\psi_{k}^{D*}(p) \,e^{-iE_{k}(p)t + ipx} \end{split}$$

Gaussian Approximation of Wave Packets

$$\psi_{k}^{P}(p) = (2\pi\sigma_{pP}^{2})^{-1/4} \exp\left[-\frac{(p-p_{k})^{2}}{4\sigma_{pP}^{2}}\right]$$
$$\psi_{k}^{D}(p) = (2\pi\sigma_{pD}^{2})^{-1/4} \exp\left[-\frac{(p-p_{k})^{2}}{4\sigma_{pD}^{2}}\right]$$

the value of p_k is determined by the production process (causality) C. Giunti – Neutrinos: from Particle to Astroparticle Physics – II – Torino PhD Course – January 2016 – 57/73

$$\mathcal{A}_{lphaeta}(x,t) \propto \sum_{k} U_{lpha k}^{*} U_{eta k} \int \mathrm{d} p \, \exp\left[-i E_{k}(p) t + i p x - rac{(p-p_{k})^{2}}{4\sigma_{p}^{2}}
ight]$$

global energy-momentum uncertainty:

$$\frac{1}{\sigma_p^2} = \frac{1}{\sigma_{pP}^2} + \frac{1}{\sigma_{pD}^2}$$

sharply peaked wave packets

$$\sigma_{p} \ll E_{k}^{2}(p_{k})/m_{k} \implies E_{k}(p) = \sqrt{p^{2} + m_{k}^{2}} \simeq E_{k} + v_{k}(p - p_{k})$$

$$E_{k} = E_{k}(p_{k}) = \sqrt{p_{k}^{2} + m_{k}^{2}} \qquad v_{k} = \frac{\partial E_{k}(p)}{\partial p}\Big|_{p=p_{k}} = \frac{p_{k}}{E_{k}} \quad \text{group velocity}$$

$$\mathcal{A}_{\alpha\beta}(x,t) \propto \sum_{k} U_{\alpha k}^{*} U_{\beta k} \exp\left[-iE_{k}t + ip_{k}x - \frac{(x - v_{k}t)^{2}}{4\sigma_{x}^{2}}\right]$$
suppression factor for $|x - v_{k}t| \gtrsim \sigma_{x}$

 $\sigma_x \sigma_p = \frac{1}{2}$ global space-time uncertainty: $\sigma_x^2 = \sigma_{xP}^2 + \sigma_{xD}^2$

C. Giunti – Neutrinos: from Particle to Astroparticle Physics – II – Torino PhD Course – January 2016 – 58/73

$$\begin{aligned} -E_k t + p_k x &= -(E_k - p_k) x + E_k (x - t) = -\frac{E_k^2 - p_k^2}{E_k + p_k} x + E_k (x - t) \\ &= -\frac{m_k^2}{E_k + p_k} x + E_k (x - t) \simeq -\frac{m_k^2}{2E} x + E_k (x - t) \end{aligned}$$

$$\mathcal{A}_{\alpha\beta}(x,t) \propto \sum_{k} U_{\alpha k}^{*} U_{\beta k} \exp \left[\underbrace{-i \frac{m_{k}^{2}}{2E} x + iE_{k} (x-t)}_{\text{standard additional phase phase}} - \frac{(x-v_{k}t)^{2}}{4\sigma_{x}^{2}}\right]$$

Space-Time Flavor Transition Probability

$$P_{\alpha\beta}(x,t) \propto \sum_{k,j} U_{\alpha k}^{*} U_{\beta k} U_{\alpha j} U_{\beta j}^{*} \exp \left[\underbrace{-i \frac{\Delta m_{k j}^{2} x}{2E}}_{\text{standard}} + i (E_{k} - E_{j}) (x - t) \right]$$

$$standard \text{ phase}_{\text{for } t = x} + i (E_{k} - E_{j}) (x - t)$$

$$gadditional \text{ phase}_{\text{for } t = x} + i (E_{k} - E_{j}) (x - t)$$

$$gadditional \text{ phase}_{\text{for } t = x} + i (E_{k} - E_{j}) (x - t)$$

$$gadditional \text{ phase}_{\text{for } t = x} + i (E_{k} - E_{j}) (x - t)$$

$$gadditional \text{ phase}_{\text{for } t = x} + i (E_{k} - E_{j}) (x - t)$$

$$gadditional \text{ phase}_{\text{for } t = x} + i (E_{k} - E_{j}) (x - t)$$

$$gadditional \text{ phase}_{\text{for } t = x} + i (E_{k} - E_{j}) (x - t)$$

$$gadditional \text{ phase}_{\text{for } t = x} + i (E_{k} - E_{j}) (x - t)$$

$$gadditional \text{ phase}_{\text{for } t = x} + i (E_{k} - E_{j}) (x - t)$$

$$gadditional \text{ phase}_{\text{for } t = x} + i (E_{k} - E_{j}) (x - t)$$

$$gadditional \text{ phase}_{\text{for } t = x} + i (E_{k} - E_{j}) (x - t)$$

$$gadditional \text{ phase}_{\text{for } t = x} + i (E_{k} - E_{j}) (x - t)$$

$$gadditional \text{ phase}_{\text{for } t = x} + i (E_{k} - E_{j}) (x - t)$$

$$gadditional \text{ phase}_{\text{for } t = x} + i (E_{k} - E_{j}) (x - t)$$

$$gadditional \text{ phase}_{\text{for } t = x} + i (E_{k} - E_{j}) (x - t)$$

$$gadditional \text{ phase}_{\text{for } t = x} + i (E_{k} - E_{j}) (x - t)$$

$$gadditional \text{ phase}_{\text{for } t = x} + i (E_{k} - E_{j}) (x - t)$$

$$gadditional \text{ phase}_{\text{for } t = x} + i (E_{k} - E_{j}) (x - t)$$

$$gadditional \text{ phase}_{\text{for } t = x} + i (E_{k} - E_{j}) (x - t)$$

$$gadditional \text{ phase}_{\text{for } t = x} + i (E_{k} - E_{j}) (x - t)$$

$$gadditional \text{ phase}_{\text{for } t = x} + i (E_{k} - E_{j}) (x - t)$$

$$gadditional \text{ phase}_{\text{for } t = x} + i (E_{k} - E_{j}) (x - t)$$

$$gadditional \text{ phase}_{\text{for } t = x} + i (E_{k} - E_{j}) (x - t)$$

$$gadditional \text{ phase}_{\text{for } t = x} + i (E_{k} - E_{j}) (x - t)$$

$$gadditional \text{ phase}_{\text{for } t = x} + i (E_{k} - E_{j}) (x - t)$$

$$gadditional + i (E_{k} - E_{j}) (x - t)$$

$$gadditional + i (E_{k} - E_{j}) (x - t)$$

$$gadditional + i (E_{k} - E_{j}) (x - t)$$

$$gadditional + i (E_{k} - E_{j}) (x - t)$$

$$gadditional + i (E_{k} - E_{j}) (x -$$

Oscillations in Space:

$$P_{lphaeta}(L) \propto \int \mathrm{d}t \, P_{lphaeta}(L,t)$$

Gaussian integration over dt

$$P_{\alpha\beta}(L) \propto \sum_{k,j} U_{\alpha k}^{*} U_{\beta k} U_{\alpha j} U_{\beta j}^{*} \exp\left[-i\frac{\Delta m_{k j}^{2}L}{2E}\right]$$

$$\times \underbrace{\sqrt{\frac{2}{v_{k}^{2}+v_{j}^{2}}}}_{\simeq 1} \exp\left[-\underbrace{(v_{k}-v_{j})^{2}}_{v_{k}^{2}+v_{j}^{2}} \frac{L^{2}}{4\sigma_{x}^{2}} - \underbrace{(E_{k}-E_{j})^{2}}_{v_{k}^{2}+v_{j}^{2}} \sigma_{x}^{2}\right]$$

$$\times \exp\left[i\underbrace{(E_{k}-E_{j})\left(1-\frac{2\overline{v}_{k j}^{2}}{v_{k}^{2}+v_{j}^{2}}\right)}_{\ll \Delta m_{k j}^{2}/2E}L\right]$$

Ultrarelativistic Neutrinos: $p_k \simeq E - (1 - \xi) \frac{m_k^2}{2E}$ $E_k \simeq E + \xi \frac{m_k^2}{2E}$

C. Giunti – Neutrinos: from Particle to Astroparticle Physics – II – Torino PhD Course – January 2016 – 62/73

$$P_{\alpha\beta}(L) = \sum_{k,j} U_{\alpha k}^* U_{\beta k} U_{\alpha j} U_{\beta j}^* \exp\left[-i\frac{\Delta m_{k j}^2 L}{2E}\right]$$
$$\times \exp\left[-\left(\frac{\Delta m_{k j}^2 L}{4\sqrt{2}E^2\sigma_x}\right)^2 - 2\xi^2 \left(\frac{\Delta m_{k j}^2\sigma_x}{4E}\right)^2\right]$$

$$P_{\alpha\beta}(L) = \sum_{k,j} U_{\alpha k}^* U_{\beta k} U_{\alpha j} U_{\beta j}^* \exp\left[-2\pi i \frac{L}{L_{k j}^{\text{osc}}}\right]$$
$$\times \exp\left[-\left(\frac{L}{L_{k j}^{\text{coh}}}\right)^2 - 2\pi^2 \xi^2 \left(\frac{\sigma_x}{L_{k j}^{\text{osc}}}\right)^2\right]$$

new localization term:
$$\exp\left[-2\pi^2\xi^2\left(\frac{\sigma_x}{L_{kj}^{\text{osc}}}\right)^2\right]$$

interference is suppressed for $\sigma_x \gtrsim L_{ki}^{\rm osc}$

equivalent to neutrino mass measurement

uncertainty of neutrino mass measurement:

$$m_k^2 = E_k^2 - p_k^2 \implies \delta m_k^2 \simeq \sqrt{(2 E_k \, \delta E_k)^2 + (2 p_k \, \delta p_k)^2} \sim 4 E \, \sigma_p$$
$$\sigma_p = \frac{1}{2 \, \sigma_x} \qquad E = \frac{|\Delta m_{kj}^2| L_{kj}^{\text{osc}}}{4\pi} \implies \delta m_k^2 \sim \frac{|\Delta m_{kj}^2| L_{kj}^{\text{osc}}}{\sigma_x}$$
$$\sigma_x \gtrsim L_{kj}^{\text{osc}} \implies \delta m_k^2 \lesssim |\Delta m_{kj}^2| \implies \text{ only one massive neutrino!}$$

Decoherence in Two-Neutrino Mixing

Achievements of the QM Wave Packet Model

- ► Confirmed Standard Oscillation Length: $L_{kj}^{osc} = 4\pi E / \Delta m_{kj}^2$
- Derived Coherence Length: $L_{kj}^{\rm coh} = 4\sqrt{2}E^2\sigma_x/|\Delta m_{kj}^2|$
- The localization term quantifies the conditions for coherence

problem

flavor states in production and detection processes have to be assumed $|\nu_{\alpha}\rangle = \sum_{k} U_{\alpha k}^{*} \int dp \, \psi_{k}^{P}(p) \, |\nu_{k}(p)\rangle \qquad |\nu_{\beta}\rangle = \sum_{k} U_{\beta k}^{*} \int dp \, \psi_{k}^{D}(p) \, |\nu_{k}(p)\rangle$ calculation of neutrino production and detection? \uparrow Quantum Field Theoretical Wave Packet Model

[CG, Kim, Lee, PRD 48 (1993) 4310] [CG, Kim, Lee, PLB 421 (1998) 237] [Kiers, Weiss, PRD 57 (1998) 3091]
 [Zralek, Acta Phys. Polon. B29 (1998) 3925] [Cardall, PRD 61 (2000) 07300]
 [Beuthe, PRD 66 (2002) 013003] [Beuthe, Phys. Rep. 375 (2003) 105] [CG, JHEP 11 (2002) 017]

Estimates of Coherence Length

$$L^{
m osc} = rac{4\pi E}{\Delta m^2} = 2.5 \, rac{(E/
m MeV)}{(\Delta m^2/
m eV^2)} \,
m m$$

$$\mathcal{L}^{
m coh} \sim rac{4\sqrt{2}E^2}{|\Delta m^2|} \sigma_x = 10^{12} \, rac{(E^2/{
m MeV}^2)}{(|\Delta m^2|/{
m eV}^2)} \left(rac{\sigma_x}{{
m m}}
ight) {
m m}$$

Process	$ \Delta m^2 $	L ^{osc}	σ_{χ}	L ^{coh}
$\pi ightarrow \mu + u$ at rest in vacuum: $E \simeq 30~{ m MeV}$ natural linewidth	$2.5\times 10^{-3}\mathrm{eV}^2$	30 km	$ au_{\pi} \sim 10 { m m}$	$\sim 10^{16} \ \rm km$
$\pi ightarrow \mu + u$ at rest in matter: $E \simeq 30 \ { m MeV}$ collision broadening	$2.5\times 10^{-3}\mathrm{eV}^2$	30 km	$\tau_{\rm col}\sim 10^{-5}{\rm m}$	$\sim 10^{10} \; \rm km$
$\mu^+ \rightarrow e^+ + \nu_e + \bar{\nu}_{\mu}$ at rest in matter: $E \leq 50 \text{ MeV}$ collision broadening	$1\mathrm{eV}^2$	$\leq 125\mathrm{m}$	$\tau_{\rm col} \sim 10^{-10} \ \rm m$	$\lesssim 10^2 \ \rm km$
$^{7}\mathrm{Be} + e^{-} \rightarrow ^{7}\mathrm{Li} + \nu_{e}$ in solar core: $E \simeq 0.86 \mathrm{MeV}$ collision broadening	$7\times 10^{-5}{\rm eV}^2$	31 km	$ au_{ m col} \sim 10^{-9} { m m}$	$\sim 10^4 \ {\rm km}$

Common Question: Do Charged Leptons Oscillate?

- Mass is the only property which distinguishes e, μ , τ .
- The flavor of a charged lepton is defined by its mass!
- ► By definition, the flavor of a charged lepton cannot change.

THE FLAVOR OF CHARGED LEPTONS DOES NOT OSCILLATE

[CG, Kim, FPL 14 (2001) 213] [CG, hep-ph/0409230] [Akhmedov, JHEP 09 (2007) 116]

a misleading argument

[Sassaroli, Srivastava, Widom, hep-ph/9509261, EPJC 2 (1998) 769] [Srivastava, Widom, hep-ph/9707268]

in $\pi^+ \rightarrow \mu^+ + \nu_\mu$ the final state of the antimuon and neutrino is entangled \Downarrow

if the probability to detect the neutrino oscillates as a function of distance, also the probability to detect the muon must oscillate

WRONG!

the probability to detect the neutrino (as ν_{μ} or ν_{τ} or ν_{e}) does not oscillate as a function of distance, because

 $\sum_{\beta=e,\mu,\tau} P_{\nu_{\mu} \to \nu_{\beta}} = 1$ conservation of probability (unitarity)

[Dolgov, Morozov, Okun, Shchepkin, NPB 502 (1997) 3] [CG, Kim, FPL 14 (2001) 213]

 Λ oscillations from $\pi^- + \rho \rightarrow \Lambda + \kappa^0$

[Widom, Srivastava, hep-ph/9605399] [Srivastava, Widom, Sassaroli, PLB 344 (1995) 436]

refuted in [Lowe et al., PLB 384 (1996) 288] [Burkhardt, Lowe, Stephenson, Goldman, PRD 59 (1999) 054018]

C. Giunti – Neutrinos: from Particle to Astroparticle Physics – II – Torino PhD Course – January 2016 – 69/73

Correct definition of Charged Lepton Oscillations

[Pakvasa, Nuovo Cim. Lett. 31 (1981) 497]

Analogy

- Neutrino Oscillations: massive neutrinos propagate unchanged between production and detection, with a difference of mass (flavor) of the charged leptons involved in the production and detection processes.
- Charged-Lepton Oscillations: massive charged leptons propagate unchanged between production and detection, with a difference of mass of the neutrinos involved in the production and detection processes.

NO FLAVOR CONVERSION!

The propagating charged leptons must be ultrarelativistic, in order to be produced and detected coherently (if τ is not ultrarelativistic, only e and μ contribute to the phase).

C. Giunti – Neutrinos: from Particle to Astroparticle Physics – II – Torino PhD Course – January 2016 – 70/73

Practical Problems

- The initial and final neutrinos must be massive neutrinos of known type: precise neutrino mass measurements.
- The energy of the propagating charged leptons must be extremely high, in order to have a measurable oscillation length

$$rac{4\pi E}{(m_{\mu}^2-m_e^2)}\simeq rac{4\pi E}{m_{\mu}^2}\simeq 2 imes 10^{-11}\left(rac{E}{
m GeV}
ight)$$
 cm

detailed discussion: [Akhmedov, JHEP 09 (2007) 116, arXiv:0706.1216]

Mistake: Oscillation Phase Larger by a Factor of 2

[Field, hep-ph/0110064, hep-ph/0110066, EPJC 30 (2003) 305, EPJC 37 (2004) 359, Annals Phys. 321 (2006) 627] $K^0 - \bar{K}^0$: [Srivastava, Widom, Sassaroli, ZPC 66 (1995) 601, PLB 344 (1995) 436] [Widom, Srivastava, hep-ph/9605399]

massive neutrinos:
$$v_k = \frac{p_k}{E_k} \implies t_k = \frac{L}{v_k} = \frac{E_k}{p_k} L$$

 $\widetilde{\Phi}_k = p_k L - E_k t_k = p_k L - \frac{E_k^2}{p_k} L = \frac{p_k^2 - E_k^2}{p_k} L = \frac{m_k^2}{p_k} L \simeq \frac{m_k^2}{E} L$
 $\Delta \widetilde{\Phi}_{kj} = -\frac{\Delta m_{kj}^2 L}{E}$ twice the standard phase $\Delta \Phi_{kj} = -\frac{\Delta m_{kj}^2 L}{2E}$
WRONG!
group velocities are irrelevant for the phase!
the group velocity is the velocity of the factor
which modulates the amplitude of the wave

packet

tl

C. Giunti – Neutrinos: from Particle to Astroparticle Physics – II – Torino PhD Course – January 2016 – 72/73
in the plane wave approximation the interference of different massive neutrino contribution must be calculated at a definite space distance L and after a definite time interval T

[Nieto, hep-ph/9509370] [Kayser, Stodolsky, PLB 359 (1995) 343] [Lowe et al., PLB 384 (1996) 288] [Kayser, hep-ph/9702327]
[CG, Kim, FPL 14 (2001) 213] [CG, Physica Scripta 67 (2003) 29] [Burkhardt et al., PLB 566 (2003) 137]

$$\Delta \widetilde{\Phi}_{kj} = (p_k - p_j) L - (E_k - E_j) t_k \qquad \text{WRONG!}$$

$$\Delta \Phi_{kj} = (p_k - p_j) L - (E_k - E_j) T \qquad \text{CORRECT!}$$

no factor of 2 ambiguity claimed in

[Lipkin, PLB 348 (1995) 604, hep-ph/9901399] [Grossman, Lipkin, PRD 55 (1997) 2760]
[De Leo, Ducati, Rotelli, MPLA 15 (2000) 2057]
[De Leo, Nishi, Rotelli, hep-ph/0208086, hep-ph/0303224, IJMPA 19 (2004) 677]