

4-8 April 2016, ECT*, Trento

C. Giunti - Concluding Remarks - Determination of the absolute electron (anti)-neutrino mass - 8 April 2016 - 1/99

2015 Physics Nobel Prize

FOR THE DISCOVERY OF NEUTRINO OSCILLATIONS, WHICH SHOWS THAT NEUTRINOS HAVE MASS

1998: Oscillations of atmospheric neutrinos observed by the Super-Kamiokande experiment

Takaaki Kajita

2002: Oscillations of solar neutrinos observed by the SNO experiment

Arthur B. McDonald

C. Giunti – Concluding Remarks – Determination of the absolute electron (anti)-neutrino mass – 8 April 2016 – 2/99

Neutrino Oscillations

(i=1,2)

i-3 sector: θ_{i3} and Δm^2_{3i}

(Multi-GeV)

X2 (shape)

 $\chi^2(shape)$

= 30/4 dof

(6.20 !!)

=2.8/4 dof

Down-going

Data

256

0 cost

+MC stat

atmospheric neutrinos:

C. Giunti – Concluding Remarks – Determination of the absolute electron (anti)-neutrino mass – 8 April 2016 – 3/99

Neutrino Oscillations

1-2 sector: θ_{12} and Δm^2_{21}

MSW conversion in the Sun

2002: SNO: CC to NC ratio of solar neutrino flux

CC: $\nu_e + d \rightarrow p + p + e^-$ NC: $\nu_x + d \rightarrow p + n + \nu_x$

- evidence for $\nu_e \rightarrow \nu_\mu, \nu_\tau$ conversion
- MSW effect inside the sun adiabatic conversion through resonance
- fixes ordering of the 1-2 mass states

11

1-2 sector: θ_{12} and Δm^2_{21}

Evidence for spectral distortion: KamLAND 2004

T. Schwetz

C. Giunti – Concluding Remarks – Determination of the absolute electron (anti)-neutrino mass – 8 April 2016 – 5/99

see also Marco Drewes talk

Textboox Example: type I seesaw

introduce $N_R \sim (1,0)$, automatically has two possible couplings:

- couples to $g_{\nu}\overline{L}\,\tilde{\Phi}\sim(1,0)$, becomes $g_{\nu}v\,\overline{\nu_L}\,N_R\equiv m_D\,\overline{\nu_L}\,N_R$
- in addition: Majorana mass term for N_R : $\frac{1}{2}M_R\overline{N_R^c}N_R$

$$\mathcal{L} = \frac{1}{2} \left(\overline{\nu_L}, \overline{N_R^c} \right) \begin{pmatrix} 0 & m_D \\ m_D & M_R \end{pmatrix} \begin{pmatrix} \nu_L^c \\ N_R \end{pmatrix} + h.c.$$
$$\equiv \frac{1}{2} \overline{\Psi} \mathcal{M}_{\nu} \Psi^c + h.c.$$

diagonalization gives $\operatorname{diag}(m_{\nu}, M)$ with (in limit $M_R \gg m_D$)

$$m_{
u} = m_D^2/M_R$$
 and $M = M_R$

MASSIVE MAJORANA NEUTRINOS!

approach	ingredient	quantum number of messenger	L	m_{ν}	scale
"SM" (Dirac mass)	RH v	$N_R \sim (1,0)$	$h\overline{N_R}\Phi L$	hv	$h = \mathcal{O}(10^{-1})$
"effective" (dim 5 operator)	new scale + LNV	-	$h \overline{L^c} \Phi \Phi L$	$\frac{h v^2}{\Lambda}$	$\Lambda = 10^{14} \text{ G}$
"direct" (type II seesaw)	Higgs triplet + LNV	$\Delta \sim (3, -2)$	$h\overline{L^{c}}\Delta L + \mu \Phi \Phi \Delta$	hv_T	$\Lambda = \frac{1}{h\mu} M$
"indirect 1" (type seesaw)	RH ν + LNV	$N_R \sim (1,0)$	$h\overline{N_R}\Phi L + \overline{N_R}M_RN_R^c$	$\frac{(hv)^2}{M_R}$	$\Lambda = \frac{1}{h} M_I$
"indirect 2" (type III seesaw)	fermion triplets + LNV	$\Sigma \sim (3,0)$	$h\overline{\Sigma} L\Phi + {\rm Tr}\overline{\Sigma} M_{\widehat{\Sigma}} \Sigma$	$\frac{(hv)^2}{M_{\Sigma}}$	$\Lambda = \frac{1}{h} M_{\Sigma}$

plus radiative mechanisms

plus extra dimensions

plusplusplus

C. Giunti – Concluding Remarks – Determination of the absolute electron (anti)-neutrino mass – 8 April 2016 – 7/99

3-flavour oscillations

6 oscillation parameters:

- 3 mixing angles,
- I complex phase,
- 2 mass-squared differences

Experiment	Dominant	Important
Solar Experiments	θ_{12}	$\Delta m_{21}^2, \theta_{13}$
Reactor LBL (KamLAND)	Δm_{21}^2	θ_{12},θ_{13}
Reactor MBL (Daya-Bay, Reno, D-Chooz)	θ_{13}	$ \Delta m_{3\ell}^2 $
Atmospheric Experiments	θ_{23}	$ \Delta m_{3\ell}^2 , \theta_{13}, \delta$
Accelerator LBL ν_{μ} Disapp (Minos, T2K)	$ \Delta m_{3\ell}^2 , \theta_{23}$	
Accelerator LBL ν_e App (Minos, T2K)	δ	$\theta_{13}, \theta_{23}, \operatorname{sign}(\Delta m_{3\ell}^2)$

 Table 1. Experiments contributing to the present determination of the oscillation parameters.

 T. Schwetz
 4

Neutrino Oscillations

C. Giunti – Concluding Remarks – Determination of the absolute electron (anti)-neutrino mass – 8 April 2016 – 10/99

Neutrino Oscillations

Neutrino mass ordering

almost complete degeneracy in present data

T. Schwetz

C. Giunti – Concluding Remarks – Determination of the absolute electron (anti)-neutrino mass – 8 April 2016 – 11/99

Neutrinoless Double-Beta Decay

d

 $u e^-$

 e^{-}

u

$$\mathcal{N}(A, Z) \rightarrow \mathcal{N}(A, Z+2) + e^{-} + e^{-}$$

$$(T_{1/2}^{0\nu})^{-1} = G_{0\nu} |\mathcal{M}_{0\nu}|^2 |m_{\beta\beta}|^2$$

$$|m_{\beta\beta}| = \left|\sum_{k} U_{ek}^2 m_k\right|$$

$$d$$

Effective Majorana Neutrino Mass $m_{\beta\beta} = |U_{e1}|^2 m_1 + |U_{e2}|^2 e^{i\alpha_2} m_2 + |U_{e3}|^2 e^{i\alpha_3} m_3$

C. Giunti – Concluding Remarks – Determination of the absolute electron (anti)-neutrino mass – 8 April 2016 – 13/99

(+,+)

(-,+) (-,-)

1σ

Neutrino Masses

MASSIVE NEUTRINOS IN THE ERA OF PRECISION COSMOLOGY

C. Giunti – Concluding Remarks – Determination of the absolute electron (anti)-neutrino mass – 8 April 2016 – 15/99

neutrinos in equilibrium in early Universe through weak interactions:

$$\nu\bar{\nu} \leftrightarrows e^+ e^- \qquad \stackrel{(-)}{\nu} e \leftrightarrows \stackrel{(-)}{\nu} e \qquad \stackrel{(-)}{\nu} N \leftrightarrows \stackrel{(-)}{\nu} N$$
$$\nu_e n \leftrightarrows p e^- \qquad \bar{\nu}_e p \leftrightarrows n e^+ \qquad n \leftrightarrows p e^- \bar{\nu}_e$$

• weak interactions freeze out \implies active $(\nu_e, \nu_\mu, \nu_\tau)$ neutrino decoupling

$$\Gamma_{
m weak} = N\sigma v \sim G_{
m F}^2 T^5 \sim T^2/M_P \sim \sqrt{G_N T^4} \sim \sqrt{G_N
ho} \sim H$$

 $T_{
u-
m dec} \sim 1 \,
m MeV$ $t_{
u-
m dec} \sim 1 \,
m s$

► relic neutrinos: $T_{\nu} = \left(\frac{4}{11}\right)^{\frac{1}{3}} T_{\gamma} \simeq 1.945 \text{ K} \implies k T_{\nu} \simeq 1.676 \times 10^{-4} \text{ eV}$

• number density: $n_f = \frac{3}{4} \frac{\zeta(3)}{\pi^2} g_f T_f^3 \Longrightarrow n_{\nu_k, \bar{\nu}_k} \simeq 0.1827 T_{\nu}^3 \simeq 112 \,\mathrm{cm}^{-3}$

► density contribution: $\Omega_k = \frac{n_{\nu_k, \bar{\nu}_k} m_k}{\rho_c} \simeq \frac{1}{h^2} \frac{m_k}{94.1 \text{ eV}} \Rightarrow \Omega_{\nu} h^2 = \frac{\sum_k m_k}{94.1 \text{ eV}}$ $\left(\rho_c = \frac{3H^2}{8\pi G_N}\right)$ [Gershtein, Zeldovich, JETP Lett. 4 (1966) 120; Cowsik, McClelland, PRL 29 (1972) 669]

C. Giunti – Concluding Remarks – Determination of the absolute electron (anti)-neutrino mass – 8 April 2016 – 16/99

NEUTRINO MASS AND ENERGY DENSITY FROM COSMOLOGY

NEUTRINOS AFFECT STRUCTURE FORMATION BECAUSE THEY ARE A SOURCE OF DARK MATTER $(n \sim 100 \text{ cm}^{-3})$

$$\Omega_{\nu}h^{2} = \frac{\sum m_{\nu}}{93 \,\text{eV}}$$
 FROM $T_{\nu} = T_{\gamma} \left(\frac{4}{11}\right)^{1/3} \approx 2 \text{ K}$

HOWEVER, eV NEUTRINOS ARE DIFFERENT FROM CDM BECAUSE THEY FREE STREAM

 $d_{\rm FS} \sim 1 \,{\rm Gpc}\,m_{\rm ev}^{-1}$

SCALES SMALLER THAN d_{FS} DAMPED AWAY, LEADS TO SUPPRESSION OF POWER ON SMALL SCALES

Christian Weinheimer

WESTFÄLISCHE Wilhelms-Universität Münster

The Karlsruhe Tritium Neutrino Experiment KATRIN - overview

Christian Weinheimer

Christian Weinheimer

Summary: β -spectrum incl. electronic final states + ν mixing

Including electronic excited final states of excitation energy $V_{
m i}$ with probability $W_{
m i}$

C. Giunti – Concluding Remarks – Determination of the absolute electron (anti)-neutrino mass – 8 April 2016 – 22/99

NEW TESTS FOR AND BOUNDS ON NEUTRINO MASSES AND LEPTON MIXING

R.E. SHROCK

Institute for Theoretical Physics, State University of New York at Stony Brook, Stony Brook, NY 11794, USA

Received 5 May 1980

We propose a new class of correlated tests for neutrino masses and lepton mixing. Two particular tests based on $(\pi, K)_{\ell_2}$ decay and nuclear β decay are discussed and applied to present data to derive bounds on these quantities.

→ $(E_e)_{\text{max}}$. An analysis of the decay ³H → ³He + e⁻ + $\bar{\nu}_e$ yielded the best upper limit quoted as " $m(\nu_e)$ " < 35 eV (90% CL) [10]. The precise meaning is that $m(\nu_i) < 35$ eV for all LDC modes *i* occurring in this β decay. In fact, however, previous discussions do not seem to have recognized that, as a corollary of our beginning observation, the early falloff near $(E_e)_{\text{max}}$ in a Kurie plot is not the only signature of massive neutrinos. Rather, a Kurie plot would in general consist of k' components due to the separate decays (Z_1, A_1) → $(Z_1 \pm 1, A_1) + e^{\pm + (\bar{\nu})}_e$. Of these, a subset $i \in \{i_1\}$

every β decay can be used. The characteristic signature of the *i*th HSC mode is a kink in the Kurie plot at its endpoint energy

$$(E_{\rm e}^{(i)})_{\rm max} = \{M_1^2 + m_{\rm e}^2 - [M_2 + m(v_i)]^2\}/(2M_1),$$

where $M_{1,2}$ are the initial and final nuclear masses, together with the small incremental addition which it con tributes for $E_e < (E_e^{(i)})_{max}$. From the position of the *i*th kink one can determine $m(v_i)$. Next, one can deter-

Eventually it may be possible to

- determine the individual masses m₁, m₂, m₃;
- determine the mixings $|U_{e1}|^2$, $|U_{e2}|^2$, $|U_{e3}|^2$;

• check the unitarity relation
$$\sum_{k=1} |U_{ek}|^2 = 1$$
.

Energy resolution $\Delta E \gtrsim 1 \,\mathrm{eV} \gg m_1, m_2, m_3 \Longrightarrow Q - T \gg m_1, m_2, m_3$

$$\begin{aligned} \mathcal{K}^{2} &= (Q - T) \sum_{k=1}^{3} |U_{ek}|^{2} \sqrt{(Q - T)^{2} - m_{k}^{2}} \\ &= (Q - T)^{2} \sum_{k=1}^{3} |U_{ek}|^{2} \sqrt{1 - \frac{m_{k}^{2}}{(Q - T)^{2}}} \\ &\simeq (Q - T)^{2} \sum_{k=1}^{3} |U_{ek}|^{2} \left[1 - \frac{1}{2} \frac{m_{k}^{2}}{(Q - T)^{2}}\right] \\ &= (Q - T)^{2} \left[1 - \frac{1}{2} \frac{m_{\beta}^{2}}{(Q - T)^{2}}\right] \\ &\simeq (Q - T) \sqrt{(Q - T)^{2} - m_{\beta}^{2}} \end{aligned}$$

$$\begin{aligned} \mathsf{EFFECTIVE\ MASS:} \qquad \boxed{m_{\beta}^{2} = \sum_{k=1}^{3} |U_{ek}|^{2} m_{k}^{2}} \end{aligned}$$

What happens if $\Delta E \approx m_1 \simeq m_2 \simeq m_3$ (quasi-degenerate)? $m_{L}^{2} = m_{1}^{2} + m_{L}^{2} - m_{1}^{2} = m_{1}^{2} + \Delta m_{L1}^{2}$ $K^{2} = (Q - T) \sum_{k=1}^{3} |U_{ek}|^{2} \sqrt{(Q - T)^{2} - m_{1}^{2} + \Delta m_{k1}^{2}}$ $(Q - T)^2 - m_1^2 \gg \Delta m_{L1}^2 \implies \text{first order mass effect:}$ $K^2 \simeq (Q-T) \sum_{k=1}^{3} |U_{ek}|^2 \sqrt{(Q-T)^2 - m_1^2}$ $\simeq (Q-T)\sqrt{(Q-T)^2-m_{\beta}^2}$ $m_{\beta}^2 = \sum_{k=1}^3 |U_{ek}|^2 m_k^2 \simeq \sum_{k=1}^3 |U_{ek}|^2 m_1^2 = m_1^2$ the effective mass is valid down to an energy resolution $\Delta E \approx 0.1 \, \text{eV}$

where the masses are quasi-degenerate

C. Giunti – Concluding Remarks – Determination of the absolute electron (anti)-neutrino mass – 8 April 2016 – 26/99

Effective Neutrino Mass

 $m_{\beta}^2 = |U_{e1}|^2 m_1^2 + |U_{e2}|^2 m_2^2 + |U_{e3}|^2 m_3^2$

Project 8

Project 8

Coherent radiation emitted can be collected and used to measure the energy of the electron in nondestructively,

I. I. Rabi

"Never measure anything but frequency."

O Use cyclotron frequency to extract electron energy. $\omega(\gamma) = \frac{\omega_0}{\gamma} = \frac{eB}{K+m_e}$ · Non-destructive measurement of electron energy. B field → MANANA HA T₂ das B. Monreal and JAF, Phys. Rev D80:051301

C. Giunti – Concluding Remarks – Determination of the absolute electron (anti)-neutrino mass – 8 April 2016 – 28/99

Project 8

Unique Advantages

- Source = Detector

 (no need to separate the
 electrons from the tritium)
- Frequency Measurement

 (can pin electron energies to well-known frequency standards)
- Full Spectrum Sampling (full differential spectrum measured at once, large leverage for stability and statistics)

Project 8

...and Challenges

Power Emilted

Less than 1 fW of power radiated (depends on antenna geometry) is challenging.

Confinement Period

One needs time to make sufficiently accurate measurement (> 10 μs), Employ magnetic bottle for trapping,

Full Spectrum

The full spectrum is available. Fortunately, linearity of frequency space helps separate regions of interest.

Project 8

C. Giunti – Concluding Remarks – Determination of the absolute electron (anti)-neutrino mass – 8 April 2016 – 31/99

A Phased Approach

Given the novelty of the project, we are pursuing a phased approach toward neutrino mass measurements:

	Timeline	Scientific Goal	Source	R&D Milestone
Phase I	2010-2014	Proof of principle; Kr spectrum	^{83m} Kr	Single electron detection
Phase II	201 <i>5</i> -2017	T-He mass difference	T ₂	Tritium spectrum; calibration and error studies
Phase III	2016-2020	2 eV scale	T₂	
Phase IV	2018+	0.04 eV scale	T	High rate sensitivity
We have completed Phase I, we are preparing for Phase II				

Christian Enss

Alvaro De Rujula

¹⁶³Ho EC Theory

C. Giunti – Concluding Remarks – Determination of the absolute electron (anti)-neutrino mass – 8 April 2016 – 34/99

1) Electron at nucleus \rightarrow s1/2 and p1/2

2) Electron binding energy < Q-value ≈ 2.8 [keV]

E(1s _{1/2} , K,Ho) = 55.6 keV	E(3s _{1/2} ,M1,Ho) = 2.0 keV
$E(2s_{1/2}, L1, Ho) = 9.4 \text{ keV}$	E(3p _{1/2} ,M2,Ho) = 1.8 keV
$E(2p_{1/2},L2,Ho) = 8.9 \text{ keV}$	$E(4s_{1/2}, N1, Ho) = 0.4 \text{ keV}$
$E(2p_{3/2},L3,Ho) = 8.1 \text{ keV}$	$E(4p_{1/2}, N2, H0) = 0.3 \text{ keV}$

Deexcitation Spectrum (X-rays, Auger- electrons by a Calorimeter) of excited Dy* (Atom)

$$\frac{d\Gamma}{dE_{c}} \propto (\mathbf{Q} - \mathbf{E}_{c})\sqrt{(Q - Ec)^{2} - m_{v}^{2}} \sum_{ff'} \lambda_{0} B_{ff'} \frac{\Gamma_{f'}}{2\pi} \frac{1}{(E_{c} - E_{f'})^{2} + \Gamma_{f'}/4}$$

$$B_{f,f'} \approx |\langle \mathbf{Dy}^{*}_{f'}| a_{f} | \mathbf{G} \rangle|^{2} |\psi_{f}(\mathbf{R})|^{2} / |\psi_{3s1/2}(\mathbf{R})|^{2}$$

$$\lambda_{0} \propto \mathbf{G}^{2}_{weak} \xi$$

$$\langle A|B' \rangle = \int_{0,\infty} (P_{A}(r) \cdot P_{B'}(r) + Q_{A}(r) \cdot Q_{B'}(r)) \cdot dr = overlap(A, B')$$

$$EXEMPTIVE UNDERSET$$

¹⁶³Ho EC Theory

Christian Enss

Spectral Shape: Higher Order Processes

Alvaro De Rujula

Alvaro De Rujula

¹⁶³Ho EC Theory

C. Giunti – Concluding Remarks – Determination of the absolute electron (anti)-neutrino mass – 8 April 2016 – 41/99

Alvaro De Rujula

¹⁶³Ho EC Theory

C. Giunti – Concluding Remarks – Determination of the absolute electron (anti)-neutrino mass – 8 April 2016 – 42/99

- ▶ Different theoretical opinions about the size of the shake-off effect.
- ▶ We all hope that it is as large as calculated by Alvaro and Maurizio.
- Plausible statement by Alvaro (as I remember): theoretical calculations are important for the development of the experiments, but will not be crucial for the mass measurements.
- This is because the spectrum near the end point can be fitted by the sum of a smooth function and a Breit-Wigner tail.

C. Giunti – Concluding Remarks – Determination of the absolute electron (anti)-neutrino mass – 8 April 2016 – 44/99

Sergey Eliseev

ECHo-SHIPTRAP

C. Giunti – Concluding Remarks – Determination of the absolute electron (anti)-neutrino mass – 8 April 2016 – 46/99

Sergey Eliseev

ECHo-SHIPTRAP

Sergey Eliseev

ECHo-SHIPTRAP

Christian Enss

Electron capture end-point experiment / 1

 163 Ho + e⁻ \rightarrow 163 Dy* + v_{e}

electron capture from shell \ge M1

A. De Rújula and M. Lusignoli, Phys. Lett. B 118 (1982) 429

- calorimetric measurement of Dy atomic de-excitations (mostly non-radiative)
- Q = 2.8 keV (recent measurement with Penning trap)
 - ▶ rate at end-point and v mass sensitivity depend on $Q = E_{M1}$
- $\tau_{\frac{1}{12}} \approx 4570$ years \rightarrow few active nuclei are needed (2×10¹¹ ¹⁶³Ho nuclei \leftrightarrow 1Bq)

C. Giunti – Concluding Remarks – Determination of the absolute electron (anti)-neutrino mass – 8 April 2016 – 51/99

HOLMES

Statistical sensitivity: Montecarlo simulations

M. Galeazzi et al., arXiv:1202.4763v2 A. Nucciotti, Eur. Phys. J. C (2014) 74:3161

A. Nucciotti, ECT*, Trento (Italy), April 4th-8th, 2016 7

C. Giunti – Concluding Remarks – Determination of the absolute electron (anti)-neutrino mass – 8 April 2016 – 52/99

Angelo Nucciotti

8

53/99

Electron capture end-point experiment / 3

- shake-up/shake-off → double hole excitations
 - n-hole excitations possible but less probable
 - ullet authors do not fully agree on energies and probabilities \checkmark
- even more complex pile-up spectrum

10

10⁻²

it may be worth keeping f_{pp} smaller than 10⁻⁴

only shake-up!

A.De Rújula, arXiv:1305.4857 R.G.H.Robertson, arXiv:1411.2906 A.Faessler et al., PRC 91 (2015) 45505

erc

HOLMES (ERC-Advanced Grant n. 340321)

goal

- neutrino mass measurement: m, statistical sensitivity as low as 0.4 eV
- prove technique potential and scalability:
 - assess EC spectral shape
 - assess systematic errors

baseline

- TES with implanted 163Ho
 - ► 6.5×10¹³ nuclei per pixel
 → 300 dec/sec
 - ► ΔE≈1eV and τ_R≈1µs
- 1000 channel array
 - 6.5×10^{16 163}Ho nuclei
 → ≈18µg
 - 3×10¹³ events in 3 years

HI

LMES

→ Project Started on February 1st 2014

B. Alpert et al., Eur. Phys. J. C, (2015) 75:112 http://artico.mib.infn.it/holmes

A. Nucciotti, ECT*, Trento (Italy), April 4th-8th, 2016 12

C. Giunti – Concluding Remarks – Determination of the absolute electron (anti)-neutrino mass – 8 April 2016 – 54/99

NuMECS

Project goals

Develop experimental methods to enable calorimetric ECS for neutrino mass measurement

- Make ¹⁶³Ho with high isotopic and chemical purity
- Develop optimized sensors
- Develop methods to incorporate EC-decaying isotopes into sensors
- Demonstrate high-resolution ECS at single-pixel scale

Different methods by independent groups \rightarrow good science!

Mark Croce

Contribute data to aid theoretical understanding of EC spectra

C. Giunti – Concluding Remarks – Determination of the absolute electron (anti)-neutrino mass – 8 April 2016 – 56/99

FIG. 2. Blue: the calorimetric spectrum measured by Nu-MECS [8]. Red: the theoretical prediction of Faessler et al. [13]. Green: the same description as in Fig. (1b).

Neutrino beta capture

- Capture on beta-decaying nuclei
 - $\stackrel{(-)}{\nu_{\rm e}} + N \to N' + e^{\pm}$
 - zero threshold
- excess electrons
 - $\sim 2~m_{_{\rm V}}$ beyond beta decay endpoint

S. Weinberg, Phys.Rev. 128 (1962) 1457-1473

Lusignoli: need to cite Irvine and Humphreys (1983)

C. Giunti – Concluding Remarks – Determination of the absolute electron (anti)-neutrino mass – 8 April 2016 – 58/99

Neutrino history: Dirac

Neutrino history: Majorana

Macroscopic difference Dirac/Majorana!

$$\Gamma_{\mathrm{C}\nu\mathrm{B}} = \bar{\sigma}_0 \left[n(\nu_{h_R}) + n(\nu_{h_L}) \right] N_{\mathrm{Tri}}$$

$$\Gamma_{C\nu B}^{D} = \bar{\sigma}_{0} n_{0} N_{Tri} \approx 4.1 \text{ yr}^{-1} \begin{cases} n(\nu_{hL}) = n_{0} \\ n(\nu_{hR}) = 0 \end{cases}$$
$$\Gamma_{C\nu B}^{M} = 2\bar{\sigma}_{0} n_{0} N_{Tri} \approx 8.1 \text{ yr}^{-1} \begin{cases} n(\nu_{hL}) = n_{0} \\ n(\nu_{hR}) = n_{0} \end{cases}$$

(rates for 100 g of ³H)

see also Lisanti, Safdi and Tully, PRD90 (2014) no.7, 073006

- \circ Even for optimistic $\Delta,\,\nu_1\,\text{and}\,\,\nu_2$ can not be resolved
- Inverted hierarchy more promising

Detectable at beta capture experiment!

Clustering compensates small mixing:

$$\frac{\Gamma_{\nu_4}}{\Gamma_{C\nu B}^{\rm M}} \approx 0.45 \left(\frac{|U_{e4}|^2}{3 \times 10^{-2}}\right) \left(\frac{f_{\rm clus}}{50}\right) \left(\frac{\Delta N_{\rm eff}}{0.3}\right) \qquad f_{clus} = n_s/n_0 \le 50$$

Electron Kinetic Energy (K.)

C. Giunti – Concluding Remarks – Determination of the absolute electron (anti)-neutrino mass – 8 April 2016 – 64/99

Discovery potential of experiments

The number of signal events is given by

$$\mathbf{S} = \frac{\lambda_{\nu(\bar{\nu})}}{\lambda_{\beta(EC)}} \frac{\log 2}{\mathbf{T}_{1/2}} \ N_A \ n_{\mathrm{mol}} \ t$$

Assume we want to record a total number of S = 10 signal events. We need:

- for an experiment with NCB, 135 g y of $\,^3\mathrm{H}$
- for an experiment with ANEC, depending on the Q-value, 23.2 (307, 1274) kg y of $^{-163}{\rm Ho}$
- with present estimate of shake-off, 30.6 kg y

If the relic neutrino density is $\langle n_{\nu} \rangle$

M. L., M. Vignati (2011)

New A. De Rùjula, M.L. (2016)

C. Giunti – Concluding Remarks – Determination of the absolute electron (anti)-neutrino mass – 8 April 2016 – 65/99

PTOLEMY

- R&D program to reduce molecular smearing at the tritium source
- New geometries for TES calorimeters for 0.05-0.15 eV energy resolution at the tritium endpoint
- Design of a high mass tritium source EM geometry using a Crossed-Field MAC-E filter and time-dependent triggering with Project 8 technologies

PTOLEMY

Investigate the influence of different diamond platforms to support graphene

Tune the electronic properties of CVD graphene in terms of

Fang Zhao

- Different functional terminating groups on diamond samples
- Graphene hydrogenation process (Change the hybridization of carbon atom from sp² to sp³, thus removing the conducting π band and opening a band gap)

Why interesting? C-H sp³ bond expected to be less than 3eV He³ recoils into the continuum (minimal molecular broadening)

CRADA with SRNL for first tritiated-graphene sample signed by DOE and will be delivered to PPPL in March for analysis

PTOLEMY

C. Giunti – Concluding Remarks – Determination of the absolute electron (anti)-neutrino mass – 8 April 2016 – 68/99

PTOLEMY

- R&D program may lead to advancement in the precision on the neutrino mass
 - First results expected in 2016
- Spectrum analysis can contribute to search for sterile neutrino "thresholds" down to low mixing angles
 - Initial systematics analysis included in white paper (Mertens et al.)
- Graphene-only source has unique sensitivity to MeVscale dark matter
 - New paper in preparation
- Relic neutrino direct detection
 - Goal by 2017 : design for a 100g tritium capacity with as compact a source and filter geometry as possible from simulation

Heavy Sterile Neutrinos

Marco Drewes

Heavy Sterile Neutrino Theory

C. Giunti – Concluding Remarks – Determination of the absolute electron (anti)-neutrino mass – 8 April 2016 25 71/99

Maximilian Totzauer

Production mechanisms for sterile ν Dark Matter: A Kaleidoscope of models on the market

Where we are and where we're heading to - Synopsis & Outlook

Synopsis of current and future bounds

courtesy of A. Merle
Experimental searches for v_s -DM

KATRIN Signature

- · We need large statistics
- · And extremely low systematic uncertainties

Susanne Mertens

Pre-Measurement

Targeted sensitivity

C. Giunti – Concluding Remarks – Determination of the absolute electron (anti)-neutrino mass – 8 April 2016 – 76/99

Light Sterile Neutrinos

Sterile Neutrinos at the eV Scale

Th. Lasserre - Trento - 07/04/2016

Sterile Neutrinos at the eV Scale

 Test of solar neutrino radiochemical detectors GALLEX and SAGE

• ⁷¹Ga +
$$\nu_e \rightarrow$$
 ⁷¹Ge + e⁻

- 4 calibration runs with 20-60 PBq
 Electron Capture v_e emitters
 Gallex, <L>=1.9 m
 - ⁵¹Cr, 750 keV
 - Sage, <L>=0.6 m
 ⁵¹Cr & ³⁷Ar (810 keV)
- Deficit observed
 - 3σ anomaly

Th. Lasserre – Trento – 07/04/2016

Sterile Neutrinos at the eV Scale

Three Active Neutrinos

Sterile Neutrinos at the eV Scale

Th. Lasserre – Trento – 07/04/2016

Sterile Neutrinos at the eV Scale

C. Giunti – Concluding Remarks – Determination of the absolute electron (anti)-neutrino mass – 8 April 2016 – 82/99

Sterile Neutrinos at the eV Scale

Searches for eV Sterile- ν

Th. Lasserre - Trento - 07/04/2016

Sterile Neutrinos at the eV Scale

A selection of Ongoing Efforts

STEREO: **Gd-LS detector** at 10m from ILL , France

Neutrino-4: **Gd-LS detector** at 6-12m from SM-3, Russia

NEOS: **Gd-LS detector** at ~30m from Hanbit, Korea

NuLAT: Liloaded plastic scintillator cubes

SoLid/CHANDLER: segmented composite scintillator cubes at 5.5m from BR2, Belgium

DANSS: Segmented plastic scintillator at ~10m from KNPP, Russia

@Credit: K. Heeger

PROSPECT: **Segmented** ⁶Li liquid scintillator at 7-12m from HFIR, US

Sterile Neutrinos at the eV Scale

CeSOX @ BOREXINO

Antineutrino Emitter: ¹⁴⁴Ce-¹⁴⁴Pr

(ITEP N°90 1994, PRL 107, 201801, 2011)

- $\overline{\mathbf{v}}_{e}$ detection: $\overline{\mathbf{v}}_{e}$ + p \rightarrow e⁺ + n
 - large IBD cross section \rightarrow 5 PBq
 - (e⁺,n) coincidence → mitigate backgrounds

- 144Ce-144Pr
 - Abundant fission product (5%)
 - ¹⁴⁴Ce: long-lived & low-Q_β time to produce, transport, use
 - = ¹⁴⁴Pr: short-lived & high- Q_{β} \overline{v}_{e} -emitter above IBD threshold

C. Giunti – Concluding Remarks – Determination of the absolute electron (anti)-neutrino mass – 8 April 2016 – 85/99

Sterile Neutrinos at the eV Scale

CeSOX @ BOREXINO

E_{vis} (MeV)

L_{rec} (m)

C. Giunti – Concluding Remarks – Determination of the absolute electron (anti)-neutrino mass – 8 April 2016 – 86/99

Light Sterile Neutrino in KATRIN

Integral Tritium β -decay spectrum near endpoint E₀=18.575 keV

Sterile Neutrinos at the eV Scale

KATRIN + Stéréo + CeSOX

Th. Lasserre - Trento - 07/04/2016

Hints from appearance experiments (LSND)

$$\sin^2 2\theta_{\mu e} \approx \frac{1}{4} \sin^2 2\theta_{ee} \sin^2 2\theta_{\mu \mu}$$

necessarily predict signal in v_{μ} disappearance - but not seen

Kopp, Machado, Maltoni, Schwetz, 1303.3011

T. Schwetz

C. Giunti – Concluding Remarks – Determination of the absolute electron (anti)-neutrino mass – 8 April 2016 – 89/99

41

Thomas Schwetz

Strong tension in global data

consistency of appearance and disappearance data with p-value 10⁻⁴

C. Giunti et al find somewhat better fit: p-value 10⁻³ /308.5288

eV-scale sterile neutrinos

T. Schwetz

Sterile Neutrinos at the eV Scale

Th. Lasserre – Trento – 07/04/2016

C. Giunti – Concluding Remarks – Determination of the absolute electron (anti)-neutrino mass – 8 April 2016 – 92/99

 $m_{\beta\beta} = |U_{e1}|^2 m_1 + |U_{e2}|^2 e^{i\alpha_{21}} m_2 + |U_{e3}|^2 e^{i\alpha_{31}} m_3 + |U_{e4}|^2 e^{i\alpha_{41}} m_4$

C. Giunti – Concluding Remarks – Determination of the absolute electron (anti)-neutrino mass – 8 April 2016 – 93/99

C. Giunti – Concluding Remarks – Determination of the absolute electron (anti)-neutrino mass – 8 April 2016 – 94/99

GOING BEYOND THE MASS

$$\Omega = \frac{\rho}{\rho_c} = \sum m_{\nu_i} n_{\nu,i} \qquad n_{\nu} = \frac{3}{4} \left(\frac{T_{\nu}}{T_{\gamma}}\right)^3 n_{\gamma}$$

Normally $T_{\nu} = \left(\frac{4}{11}\right)^{1/3} T_{\gamma}$, but could be different. Normally the relativistic energy density in neutrinos is quantified through the relation

$$N_{eff} = \frac{\rho_{\nu,rel}}{\rho_{\nu 0}} \qquad \qquad \rho_{\nu 0} = \frac{7}{8} \left(\frac{T_{\nu}}{T_{\gamma}}\right)^4 \rho_{\gamma}$$

Neff is a measure of any type of "dark radiation"

Steen Hannestad

Massive Neutrinos in Cosmology

THE CONCLUSION SEEMS TO BE THAT THERE IS NO EVIDENCE FOR ANY PHYSICS BEYOND THE STANDARD MODEL

BUT BE AWARE THAT IN EXTENDED MODELS THIS CAN BE VERY DIFFERENT!

 $N_{
m eff}^{
m SM}=3.046$ [Mangano, Miele, Pastor, Pinto, Pisanti, Serpico, NPB 729 (2005) 221]

C. Giunti – Concluding Remarks – Determination of the absolute electron (anti)-neutrino mass – 8 April 2016 – 96/99

Bottom line: Sterile neutrinos in the mass range preferred by SBL data can be accomodated by cosmology, but ONLY if they are not fully thermalised

How can this be achieved?

<u>A large neutrino lepton asymmetry</u> (see e.g. STH, Tamborra, Tram 1204.5861, Saviano et al. arXiv:1302.1200)

<u>New, non-standard interactions in the sterile sector</u> (e.g. STH, Hansen, Tram, 1310.5926, Dasgupta & Kopp 1310.6337, Bringmann, Hasenkamp & Kersten 1312.4947, Archidiacono, STH, Hansen, Tram 1404.5915 Chu, Dasgupta & Kopp 1505.02795)

Conclusions

Alvaro De Rujula

¹⁶³Ho EC Theory

