Il Futuro della Fisica dei Neutrini

Carlo Giunti

INFN, Torino, Italy

Scuola di Fisica 2017 Torino, 11-12 Aprile 2017

C. Giunti – Il Futuro della Fisica dei Neutrini – Scuola di Fisica 2017 – 12 Aprile 2017 – 1/31

Il Futuro della Fisica dei Neutrini

- ▶ Introduzione: i neutrini e le loro oscillazioni.
- Masse dei neutrini.
- Gli antineutrini sono diversi dai neutrini?
- I neutrini primordiali.
- I neutrini da supernove.

Particelle e Forze

C. Giunti – Il Futuro della Fisica dei Neutrini – Scuola di Fisica 2017 – 12 Aprile 2017 – 3/31

<u>Neutrini</u>

C. Giunti – Il Futuro della Fisica dei Neutrini – Scuola di Fisica 2017 – 12 Aprile 2017 – 4/31

Le Oscillazioni dei Neutrini

- Le oscillazioni di neutrini sono state ipotizzate per la prima volta da Bruno Pontecorvo nel 1957.
- Neutrini Interagenti: ν_e ν_μ ν_τ (Flavor Neutrinos) prodotti e rivelati nelle interazioni deboli con la materia.

- Neutrini Massivi: ν₁ ν₂ ν₃
 si propagano tra la sorgente e il rivelatore.
- Un Neutrino Interagente è una sovrapposizione quantistica di Neutrini Massivi. Considerando per semplicità solo due generazioni:

$$\nu_e = \cos \vartheta \, \nu_1 + \sin \vartheta \, \nu_2$$

$$\nu_\mu = -\sin \vartheta \, \nu_1 + \cos \vartheta \, \nu_2$$

 ϑ è chiamato angolo di mixing.

C. Giunti – Il Futuro della Fisica dei Neutrini – Scuola di Fisica 2017 – 12 Aprile 2017 – 6/31

- ► La probabilità di transizione dipende dall' angolo di mixing ϑ e da $\Delta m^2 \equiv m_2^2 - m_1^2$.
- I neutrini oscillano perché hanno massa!
- ► Le oscillazioni di neutrini sono ottime per rivelare piccole differenze di massa, perché l'effetto è amplificato dalla distanza di propagazione *L*.

Premio Nobel per la Fisica 2015

Scoperta delle Oscillazioni di Neutrini

Takaaki Kajita 1998: Oscillazioni dei neutrini atmosferici misurate nell'esperimento Super-Kamiokande Arthur B. McDonald 2002: Oscillazioni dei neutrini solari misurate nell'esperimento SNO (Sudbury Neutrino Observatory)

Osservazione Esplicita delle Oscillazioni di Neutrini

 L'esperimento KamLAND (Giappone) ha misurato le interazioni dei v
e prodotti da circa 30 reattori nucleari giapponesi e coreani.

C. Giunti – Il Futuro della Fisica dei Neutrini – Scuola di Fisica 2017 – 12 Aprile 2017 – 9/31

Due Tipi di Oscillazioni

Misure delle Masse dei Neutrini

Ordinamento delle Masse

Solo due Δm^2 indipendenti:

 $\Delta m_{21}^2 + \Delta m_{13}^2 + \Delta m_{32}^2 = (m_2^2 - m_1^2) + (m_1^2 - m_3^2) + (m_3^2 - m_2^2) = 0$

la scala delle masse non è determinata dalle misure di oscillazione

C. Giunti – Il Futuro della Fisica dei Neutrini – Scuola di Fisica 2017 – 12 Aprile 2017 – 12/31

Scala delle Masse

Decadimento Beta del Trizio

 $^{3}\text{H} \rightarrow ^{3}\text{He} + e^{-} + \bar{\nu}_{e}$ $Q = M_{^{3}\text{H}} - M_{^{3}\text{He}} - m_{e} = 18.58 \text{ keV}$ Spettro energetico dell'elettrone: $K(T) = \sqrt{(Q - T) \sqrt{(Q - T)^2 - m_{\beta}^2}}$ Massa Efficace del Neutrino: $m_{\beta} = \sqrt{\cos^2 \vartheta m_1^2 + \sin^2 \vartheta m_2^2}$ $m_{\beta} = 0 \iff K(T) = Q - T$ Limite attuale: $m_{\beta} \lesssim 2 \,\mathrm{eV}$ $m_{\beta}=0$ Esperimenti: Mainz (Germania) $m_{\beta} > 0$ Troitsk (Russia) T $Q - m_{\theta}$ 0

 $\tilde{\chi}(T)$

The Karlsruhe Tritium Neutrino Experiment KATRIN - overview

C. Giunti – Il Futuro della Fisica dei Neutrini – Scuola di Fisica 2017 – 12 Aprile 2017 – 15/31

Trasporto dello spettrometro dal Reno al Karlsruhe Institute of Technology. (Novembre 2006)

C. Giunti – Il Futuro della Fisica dei Neutrini – Scuola di Fisica 2017 – 12 Aprile 2017 – 16/31

Indicazioni dalle Oscillazioni

C. Giunti – Il Futuro della Fisica dei Neutrini – Scuola di Fisica 2017 – 12 Aprile 2017 – 17/31

Neutrini e Antineutrini

 1928: Paul Dirac formula "The Quantum Theory of the Electron" che applicata alle particelle elementari implica che ad ogni particella corrisponde una antiparticella. (Premio Nobel per la Fisica 1933)

Particella	Carica	Antiparticella	Carica
и	+2/3	ū	-2/3
d	-1/3	\bar{d}	+1/3
e	-1	e^+	+1
$ u_e $	0	$ar{ u}_e$	0

Particelle e antiparticelle hanno carica elettrica opposta:

- ► L'antiparticella di una particella carica ha carica elettrica opposta \implies particella e antiparticella sono necessariamente diverse: $\bar{u} \neq u$, $\bar{d} \neq d$, $e^+ \neq e^-$ Particelle di Dirac
- 1937: Ettore Majorana formula la "Teoria simmetrica dell'elettrone e del positrone" secondo la quale una particella neutra può essere identica alla propria antiparticella.
- ► I neutrino sono neutri \implies neutrino e antineutrino possono essere la stessa particella: $\bar{\nu}_e = \nu_e$? Particella di Majorana

Neutrini: Particelle di Dirac o di Majorana?

Neutrino Dirac: $\bar{\nu}_e \neq \nu_e$ Neutrino Majorana: $\bar{\nu}_e = \nu_e$

Come distinguere le due possibilità?

Doppio Decadimento β Senza Emissione di Neutrini

Possibile solo se $\bar{\nu}_e = \nu_e \iff$ Neutrini di Majorana! Massa Efficace del Neutrino: $m_{\beta\beta} = \cos^2 \vartheta \ m_1 + \sin^2 \vartheta \ m_2$

Indicazioni dalle Oscillazioni

I Neutrini Primordiali

► I neutrini primordiali sono estremamente freddi: (0 K = -273.15 °C) $T_{\nu} = 1.95 \text{ K} = -271.2 \text{ °C}$

- Sono lenti: $E_{\nu} = 1.7 \times 10^{-4} \,\mathrm{eV} < \sqrt{\Delta m_{\mathsf{S}}^2} \simeq 8.7 \times 10^{-3} \,\mathrm{eV} \Longrightarrow v_{\nu} \ll c$

C. Giunti – Il Futuro della Fisica dei Neutrini – Scuola di Fisica 2017 – 12 Aprile 2017 – 22/31

Neutrini, Messaggeri delle Supernove

C. Giunti – Il Futuro della Fisica dei Neutrini – Scuola di Fisica 2017 – 12 Aprile 2017 – 23/31

Energia totale emessa: circa 3×10^{53} erg, di cui:

- circa 99% neutrini $(3 \times 10^{53} \text{ erg})$,
- circa 1% energia cinetica ($\sim 10^{51}\,{
 m erg}$),
- circa 0.01% energia elettromagnetica ($\sim 10^{49} \, {\rm erg}$).

Comparazioni:

- L'energia emessa dal sole ogni anno è circa 1.2×10^{41} erg,
- L'energia equivalente alla massa della terra è circa $5.4 imes 10^{48}$ erg,
- L'energia emessa dal sole in 10 miliardi di anni è circa 1.2×10^{51} erg,
- L'energia equivalente alla massa del sole è circa 1.8×10^{54} erg.

- ▶ Densità iniziale del nucleo ferroso di circa 1.5 M_☉: circa 10¹⁰ g/cm³.
- I neutrini restano intrappolati nella materia collassante quando si raggiunge la densità di circa 3 × 10¹¹ g/cm³.
- Il collasso si arresta bruscamente quando la materia raggiunge la densità nucleare di circa 3 × 10¹⁴ g/cm³.

C. Giunti – Il Futuro della Fisica dei Neutrini – Scuola di Fisica 2017 – 12 Aprile 2017 – 25/31

Supernove Storiche

	length of	Historical Records					
date	visibility	remnant	Chinese	Japanese	Korean	Arabic	European
AD1604	12 months	G4.5+6.8	few	_	many	-	many
AD1572	18 months	G120.1+2.1	few	-	two	—	many
AD1181	6 months	3C58	few	few	-	_	-
AD1054	21 months	Crab Nebula	many	few	-	one	-
AD1006	3 years	G327.6+14.6	many	many	-	few	two
AD393	8 months	-	one	-	-	_	-
AD386?	3 months	-	one	-	-	_	-
AD369?	5 months	-	one	-	-	_	-
AD185	8-20 months	-	one	-	-	-	-

CRAB NEBULA					
\$	A.				
RADIO	INFRARED	VISIBLE LIGHT	ULTRAVIOLET	X-RAYS	GAMMA RAYS

23 Febbraio 1987 nella Grande Nube di Magellano (168000 anni luce)

Neutrini dalla SN1987A

Number of event	Time UT $\pm 2 \text{ ms}$	Energy, MeV
994	2 h 52 min 36.79 s	6.2 - 7
995	$2 \text{ h} 52 \min 40.65 \text{ s}$	5.8 - 8
996	$2 \text{ h} 52 \min 41.01 \text{ s}$	7.8-11
997	$2 \text{ h} 52 \min 42.70 \text{ s}$	7.0 - 7
998	$2 \text{ h} 52 \min 43.80 \text{ s}$	6.8 - 9

2:52 UTC del 23 Febbraio 1987

LSD (Liquid Scintillator Detector) Monte Bianco Collaborazione: Torino e Mosca

Siamo Pronti per la Prossima Supernova?

Expected number of events for a SN at 10 kpc and dominant flavor sensitivity in parenthesis.

SuperNova Early Warning System (SNEWS)

- ▶ I neutrini arrivano alcune ore prima del segnale ottico.
- ► Il segnale dei neutrini allerta la comunità astronomica.

Super-Kamiokande (Giappone)

Borexino (Italia)

Sudbury Neutrino Observatory (Canada)

Daya Bay (Cina)

C. Giunti – Il Futuro della Fisica dei Neutrini – Scuola di Fisica 2017 – 12 Aprile 2017 – 31/31