Critical Review on Neutrino Anomalies

Carlo Giunti

INFN, Torino, Italy

Neutrinos: the Quest for a New Physics Scale CERN, 27-31 March 2017

Indications of SBL Oscillations Beyond 3ν

<u>LSND</u>

[PRL 75 (1995) 2650; PRC 54 (1996) 2685; PRL 77 (1996) 3082; PRD 64 (2001) 112007]

 $ar{
u}_{\mu}
ightarrow ar{
u}_{e}$ 20 MeV $\leq E \leq$ 52.8 MeV

• Well-known and pure source of $\bar{\nu}_{\mu}$

Well-known detection process of $\bar{\nu}_e$

- \blacktriangleright \approx 3.8 σ excess
- But signal not seen by KARMEN at L ~ 18 m with the same method

[PRD 65 (2002) 112001]

MiniBooNE

 $L \simeq 541 \,\mathrm{m}$ 200 MeV $\leq E \lesssim 3 \,\mathrm{GeV}$

- Purpose: check LSND signal.
- Different L and E.
- Similar L/E (oscillations).
- ► No money, no Near Detector.

- LSND signal: E > 475 MeV.
- Agreement with LSND signal?
- CP violation?
- Low-energy anomaly!

Gallium Anomaly

C. Giunti – Review on Neutrino Anomalies – Neutrinos: the Quest for a New Physics Scale – 27 March 2017 – 6/49

- ► Deficit could be due to overestimate of $\sigma(\nu_e + {}^{71}\text{Ga} \rightarrow {}^{71}\text{Ge} + e^-)$
- Calculation: Bahcall, PRC 56 (1997) 3391

▶ $\sigma_{
m G.S.}$ from $T_{1/2}(^{71}
m{Ge}) = 11.43 \pm 0.03 \,
m{days}$ [Hampel, Remsberg, PRC 31 (1985) 666]

$$\sigma_{
m G.S.}(^{
m 51}
m Cr) = 55.3 imes 10^{-46} \,
m cm^2 \, (1 \pm 0.004)_{3\sigma}$$

•
$$\sigma(^{51}\text{Cr}) = \sigma_{G.S.}(^{51}\text{Cr}) \left(1 + 0.669 \frac{\text{BGT}_{175}}{\text{BGT}_{G.S.}} + 0.220 \frac{\text{BGT}_{500}}{\text{BGT}_{G.S.}}\right)$$

Contribution of excited states only 5%!

		BGT ₁₇₅ BGT _{G.S.}	BGT ₅₀₀ BGT _{G.S.}
Krofcheck et al. PRL 55 (1985) 1051	$^{71}{ m Ga}(p,n)^{71}{ m Ge}$	< 0.056	0.126 ± 0.023
Haxton PLB 431 (1998) 110	Shell Model	0.19 ± 0.18	
Frekers et al. PLB 706 (2011) 134	71 Ga $(^{3}$ He $, ^{3}$ H $)^{71}$ Ge	0.039 ± 0.030	0.202 ± 0.016

- ► The ⁷¹Ga(³He, ³H)⁷¹Ge data confirm the contribution of the two excited states.
- ► Haxton: "The calculation predicts destructive interference between the (p, n) spin and spin-tensor matrix elements"
- ▶ It is unlikely that the deficit is caused by an overestimate of the cross section.
- Possible explanations:
 - Statistical fluctuations.
 - Experimental faults.
 - Short-baseline oscillations.

Reactor Electron Antineutrino Anomaly

[Mention et al, PRD 83 (2011) 073006]

 $\approx 2.5\sigma$ deficit

 $\Delta m^2_{
m SBL}\gtrsim 0.5\,{
m eV}^2\gg\Delta m^2_{
m ATM}\gg\Delta m^2_{
m SOL}$

5 MeV Bump

- It is correlated with the reactor activity.
- Cannot be explained by neutrino oscillations.
- Very likely due to theoretical miscalculation of the spectrum.
- $\sim 3\%$ effect on total flux.
- It seems to be an excess!

- Hanbit Nuclear Power Complex in Yeong-gwang, Korea.
- ► Thermal power of 2.8 GW.
- Detector: a ton of Gd-loaded liquid scintillator in a gallery approximately 24 m from the reactor core.
- The measured antineutrino event rate is 1976 per day with a signal to background ratio of about 22.

Beyond Three-Neutrino Mixing: Sterile Neutrinos

Terminology: a eV-scale sterile neutrino means: a eV-scale massive neutrino which is mainly sterile

C. Giunti – Review on Neutrino Anomalies – Neutrinos: the Quest for a New Physics Scale – 27 March 2017 – 14/49

Four-Neutrino Schemes: 2+2, 3+1 and 1+3

2+2 Four-Neutrino Schemes

► After LSND (1995) 2+2 was preferred to 3+1, because of the 3+1 appearance-disappearance tension

[Okada, Yasuda, IJMPA 12 (1997) 3669; Bilenky, CG, Grimus, EPJC 1 (1998) 247]

► This is not a perturbation of 3-ν Mixing ⇒ Large active-sterile oscillations for solar or atmospheric neutrinos!

2+2 Schemes are Strongly Disfavored

Solar: Matter Effects + SNO NC

Atmospheric: Matter Effects

$$\eta_{s} = |U_{s1}|^{2} + |U_{s2}|^{2} = 1 - |U_{s3}|^{2} + |U_{s4}|^{2}$$
99% CL:
$$\begin{cases} \eta_{s} < 0.25 & (\text{Solar} + \text{KamLAND}) \\ \eta_{s} > 0.75 & (\text{Atmospheric} + \text{K2K}) \end{cases}$$

[Maltoni, Schwetz, Tortola, Valle, New J. Phys. 6 (2004) 122]

3+1 and 1+3 Four-Neutrino Schemes

- ► Perturbation of 3- ν Mixing: $|U_{e4}|^2, |U_{\mu4}|^2, |U_{\tau4}|^2 \ll 1$ $|U_{s4}|^2 \simeq 1$
- ► 1+3 schemes are disfavored by cosmology (Λ CDM): $\sum_{k=1}^{3} m_k \lesssim 0.2 \text{ eV} \qquad \text{[Planck, Astron. Astrophys. 594 (2016) A13 (arXiv:1502.01589)]}$

C. Giunti – Review on Neutrino Anomalies – Neutrinos: the Quest for a New Physics Scale – 27 March 2017 – 18/49

Effective 3+1 SBL Oscillation Probabilities

Reactor $\bar{\nu}_e$ **Disappearance**

[Gariazzo, CG, Laveder, Li, arXiv:1703.00860]

Reactor Rates + Spectra

- $\Delta \chi^2_{\rm NO} = 10.6 \Rightarrow \approx 2.8\sigma$ anomaly
- ► Best Fit: $\Delta m_{41}^2 = 1.7 \text{ eV}^2$ $\sin^2 2\vartheta_{ee} = 0.060 \iff |U_{ed}|^2 = 0.015$

•
$$\chi^2_{\rm min}/{\rm NDF}=94.1/108\Rightarrow{\rm GoF}=83\%$$

•
$$\chi^2_{PG}/NDF_{PG} = 7.8/2 \Rightarrow GoF_{PG} = 2\%$$

C. Giunti – Review on Neutrino Anomalies – Neutrinos: the Quest for a New Physics Scale – 27 March 2017 – 20/49

Reactor $\bar{\nu}_e$ + Gallium ν_e Disappearance

[Gariazzo, CG, Laveder, Li, arXiv:1703.00860]

- $\Delta \chi^2_{\rm NO} = 14.6 \Rightarrow \approx 3.4\sigma$ anomaly
- ► Best Fit: $\Delta m_{41}^2 = 3.0 \text{ eV}^2$ $\sin^2 2\vartheta_{ee} = 0.13 \iff |U_{e4}|^2 = 0.034$

•
$$\chi^2_{\rm min}/{\rm NDF} = 107.3/112 \Rightarrow {\rm GoF} = 61\%$$

►
$$\chi^2_{PG}/NDF_{PG} = 5.4/2 \Rightarrow GoF_{PG} = 7\%$$

Global ν_e and $\bar{\nu}_e$ Disappearance

[Gariazzo, CG, Laveder, Li, arXiv:1703.00860]

• KARMEN+LSND ν_e^{-12} C

[Conrad, Shaevitz, PRD 85 (2012) 013017] [CG, Laveder, PLB 706 (2011) 20]

► Solar v_e + KamLAND v
_e [Li et al, PRD 80 (2009) 113007, PRD 86 (2012) 113014] [Palazzo, PRD 83 (2011) 113013, PRD 85 (2012) 077301]

T2K Near Detector ν_e disappearance [T2K, PRD 91 (2015) 051102]

•
$$\Delta \chi^2_{NO} = 13.3 \Rightarrow \approx 3.2\sigma$$
 anomaly

► Best Fit:
$$\Delta m_{41}^2 = 1.7 \text{ eV}^2$$

 $\sin^2 2\vartheta_{ee} = 0.066 \iff |U_{e4}|^2 = 0.017$

•
$$\chi^2_{\rm min}/{\rm NDF} = 162.5/174 \Rightarrow {\rm GoF} = 72\%$$

►
$$\chi^2_{PG}/NDF_{PG} = 13.8/7 \Rightarrow GoF_{PG} = 6\%$$

Tritium Beta-Decay: ${}^{3}\text{H} \rightarrow {}^{3}\text{He} + e^{-} + \bar{\nu}_{e}$

$$\frac{\mathrm{d}\Gamma}{\mathrm{d}T} = \frac{(\cos\vartheta_C G_{\rm F})^2}{2\pi^3} |\mathcal{M}|^2 F(E) \, p \, E \, K^2(T)$$

Kurie function: $K(T) = \left[(Q - T) \sum_k |U_{ek}|^2 \sqrt{(Q - T)^2 - m_k^2} \right]^{1/2}$

 $Q = M_{^3{
m H}} - M_{^3{
m He}} - m_e = 18.58\,{
m keV}$

C. Giunti – Review on Neutrino Anomalies – Neutrinos: the Quest for a New Physics Scale – 27 March 2017 – 23/49

Mainz and Troitsk Limit on $\Delta m_{41}^2 \simeq m_4^2$

$$m_4 \gg m_1, m_2, m_3 \implies \Delta m_{41}^2 \equiv m_4^2 - m_1^2 \simeq m_4^2$$

[Kraus, Singer, Valerius, Weinheimer, EPJC 73 (2013) 2323]

[Belesev et al, JPG 41 (2014) 015001]

Global ν_e and $\bar{\nu}_e$ Disappearance + β Decay

[Gariazzo, CG, Laveder, Li, arXiv:1703.00860]

The Race for ν_e and $\bar{\nu}_e$ Disappearance

C. Giunti – Review on Neutrino Anomalies – Neutrinos: the Quest for a New Physics Scale – 27 March 2017 – 26/49

DANSS

[Danilov, Moriond EW 2017]

C. Giunti – Review on Neutrino Anomalies – Neutrinos: the Quest for a New Physics Scale – 27 March 2017 – 27/49

$ar{ u}_{\mu} ightarrow ar{ u}_{e}$ and $u_{\mu} ightarrow u_{e}$ Appearance

C. Giunti – Review on Neutrino Anomalies – Neutrinos: the Quest for a New Physics Scale – 27 March 2017 – 28/49

 ν_{μ} and $\bar{\nu}_{\mu}$ Disappearance

C. Giunti – Review on Neutrino Anomalies – Neutrinos: the Quest for a New Physics Scale – 27 March 2017 – 29/49

3+1 Appearance-Disappearance Tension

C. Giunti – Review on Neutrino Anomalies – Neutrinos: the Quest for a New Physics Scale – 27 March 2017 – 30/49

Effects of MINOS and IceCube

[Gariazzo, CG, Laveder, Li, arXiv:1703.00860]

• Glo16B = Glo16A + MINOS + IceCube

 $\Delta \chi^2_{\rm NO} = 50.7 \Rightarrow \approx 6.3\sigma \text{ anomaly}$

- Best Fit: $\Delta m_{41}^2 = 1.6 \,\mathrm{eV}^2 |U_{e4}|^2 = 0.027 |U_{\mu4}|^2 = 0.014$
- ► $\chi^2_{\rm min}/{\rm NDF} = 556.9/525 \Rightarrow {\rm GoF} = 16\%$
- ► $\chi^2_{PG}/NDF_{PG} = 14.5/2 \Rightarrow GoF_{PG} = 0.07\%$ \leftarrow Strong tension!

C. Giunti – Review on Neutrino Anomalies – Neutrinos: the Quest for a New Physics Scale – 27 March 2017 – 31/49

Another Analysis of SBL + IceCube

[Collin, Arguelles, Conrad, Shaevitz, PRL 117 (2016) 221801 (arXiv:1607.00011)]

Red: 90% CL

Blue: 99% CL

3+1	Δm_{41}^2	$ U_{e4} $	$ U_{\mu4} $	$ U_{\tau 4} $	N_{bins}	$\chi^2_{ m min}$	$\chi^2_{ m null}$	$\Delta \chi^2 \ (\mathrm{dof})$
SBL	1.75	0.163	0.117	-	315	306.81	359.15	52.34(3)
SBL+IC	1.75	0.164	0.119	0.00	524	518.59	568.84	50.26(4)
IC	5.62	-	0.314	-	209	207.11	209.69	2.58(2)

Effects of NEOS

[Gariazzo, CG, Laveder, Li, arXiv:1703.00860]

• Glo17 = GLO16B + NEOS

 $\Delta \chi^2_{\rm NO} = 50.8 \Rightarrow \approx 6.3\sigma$ anomaly

- Best Fit: $\Delta m_{41}^2 = 1.7 \text{ eV}^2 |U_{e4}|^2 = 0.020 |U_{\mu4}|^2 = 0.016$
- ► $\chi^2_{\rm min}/{\rm NDF} = 621.7/585 \Rightarrow {\rm GoF} = 14\%$
- ► $\chi^2_{PG}/NDF_{PG} = 17.3/2 \Rightarrow GoF_{PG} = 0.02\%$ \leftarrow Strong tension!

C. Giunti – Review on Neutrino Anomalies – Neutrinos: the Quest for a New Physics Scale – 27 March 2017 – 33/49

MiniBooNE Low-Energy Anomaly

Fit of MB Low-Energy Excess requires small Δm_{41}^2 and large $\sin^2 2\vartheta_{e\mu}$, in contradiction with disappearance data $P^{\text{SBL}}_{\substack{(-)\\\nu_{\mu} \to \nu_{e}}} = \sin^2 2\vartheta_{e\mu} \sin^2 \left(\frac{\Delta m_{41}^2 L}{4E}\right)$

- MB low-energy excess is the main cause of bad APP-DIS $GoF_{PG} = 0.06\%$
- Pragmatic Approach: discard the Low-Energy Excess because it is likely not due to oscillations
 [CG, Laveder, Li, Long, PRD 88 (2013) 073008]
- MicroBooNE is crucial for checking the MiniBooNE Low-Energy Anomaly and the consistency of different short-baseline data

C. Giunti – Review on Neutrino Anomalies – Neutrinos: the Quest for a New Physics Scale – 27 March 2017 – 34/49

No fit of low-energy excess for realistic $\sin^2 2\vartheta_{e\mu} \lesssim 3 \times 10^{-3}$

Neutrino energy reconstruction problem?

[Martini, Ericson, Chanfray, PRD 85 (2012) 093012; PRD 87 (2013) 013009]

 Effect due to multinucleon interactions whose signal is indistinguishable from that due to quasielastic charged-current scattering

$$u_e + n \rightarrow p + e^- \qquad \bar{\nu}_e + p \rightarrow n + e^+$$

► In the MiniBooNE analysis the reconstructed neutrino energy is $(E_{\rm B} \simeq 25 \,{\rm MeV})$

$$E_{\nu}^{\text{QE}} = \frac{2(M_{\text{i}} - E_{\text{B}}) E_{e} - (m_{e}^{2} - 2M_{\text{i}}E_{\text{B}} + E_{\text{B}}^{2} + \Delta M_{\text{if}}^{2})}{2(M_{\text{i}} - E_{\text{B}} - E_{e} + p_{e}\cos\theta_{e})}$$

- The MiniBooNE collaboration took into account:
 - Fermi motion of the initial nucleon
 - Charged-current single charged pion production events in which the pion is not observed

(e.g. $u_e + n
ightarrow \Delta^+ + e^-
ightarrow n + \pi^+ + e^-$ with π^+ absorbed by a nucleus)

C. Giunti – Review on Neutrino Anomalies – Neutrinos: the Quest for a New Physics Scale – 27 March 2017 – 37/49

C. Giunti – Review on Neutrino Anomalies – Neutrinos: the Quest for a New Physics Scale – 27 March 2017 – 38/49

- Multinucleon interactions can decrease slightly the MiniBooNE low-energy anomaly
- Multinucleon interactions cannot solve the APP-DIS tension
- MicroBooNE is crucial for checking the MiniBooNE low-energy anomaly
- If confirmed it is a real problem

[CG, arXiv:1609.04688]

- APP-GLO: all MiniBooNE data
- APP-PrGLO: only MiniBooNE E > 475 MeV data (Pragmatic)

C. Giunti – Review on Neutrino Anomalies – Neutrinos: the Quest for a New Physics Scale – 27 March 2017 – 40/49

Pragmatic Global 3+1 Fit

[Gariazzo, CG, Laveder, Li, arXiv:1703.00860]

• $\Delta \chi^2_{\rm NO} = 46.5 \Rightarrow \approx 6.0\sigma$ anomaly

• Best Fit: $\Delta m_{41}^2 = 1.7 \,\mathrm{eV}^2 |U_{e4}|^2 = 0.019 |U_{\mu4}|^2 = 0.015$

- ► $\chi^2_{\rm min}/{\rm NDF} = 594.8/579 \Rightarrow {\rm GoF} = 32\%$
- ► $\chi^2_{PG}/NDF_{PG} = 7.4/2 \Rightarrow GoF_{PG} = 3\%$ \leftarrow Mild tolerable tension!

Bounds on $|U_{\tau 4}|^2$

10⁻¹

 10^{-}

2 4 6

-2ALLH

C. Giunti – Review on Neutrino Anomalies – Neutrinos: the Quest for a New Physics Scale – 27 March 2017 – 43/49

C. Giunti – Review on Neutrino Anomalies – Neutrinos: the Quest for a New Physics Scale – 27 March 2017 – 44/49

The Race for the Light Sterile

C. Giunti – Review on Neutrino Anomalies – Neutrinos: the Quest for a New Physics Scale – 27 March 2017 – 45/49

Effects of light sterile neutrinos should also be seen in:

• β Decay Experiments

[Hannestad et al, JCAP 1102 (2011) 011, PRC 84 (2011) 045503; Formaggio, Barrett, PLB 706 (2011) 68; Esmaili, Peres, PRD 85 (2012) 117301; Gastaldo et al, JHEP 1606 (2016) 061]

Neutrinoless Double-β Decay Experiments

[Rodejohann et al, JHEP 1107 (2011) 091; Li, Liu, PLB 706 (2012) 406; Meroni et al, JHEP 1311 (2013) 146, PRD 90 (2014) 053002; Pascoli et al, PRD 90 (2014) 093005; CG, Zavanin, JHEP 1507 (2015) 171; Guzowski et al, PRD 92 (2015) 012002]

Long-baseline Neutrino Oscillation Experiments

[de Gouvea et al, PRD 91 (2015) 053005, PRD 92 (2015) 073012, arXiv:1605.09376; Palazzo et al, PRD 91 (2015) 073017, PLB 757 (2016) 142, JHEP 1602 (2016) 111, JHEP 1609 (2016) 016, arXiv:1605.04299; Gandhi et al, JHEP 1511 (2015) 039; Pant et al, NPB 909 (2016) 1079, Choubey, Pramanik, PLB 764 (2017) 135]

Solar neutrinos

[Dooling et al, PRD 61 (2000) 073011, Gonzalez-Garcia et al, PRD 62 (2000) 013005; Palazzo, PRD 83 (2011) 113013, PRD 85 (2012) 077301; Li et al, PRD 80 (2009) 113007, PRD 87, 113004 (2013), JHEP 1308 (2013) 056; Kopp et al, JHEP 1305 (2013) 050]

Atmospheric neutrinos

[Goswami, PRD 55 (1997) 2931; Bilenky et al, PRD 60 (1999) 073007; Maltoni et al, NPB 643 (2002) 321, PRD 67 (2003) 013011; Choubey, JHEP 0712 (2007) 014; Razzaque, Smirnov, JHEP 1107 (2011) 084, PRD 85 (2012) 093010; Gandhi, Ghoshal, PRD 86 (2012) 037301; Barger et al, PRD 85 (2012) 011302; Esmaili et al, JCAP 1211 (2012) 041, JCAP 1307 (2013) 048, JHEP 1312 (2013) 014; Rajpoot et al, EPJC 74 (2014) 2936; Lindner et al, JHEP 1601 (2016) 124; Behera et al, arXiv:1605.08607]

Supernova neutrinos

[Caldwell, Fuller, Qian, PRD 61 (2000) 123005; Peres, Smirnov, NPB 599 (2001); Sorel, Conrad, PRD 66 (2002) 033009; Tamborra et al, JCAP 1201 (2012) 013; Wu et al, PRD 89 (2014) 061303; Esmaili et al, PRD 90 (2014) 033013]

Cosmic neutrinos

[Cirelli et al, NPB 708 (2005) 215; Donini, Yasuda, arXiv:0806.3029; Barry et al, PRD 83 (2011) 113012]

Indirect dark matter detection [Esmaili, Peres, JCAP 1205 (2012) 002]

Cosmology [see: Wong, ARNPS 61 (2011) 69; Archidiacono et al, AHEP 2013 (2013) 191047]

Neutrinoless Double-Beta Decay

 $m_{\beta\beta} = |U_{e1}|^2 m_1 + |U_{e2}|^2 e^{i\alpha_{21}} m_2 + |U_{e3}|^2 e^{i\alpha_{31}} m_3 + |U_{e4}|^2 e^{i\alpha_{41}} m_4$

C. Giunti – Review on Neutrino Anomalies – Neutrinos: the Quest for a New Physics Scale – 27 March 2017 – 48/49

Conclusions

- Exciting indications of light sterile neutrinos at the eV scale:
 - LSND $\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e}$ signal.
 - Gallium ν_e disappearance.
 - Reactor $\bar{\nu}_e$ disappearance.
- ► Vigorous experimental program to check conclusively in a few years:
 - ν_e and $\bar{\nu}_e$ disappearance with reactors and radioactive sources.
 - $\nu_{\mu} \rightarrow \nu_{e}$ transitions with accelerator neutrinos.
 - ν_{μ} disappearance with accelerator neutrinos.
- ▶ Independent tests through effect of m_4 in β -decay and $\beta\beta_{0\nu}$ -decay.
- ► Cosmology: strong tension with △N_{eff} = 1 and m₄ ≈ 1 eV. It may be solved by a non-standard cosmological mechanism.
- Possibilities for the next years:
 - ▶ Reactor and source experiments ν_e and $\bar{\nu}_e$ observe SBL oscillations: big excitement and explosion of the field.
 - Otherwise: still marginal interest to check the LSND appearance signal.
 - In any case the possibility of the existence of sterile neutrinos related to New Physics beyond the Standard Model will continue to be studied (e.g keV sterile neutrinos).