Oscillations Beyond Three-Neutrino Mixing (Status of Light Sterile Neutrinos)

Carlo Giunti

INFN, Torino, Italy

Moriond Electroweak Interactions and Unified Theories 2017 La Thuile, Aosta Valley, Italy, 18-25 March 2017

Indications of SBL Oscillations Beyond 3ν

<u>LSND</u>

[PRL 75 (1995) 2650; PRC 54 (1996) 2685; PRL 77 (1996) 3082; PRD 64 (2001) 112007]

 $ar{
u}_{\mu}
ightarrow ar{
u}_{e}$ 20 MeV $\leq E \leq$ 52.8 MeV

• Well-known and pure source of $\bar{\nu}_{\mu}$

Well-known detection process of $\bar{\nu}_e$

- \blacktriangleright \approx 3.8 σ excess
- But signal not seen by KARMEN at L ~ 18 m with the same method

[PRD 65 (2002) 112001]

MiniBooNE

 $L \simeq 541 \,\mathrm{m}$ 200 MeV $\leq E \lesssim 3 \,\mathrm{GeV}$

- Purpose: check LSND signal.
- ▶ Different *L* and *E*.
- ► Similar *L*/*E* (oscillations).
- ► No money, no Near Detector.

- LSND signal: E > 475 MeV.
- Agreement with LSND signal?
- CP violation?
- Low-energy anomaly!

Gallium Anomaly

Gallium Radioactive Source Experiments: GALLEX and SAGE $e^- + {}^{51}Cr \rightarrow {}^{51}V + \nu_e$ $e^- + {}^{37}\text{Ar} \rightarrow {}^{37}\text{Cl} + \nu_e$ ν_e Sources: $E \simeq 0.81 \, \text{MeV}$ $E \simeq 0.75 \,\mathrm{MeV}$ $^{71}\text{Ga} \rightarrow ^{71}\text{Ge} + e^{-}$ Test of Solar ν_e Detection: N₂ + GeCl₄ GALLEX SAGE E Cr1 Cr 0.1 $R = N_{\rm exp}/N_{\rm cal}$ GALLEX SAGE Cr2 GaCl Ar 0.9 + RCI (54 m³, 110 t) 0.8 $\overline{R} = 0.84 \pm 0.05$ 0.7 $\approx 2.9\sigma$ deficit $\langle L \rangle_{\text{GALLEX}} = 1.9 \text{ m} \quad \langle L \rangle_{\text{SAGE}} = 0.6 \text{ m}$ [SAGE, PRC 73 (2006) 045805; PRC 80 (2009) 015807; Laveder et al, Nucl.Phys.Proc.Suppl. 168 (2007) 344, MPLA 22 (2007) 2499, PRD 78 (2008) 073009, $\Delta m_{\rm SBL}^2 \gtrsim 1 \, {\rm eV}^2 \gg \Delta m_{\rm ATM}^2 \gg \Delta m_{\rm SOL}^2$ PRC 83 (2011) 065504]

C. Giunti – Oscillations Beyond Three-Neutrino Mixing – Moriond EW 2017 – 24 March 2017 – 6/23

Reactor Electron Antineutrino Anomaly

[Mention et al, PRD 83 (2011) 073006]

 $pprox 2.5\sigma$ deficit

 $\Delta m^2_{\mathsf{SBL}} \gtrsim 0.5\,\mathrm{eV}^2 \gg \Delta m^2_{\mathsf{ATM}} \gg \Delta m^2_{\mathsf{SOL}}$

- Hanbit Nuclear Power Complex in Yeong-gwang, Korea.
- ► Thermal power of 2.8 GW.
- Detector: a ton of Gd-loaded liquid scintillator in a gallery approximately 24 m from the reactor core.
- The measured antineutrino event rate is 1976 per day with a signal to background ratio of about 22.

Beyond Three-Neutrino Mixing: Sterile Neutrinos

Terminology: a eV-scale sterile neutrino means: a eV-scale massive neutrino which is mainly sterile

C. Giunti – Oscillations Beyond Three-Neutrino Mixing – Moriond EW 2017 – 24 March 2017 – 11/23

Sterile Neutrinos from Physics Beyond the SM

- ► Neutrinos are special in the Standard Model: the only neutral fermions
- Active left-handed neutrinos can mix with non-SM singlet fermions often called right-handed neutrinos
 Neutrino Portal [A. Smirnov, arXiv:1502.04530]
- Light left-handed anti- ν_R are light sterile neutrinos

 $\nu_R^c \rightarrow \nu_{sL}$ (left-handed)

Sterile means no standard model interactions

[Pontecorvo, Sov. Phys. JETP 26 (1968) 984]

- Active neutrinos (ν_e, ν_μ, ν_τ) can oscillate into light sterile neutrinos (ν_s)
- Observables:
 - Disappearance of active neutrinos (neutral current deficit)
 - Indirect evidence through combined fit of data (current indication)
- Short-baseline anomalies $+ 3\nu$ -mixing:

 $\begin{array}{c|c} \Delta m_{21}^2 \ll |\Delta m_{31}^2| \ll |\Delta m_{41}^2| \leq \dots \\ \nu_1 & \nu_2 & \nu_3 & \nu_4 & \dots \\ \nu_e & \nu_\mu & \nu_\tau & \nu_{s_1} & \dots \end{array}$

C. Giunti – Oscillations Beyond Three-Neutrino Mixing – Moriond EW 2017 – 24 March 2017 – 12/23

Effective 3+1 SBL Oscillation Probabilities

Global ν_e and $\bar{\nu}_e$ Disappearance

[Gariazzo, CG, Laveder, Li, arXiv:1703.00860]

• KARMEN+LSND ν_e^{-12} C

[Conrad, Shaevitz, PRD 85 (2012) 013017] [CG, Laveder, PLB 706 (2011) 20]

► Solar v_e + KamLAND v
_e [Li et al, PRD 80 (2009) 113007, PRD 86 (2012) 113014] [Palazzo, PRD 83 (2011) 113013, PRD 85 (2012) 077301]

T2K Near Detector ν_e disappearance [T2K, PRD 91 (2015) 051102]

•
$$\Delta \chi^2_{NO} = 13.3 \Rightarrow \approx 3.2\sigma$$
 anomaly

► Best Fit:
$$\Delta m_{41}^2 = 1.7 \text{ eV}^2$$

 $\sin^2 2\vartheta_{ee} = 0.066 \iff |U_{e4}|^2 = 0.017$

►
$$\chi^2_{\rm min}/{\rm NDF} = 162.5/174 \Rightarrow {\rm GoF} = 72\%$$

►
$$\chi^2_{PG}/NDF_{PG} = 13.8/7 \Rightarrow GoF_{PG} = 6\%$$

Global ν_e and $\bar{\nu}_e$ Disappearance + β Decay

[Gariazzo, CG, Laveder, Li, arXiv:1703.00860]

The Race for ν_e and $\bar{\nu}_e$ Disappearance

C. Giunti – Oscillations Beyond Three-Neutrino Mixing – Moriond EW 2017 – 24 March 2017 – 16/23

⁸Li $\rightarrow \bar{\nu}_{e}$ $L \simeq 15m$ [JHEP 1601 (2016) 004]

$\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e}$ and $\nu_{\mu} \rightarrow \nu_{e}$ Appearance

C. Giunti – Oscillations Beyond Three-Neutrino Mixing – Moriond EW 2017 – 24 March 2017 – 17/23

 ν_{μ} and $\bar{\nu}_{\mu}$ Disappearance

3+1 Appearance-Disappearance Tension

Effects of MINOS, IceCube and NEOS

The Race for the Light Sterile

 $\stackrel{(-)}{\nu_e} \rightarrow \stackrel{(-)}{\nu_e}$

Conclusions

- Exciting indications of light sterile neutrinos at the eV scale:
 - LSND $\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e}$ signal.
 - Gallium ν_e disappearance.
 - Reactor $\bar{\nu}_e$ disappearance.
- ► Vigorous experimental program to check conclusively in a few years:
 - ν_e and $\bar{\nu}_e$ disappearance with reactors and radioactive sources.
 - $\nu_{\mu} \rightarrow \nu_{e}$ transitions with accelerator neutrinos.
 - ν_{μ} disappearance with accelerator neutrinos.
- ▶ Independent tests through effect of m_4 in β -decay and $\beta\beta_{0\nu}$ -decay.
- ► Cosmology: strong tension with △N_{eff} = 1 and m₄ ≈ 1 eV. It may be solved by a non-standard cosmological mechanism.
- Possibilities for the next years:
 - ▶ Reactor and source experiments ν_e and $\bar{\nu}_e$ observe SBL oscillations: big excitement and explosion of the field.
 - Otherwise: still marginal interest to check the LSND appearance signal.
 - In any case the possibility of the existence of sterile neutrinos related to New Physics beyond the Standard Model will continue to be studied (e.g keV sterile neutrinos).

Backup Slides

MiniBooNE Low-Energy Anomaly

No fit of low-energy excess for realistic $\sin^2 2\vartheta_{e\mu} \lesssim 3 imes 10^{-3}$

Another Analysis of SBL + IceCube

[Collin, Arguelles, Conrad, Shaevitz, PRL 117 (2016) 221801 (arXiv:1607.00011)]

Red: 90% CL

Blue: 99% CL

3+1	Δm_{41}^2	$ U_{e4} $	$ U_{\mu4} $	$ U_{\tau 4} $	N_{bins}	$\chi^2_{ m min}$	$\chi^2_{ m null}$	$\Delta \chi^2 \ (\mathrm{dof})$
SBL	1.75	0.163	0.117	-	315	306.81	359.15	52.34(3)
SBL+IC	1.75	0.164	0.119	0.00	524	518.59	568.84	50.26(4)
IC	5.62	-	0.314	-	209	207.11	209.69	2.58(2)

Bounds on $|U_{\tau 4}|^2$

[Super-Kamiokande, PRD 91 (2015) 052019]

[IceCube DeepCore, arXiv:1702.05160]

C. Giunti – Oscillations Beyond Three-Neutrino Mixing – Moriond EW 2017 – 24 March 2017 – 28/23

C. Giunti – Oscillations Beyond Three-Neutrino Mixing – Moriond EW 2017 – 24 March 2017 – 29/23