Oscillations Beyond Three-Neutrino Mixing (Light Sterile Neutrinos)

Carlo Giunti

INFN, Torino, Italy

VII Pontecorvo Neutrino School Prague, Czech Republic, 20 August - 1 September 2017

C. Giunti – Oscillations Beyond Three-Neutrino Mixing – VII Pontecorvo Neutrino School – 25 August 2017 – 1/69

Indications of SBL Oscillations Beyond 3ν

<u>LSND</u>

[PRL 75 (1995) 2650; PRC 54 (1996) 2685; PRL 77 (1996) 3082; PRD 64 (2001) 112007]

 $ar{
u}_{\mu}
ightarrow ar{
u}_{e}$ 20 MeV $\leq E \leq$ 52.8 MeV

• Well-known and pure source of $\bar{\nu}_{\mu}$

Well-known detection process of $\bar{\nu}_e$

- \blacktriangleright \approx 3.8 σ excess
- But signal not seen by KARMEN at L ~ 18 m with the same method

[PRD 65 (2002) 112001]

MiniBooNE

 $200 \text{ MeV} \le E \le 3 \text{ GeV}$ $L \simeq 541 \,\mathrm{m}$

- Purpose: check LSND signal.
- Different L and E.
- Similar L/E (oscillations).

- LSND signal: E > 475 MeV.
- Agreement with LSND signal?
- CP violation?
- No money, no Near Detector. \blacktriangleright Low-energy anomaly! \Rightarrow MicroBooNE

Gallium Anomaly

Gallium Radioactive Source Experiments: GALLEX and SAGE $e^- + {}^{51}Cr \rightarrow {}^{51}V + \nu_e$ e^- + ³⁷Ar \rightarrow ³⁷Cl + ν_e ν_e Sources: $E \simeq 0.81 \, \text{MeV}$ $E \simeq 0.75 \,\mathrm{MeV}$ $^{71}\text{Ga} \rightarrow ^{71}\text{Ge} + e^{-}$ Test of Solar ν_e Detection: N₂ + GeCl₄ GALLEX SAGE E Cr1 Cr 0.1 $R = N_{\rm exp}/N_{\rm cal}$ GALLEX SAGE Cr2 GaCl Ar 0.9 + HCI (54 m³, 110 t) 0.8 $\overline{R} = 0.84 \pm 0.05$ 0.7 $\approx 2.9\sigma$ deficit $\langle L \rangle_{\text{GALLEX}} = 1.9 \text{ m} \quad \langle L \rangle_{\text{SAGE}} = 0.6 \text{ m}$ [SAGE, PRC 73 (2006) 045805; PRC 80 (2009) 015807; Laveder et al, Nucl.Phys.Proc.Suppl. 168 (2007) 344, MPLA 22 (2007) 2499, PRD 78 (2008) 073009, $\Delta m_{\rm SBL}^2 \gtrsim 1 \, {\rm eV}^2 \gg \Delta m_{\rm ATM}^2 \gg \Delta m_{\rm SOL}^2$ PRC 83 (2011) 065504] C. Giunti – Oscillations Beyond Three-Neutrino Mixing – VII Pontecorvo Neutrino School – 25 August 2017 – 6/69

- ► Deficit could be due to overestimate of $\sigma(\nu_e + {}^{71}\text{Ga} \rightarrow {}^{71}\text{Ge} + e^-)$
- Calculation: Bahcall, PRC 56 (1997) 3391

▶ $\sigma_{
m G.S.}$ from $T_{1/2}(^{71}
m{Ge}) = 11.43 \pm 0.03 \,
m{days}$ [Hampel, Remsberg, PRC 31 (1985) 666]

$$\sigma_{
m G.S.}(^{51}
m Cr) = 55.3 imes 10^{-46} \,
m cm^2 \, (1 \pm 0.004)_{3\sigma}$$

•
$$\sigma(^{51}\text{Cr}) = \sigma_{G.S.}(^{51}\text{Cr}) \left(1 + 0.669 \frac{\text{BGT}_{175}}{\text{BGT}_{G.S.}} + 0.220 \frac{\text{BGT}_{500}}{\text{BGT}_{G.S.}}\right)$$

Contribution of excited states only 5%!

		BGT ₁₇₅ BGT _{G.S.}	BGT ₅₀₀ BGT _{G.S.}
Krofcheck et al. PRL 55 (1985) 1051	$^{71}{ m Ga}(p,n)^{71}{ m Ge}$	< 0.056	0.126 ± 0.023
Haxton PLB 431 (1998) 110	Shell Model	0.19 ± 0.18	
Frekers et al. PLB 706 (2011) 134	71 Ga $(^{3}$ He $, ^{3}$ H $)^{71}$ Ge	0.039 ± 0.030	0.202 ± 0.016

- ► The ⁷¹Ga(³He, ³H)⁷¹Ge data confirm the contribution of the two excited states.
- ► Haxton: "The calculation predicts destructive interference between the (p, n) spin and spin-tensor matrix elements"
- ▶ It is unlikely that the deficit is caused by an overestimate of the cross section.
- Possible explanations:
 - Statistical fluctuations.
 - Experimental faults.
 - Short-baseline oscillations.

Reactor Electron Antineutrino Anomaly

[Mention et al, PRD 83 (2011) 073006]

 $\approx 2.8\sigma$ deficit

 $\Delta m^2_{
m SBL}\gtrsim 0.5\,{
m eV}^2\gg\Delta m^2_{
m ATM}\gg\Delta m^2_{
m SOL}$

[PRL 118 (2017) 121802 (arXiv:1610.05134)]

- Hanbit Nuclear Power Complex in Yeong-gwang, Korea.
- ► Thermal power of 2.8 GW.
- Detector: a ton of Gd-loaded liquid scintillator in a gallery approximately 24 m from the reactor core.
- The measured antineutrino event rate is 1976 per day with a signal to background ratio of about 22.

Beyond Three-Neutrino Mixing: Sterile Neutrinos

Terminology: a eV-scale sterile neutrino means: a eV-scale massive neutrino which is mainly sterile

C. Giunti – Oscillations Beyond Three-Neutrino Mixing – VII Pontecorvo Neutrino School – 25 August 2017 – 13/69

Sterile Neutrinos from Physics Beyond the SM

- ► Neutrinos are special in the Standard Model: the only neutral fermions
- Active left-handed neutrinos can mix with non-SM singlet fermions often called right-handed neutrinos
 Neutrino Portal [A. Smirnov, arXiv:1502.04530]
- Light left-handed anti- ν_R are light sterile neutrinos

 $\nu_R^c \rightarrow \nu_{sL}$ (left-handed)

Sterile means no standard model interactions

[Pontecorvo, Sov. Phys. JETP 26 (1968) 984]

- Active neutrinos (ν_e, ν_μ, ν_τ) can oscillate into light sterile neutrinos (ν_s)
- Observables:
 - Disappearance of active neutrinos (neutral current deficit)
 - Indirect evidence through combined fit of data (current indication)
- Short-baseline anomalies $+ 3\nu$ -mixing:

$$\begin{array}{c|c} \Delta m_{21}^2 \ll |\Delta m_{31}^2| \ll |\Delta m_{41}^2| \leq \dots \\ \nu_1 & \nu_2 & \nu_3 & \nu_4 & \dots \\ \nu_e & \nu_\mu & \nu_\tau & \nu_{s_1} & \dots \end{array}$$

C. Giunti – Oscillations Beyond Three-Neutrino Mixing – VII Pontecorvo Neutrino School – 25 August 2017 – 14/69

- ► Here I consider sterile neutrinos with mass scale ~ 1 eV in light of short-baseline Reactor Anomaly, Gallium Anomaly, LSND.
- Other possibilities (not incompatible):
 - Very light sterile neutrinos with mass scale

 1 eV: important for solar neutrino phenomenology

[de Holanda, Smirnov, PRD 69 (2004) 113002; PRD 83 (2011) 113011]

[Das, Pulido, Picariello, PRD 79 (2009) 073010]

Recent Daya Bay constraints for $10^{-3} \lesssim \Delta m^2 \lesssim 10^{-1}\,{
m eV}^2$ [PRL 113 (2014) 141802]

► Heavy sterile neutrinos with mass scale ≫ 1 eV: could be Warm Dark Matter

[Asaka, Blanchet, Shaposhnikov, PLB 631 (2005) 151; Asaka, Shaposhnikov, PLB 620 (2005) 17; Asaka, Shaposhnikov, Kusenko, PLB 638 (2006) 401; Asaka, Laine, Shaposhnikov, JHEP 0606 (2006) 053, JHEP 0701 (2007) 091]

[Reviews: Kusenko, Phys. Rept. 481 (2009) 1; Boyarsky, Ruchayskiy, Shaposhnikov, Ann. Rev. Nucl. Part. Sci. 59 (2009) 191; Boyarsky, lakubovskyi, Ruchayskiy, Phys. Dark Univ. 1 (2012) 136; Drewes, IJMPE, 22 (2013) 1330019]

Four-Neutrino Schemes: 2+2, 3+1 and 1+3

2+2 Four-Neutrino Schemes

► After LSND (1995) 2+2 was preferred to 3+1, because of the 3+1 appearance-disappearance tension

[Okada, Yasuda, IJMPA 12 (1997) 3669; Bilenky, CG, Grimus, EPJC 1 (1998) 247]

► This is not a perturbation of 3-ν Mixing ⇒ Large active-sterile oscillations for solar or atmospheric neutrinos!

2+2 Schemes are Strongly Disfavored

Solar: Matter Effects + SNO NC

Atmospheric: Matter Effects

$$\eta_{s} = |U_{s1}|^{2} + |U_{s2}|^{2} = 1 - |U_{s3}|^{2} + |U_{s4}|^{2}$$
99% CL:
$$\begin{cases} \eta_{s} < 0.25 & (\text{Solar} + \text{KamLAND}) \\ \eta_{s} > 0.75 & (\text{Atmospheric} + \text{K2K}) \end{cases}$$

[Maltoni, Schwetz, Tortola, Valle, New J. Phys. 6 (2004) 122]

3+1 and 1+3 Four-Neutrino Schemes

- ► Perturbation of 3- ν Mixing: $|U_{e4}|^2, |U_{\mu4}|^2, |U_{\tau4}|^2 \ll 1 \quad |U_{s4}|^2 \simeq 1$
- ► 1+3 schemes are disfavored by cosmology (Λ CDM): $\sum_{k=1}^{3} m_k \lesssim 0.2 \text{ eV} \qquad \text{[Planck, Astron. Astrophys. 594 (2016) A13 (arXiv:1502.01589)]}$

C. Giunti – Oscillations Beyond Three-Neutrino Mixing – VII Pontecorvo Neutrino School – 25 August 2017 – 19/69

Effective 3+1 SBL Oscillation Probabilities

Global ν_e and $\bar{\nu}_e$ **Disappearance**

[Gariazzo, CG, Laveder, Li, JHEP 1706 (2017) 135 (arXiv:1703.00860)]

• KARMEN+LSND ν_e -¹²C

[Conrad, Shaevitz, PRD 85 (2012) 013017] [CG. Laveder, PLB 706 (2011) 20]

- Solar ν_{e} + KamLAND $\bar{\nu}_{e}$ [Li et al, PRD 80 (2009) 113007, PRD 86 (2012) 113014] [Palazzo, PRD 83 (2011) 113013, PRD 85 (2012) 077301] **•** T2K Near Detector ν_e disappearance
 - [T2K, PRD 91 (2015) 051102]

•
$$\Delta \chi^2_{\rm NO} / {\rm NDF}_{\rm NO} = 14.1/2 \Rightarrow \approx 3.3\sigma$$
 anom.

• Best Fit: $\Delta m_{41}^2 = 1.7 \, \text{eV}^2$ $\sin^2 2\vartheta_{ee} = 0.066 \quad \Leftrightarrow \quad |U_{e4}|^2 = 0.017$

•
$$\chi^2_{\rm min}/{\rm NDF} = 163.0/174 \Rightarrow {\rm GoF} = 71\%$$

Δm²₄₁ [eV²]

Tritium Beta-Decay: ${}^{3}\text{H} \rightarrow {}^{3}\text{He} + e^{-} + \bar{\nu}_{e}$

$$\frac{\mathrm{d}\Gamma}{\mathrm{d}T} = \frac{(\cos\vartheta_C G_{\rm F})^2}{2\pi^3} |\mathcal{M}|^2 F(E) \, p \, E \, K^2(T)$$

Kurie function: $K(T) = \left[(Q - T) \sum_k |U_{ek}|^2 \sqrt{(Q - T)^2 - m_k^2} \right]^{1/2}$

 $Q = M_{^3{
m H}} - M_{^3{
m He}} - m_e = 18.58\,{
m keV}$

C. Giunti – Oscillations Beyond Three-Neutrino Mixing – VII Pontecorvo Neutrino School – 25 August 2017 – 22/69

Mainz and Troitsk Limit on $\Delta m_{41}^2 \simeq m_4^2$

$$m_4 \gg m_1, m_2, m_3 \implies \Delta m_{41}^2 \equiv m_4^2 - m_1^2 \simeq m_4^2$$

[Kraus, Singer, Valerius, Weinheimer, EPJC 73 (2013) 2323]

[Belesev et al, JPG 41 (2014) 015001]

Global ν_e and $\bar{\nu}_e$ Disappearance + β Decay

[Gariazzo, CG, Laveder, Li, JHEP 1706 (2017) 135 (arXiv:1703.00860)]

The Race for ν_e and $\bar{\nu}_e$ Disappearance

C. Giunti – Oscillations Beyond Three-Neutrino Mixing – VII Pontecorvo Neutrino School – 25 August 2017 – 25/69

$ar{ u}_{\mu} ightarrow ar{ u}_{e}$ and $u_{\mu} ightarrow u_{e}$ Appearance

C. Giunti – Oscillations Beyond Three-Neutrino Mixing – VII Pontecorvo Neutrino School – 25 August 2017 – 26/69

 ν_{μ} and $\bar{\nu}_{\mu}$ Disappearance

C. Giunti – Oscillations Beyond Three-Neutrino Mixing – VII Pontecorvo Neutrino School – 25 August 2017 – 27/69

3+1 Appearance-Disappearance Tension

C. Giunti – Oscillations Beyond Three-Neutrino Mixing – VII Pontecorvo Neutrino School – 25 August 2017 – 28/69

Goodness of Fit

• Assumption or approximation: Gaussian uncertainties and linear model • χ^2_{\min} has χ^2 distribution with Number of Degrees of Freedom NDF = $N_D - N_P$ N_D = Number of Data N_P = Number of Fitted Parameters • $\langle \chi^2_{\min} \rangle$ = NDF $Var(\chi^2_{\min})$ = 2NDF • GoF = $\int_{\chi^2_{\min}}^{\infty} p_{\chi^2}(z, \text{NDF}) dz$ $p_{\chi^2}(z, n) = \frac{z^{n/2-1}e^{-z/2}}{2^{n/2}\Gamma(n/2)}$ Parameter Goodness of Fit

Maltoni, Schwetz, PRD 68 (2003) 033020 (arXiv:hep-ph/0304176)

- Measure compatibility of two (or more) sets of data points A and B under fitting model
- $\chi^2_{PGoF} = (\chi^2_{min})_{A+B} [(\chi^2_{min})_A + (\chi^2_{min})_B]$
- ► χ^2_{PGoF} has χ^2 distribution with Number of Degrees of Freedom NDF_{PGoF} = $N_P^A + N_P^B - N_P^{A+B}$
- $PGoF = \int_{\chi^2_{PGoF}}^{\infty} p_{\chi^2}(z, NDF_{PGoF}) dz$

Effects of MINOS and IceCube

- IceCube effect in agreement with Collin, Arguelles, Conrad, Shaevitz, PRL 117 (2016) 221801
- Best Fit: $\Delta m_{41}^2 = 1.6 \,\mathrm{eV}^2 |U_{e4}|^2 = 0.028 |U_{\mu4}|^2 = 0.014$
- ► $\chi^2_{\rm min}/{\rm NDF} = 556.9/525 \Rightarrow {\rm GoF} = 16\%$
- ► $\chi^2_{PG}/NDF_{PG} = 14.4/2 \Rightarrow GoF_{PG} = 0.075\%$ ← Strong tension!

C. Giunti – Oscillations Beyond Three-Neutrino Mixing – VII Pontecorvo Neutrino School – 25 August 2017 – 30/69

Effects of NEOS

• Best Fit: $\Delta m_{41}^2 = 1.7 \,\mathrm{eV}^2 |U_{e4}|^2 = 0.021 |U_{\mu4}|^2 = 0.016$

► $\chi^2_{\rm min}/{\rm NDF} = 622.1/585 \Rightarrow {\rm GoF} = 14\%$

► $\chi^2_{PG}/NDF_{PG} = 17.2/2 \Rightarrow GoF_{PG} = 0.019\%$ \leftarrow Strong tension!

MiniBooNE Low-Energy Anomaly

Fit of MB low-energy excess requires small Δm_{41}^2 and large $\sin^2 2\vartheta_{e\mu}$, in contradiction with disappearance data.

Multinucleon effects in neutrino energy reconstruction are not enough to solve the problem [Martini, Ericson, Chanfray, PRD 85 (2012) 093012; PRD 87 (2013) 013009; Ericson, Garzelli, CG, Martini, PRD 93 (2016) 073008]

C. Giunti – Oscillations Beyond Three-Neutrino Mixing – VII Pontecorvo Neutrino School – 25 August 2017 – 32/69

Neutrino energy reconstruction problem?

[Martini, Ericson, Chanfray, PRD 85 (2012) 093012; PRD 87 (2013) 013009]

 Effect due to multinucleon interactions whose signal is indistinguishable from that due to quasielastic charged-current scattering

$$u_e + n \rightarrow p + e^- \qquad \bar{\nu}_e + p \rightarrow n + e^+$$

► In the MiniBooNE analysis the reconstructed neutrino energy is $(E_{\rm B} \simeq 25 \,{\rm MeV})$

$$E_{\nu}^{\text{QE}} = \frac{2(M_{\text{i}} - E_{\text{B}}) E_{e} - (m_{e}^{2} - 2M_{\text{i}}E_{\text{B}} + E_{\text{B}}^{2} + \Delta M_{\text{if}}^{2})}{2(M_{\text{i}} - E_{\text{B}} - E_{e} + p_{e}\cos\theta_{e})}$$

- The MiniBooNE collaboration took into account:
 - Fermi motion of the initial nucleon
 - Charged-current single charged pion production events in which the pion is not observed

(e.g. $u_e + n \rightarrow \Delta^+ + e^- \rightarrow n + \pi^+ + e^-$ with π^+ absorbed by a nucleus)

C. Giunti – Oscillations Beyond Three-Neutrino Mixing – VII Pontecorvo Neutrino School – 25 August 2017 – 34/69

C. Giunti – Oscillations Beyond Three-Neutrino Mixing – VII Pontecorvo Neutrino School – 25 August 2017 – 35/69

- Multinucleon interactions can decrease slightly the MiniBooNE low-energy anomaly
- Multinucleon interactions cannot solve the APP-DIS tension
- MicroBooNE is crucial for checking the MiniBooNE low-energy anomaly
- If confirmed it is a real problem

Global \rightarrow **Pragmatic**

[CG, Laveder, Li, Long, PRD 88 (2013) 073008]

- APP-GLO: all MiniBooNE data
- APP-PrGLO: only MiniBooNE E > 475 MeV data (Pragmatic)

C. Giunti – Oscillations Beyond Three-Neutrino Mixing – VII Pontecorvo Neutrino School – 25 August 2017 – 37/69

Pragmatic Global 3+1 Fit

[Gariazzo, CG, Laveder, Li, JHEP 1706 (2017) 135 (arXiv:1703.00860)]

• $\Delta \chi^2_{\rm NO}/{\rm NDF_{\rm NO}} = 47.4/4 \Rightarrow \approx 6.1\sigma$ anomaly

- Best Fit: $\Delta m_{41}^2 = 1.7 \,\mathrm{eV}^2 |U_{e4}|^2 = 0.020 |U_{\mu4}|^2 = 0.015$
- ► $\chi^2_{\rm min}/{\rm NDF} = 595.1/579 \Rightarrow {\rm GoF} = 31\%$
- ► $\chi^2_{PG}/NDF_{PG} = 7.2/2 \Rightarrow GoF_{PG} = 2.7\%$ \leftarrow Mild tolerable tension!

Bounds on $|U_{\tau 4}|^2$

[Super-Kamiokande, PRD 91 (2015) 052019]

[IceCube DeepCore, arXiv:1702.05160]

C. Giunti – Oscillations Beyond Three-Neutrino Mixing – VII Pontecorvo Neutrino School – 25 August 2017 – 40/69

MINOS and IceCube data give information on $|U_{\tau 4}|^2$:

- MINOS: neutral-current event sample
- IceCube: matter effects for high-energy neutrinos propagating in the Earth.

The Race for the Light Sterile

 $\stackrel{(-)}{\nu_e} \rightarrow \stackrel{(-)}{\nu_e}$

C. Giunti – Oscillations Beyond Three-Neutrino Mixing – VII Pontecorvo Neutrino School – 25 August 2017 – 43/69

 Δm^2_{41} [eV²]

Reactor Antineutrino 5 MeV Bump

[Daya Bay, arXiv:1508.04233]

- Cannot be explained by neutrino oscillations (SBL oscillations are averaged in Double Chooz, Daya Bay, RENO).
- Very likely due to theoretical miscalculation of the spectrum.
- ► ~ 3% effect on total flux, but if it is an excess it increases the anomaly!
- No post-bump complete calculation of the neutrino fluxes.

- Saclay-Huber flux calculation uncertainty is about 2.5%.
- Increasing the flux uncertainty is a game that one can play, but there are only guesses, e.g. about 5%. [Hayes and Vogel, 2016]
- Better to exclude the reactor rates from the global fit. [suggestion of Pedro Machado at WIN 2017]

Global Fit

Without Reactor Rates

The Reactor Antineutrino Anomaly has small impact on the global fit.

Global Fit

Without Reactor Rates and Gallium Data

Given the current constraints, only the LSND signal is crucial for a positive indication in favor of active-sterile SBL oscillations.

Preliminary Bound from MINOS & MINOS+

C. Giunti – Oscillations Beyond Three-Neutrino Mixing – VII Pontecorvo Neutrino School – 25 August 2017 – 47/69

Preliminary Bound from DANSS

[Danilov @ Moriond EW 2017, Svirida @ WIN2017, Danilov @ EPS-HEP 2017] Detector of reactor AntiNeutrino based on Solid Scintillator

C. Giunti – Oscillations Beyond Three-Neutrino Mixing – VII Pontecorvo Neutrino School – 25 August 2017 – 49/69

C. Giunti – Oscillations Beyond Three-Neutrino Mixing – VII Pontecorvo Neutrino School – 25 August 2017 – 50/69

Results of Neutrino-4

[arXiv:1708.00421]

Reactor: SM-3 reactor in Dimitrovgrad (Russia): 100 MW compact core 35x42x42 cm³

C. Giunti – Oscillations Beyond Three-Neutrino Mixing – VII Pontecorvo Neutrino School – 25 August 2017 – 51/69

- If the green curve corresponds to oscillations it seems wrong.
- No 5 MeV bump! Covered by oscillations? I think unlikely because it would need a too large oscillation amplitude.
- Maybe the 5 MeV bump is not due to ²³⁵U?
 - ► 5 MeV bump seen in power reactors with effective fuel fractions $F(^{235}U) \approx 0.55$ $F(^{238}U) \approx 0.08$ $F(^{239}Pu) \approx 0.31$ $F(^{241}Pu) \approx 0.06$
 - ► SM-3 is a research reactor with highly enriched ²³⁵U fuel: $F(^{235}U) \approx 1$ $F(^{238}U) \approx F(^{239}Pu) \approx F(^{241}Pu) \approx 0$

Daya Bay Reactor Fuel Evolution

[Daya Bay, PRL 118 (2017) 251801 (arXiv:1704.01082)]

Reactor ν
_e flux produced by the β decays of the fission products of ²³⁵U, ²³⁸U, ²³⁹Pu, ²⁴¹Pu.

$$\sigma_f = \sum_{i=235,238,239,241} F_i \,\sigma_{f,i}$$

Effective fission fractions:

- Best fit: suppression of $\sigma_{f,235}$.
- Equal fluxes suppression: $\Delta \chi^2/{\rm NDF} = 7.9/1 \label{eq:linear}$ disfavored at $2.8\sigma.$
- Equal fluxes suppression corresponds to SBL oscillations, but theoretical flux uncertainties must be taken into account.

[CG, X.P. Ji, M. Laveder, Y.F. Li, B.R. Littlejohn, arXiv:1708.01133]

		²³⁵ U	235 U + 239 U	OSC	²³⁵ U+OSC	²³⁹ U+OSC
	$\chi^2_{\rm min}$	25.3	24.8	23.0	20.2	17.5
	NDF	32	31	31	30	30
	GoF	79%	78%	85%	91%	100%
	Δm_{41}^2	_	—	0.48	0.48	0.48
	$\sin^2 2\vartheta_{ee}$	_	—	0.14	0.11	0.15
	r ₂₃₅	0.934	0.934	_	0.987	—
	r ₂₃₉	—	0.970	—	—	1.099
10 [2A9] 2 th 2 th 2 th 1 1 2 th	OSC Daya Bay Rates	8	10 235-05C 1 — Days Bay — Rates			COGC Days Bay Name
10	1- 10 ⁻⁺ sin ² 2d	10 ' Bee	1 10 - 10 -	10" sin ² 20 ₆₆	1 10-5	10 - 10 - 10 - 10 - 10 - 10 - 10 - 10 -

[CG, X.P. Ji, M. Laveder, Y.F. Li, B.R. Littlejohn, arXiv:1708.01133]

Effective SBL Oscillation Probabilities in 3+2 Schemes

$$\begin{split} \Delta_{kj} &= \Delta m_{kj}^2 L/4E \\ \eta &= \arg[U_{e4}^* U_{\mu4} U_{e5} U_{\mu5}^*] \\ P_{\substack{(-) \ \nu_{\mu} \to \nu_{e}}}^{\text{SBL}} &= 4|U_{e4}|^2 |U_{\mu4}|^2 \sin^2 \Delta_{41} + 4|U_{e5}|^2 |U_{\mu5}|^2 \sin^2 \Delta_{51} \\ &+ 8|U_{\mu4} U_{e4} U_{\mu5} U_{e5}| \sin \Delta_{41} \sin \Delta_{51} \cos(\Delta_{54} \overset{(+)}{-} \eta) \\ P_{\substack{(-) \ (-) \ \nu_{\alpha} \to \nu_{\alpha}}}^{\text{SBL}} &= 1 - 4(1 - |U_{\alpha4}|^2 - |U_{\alpha5}|^2)(|U_{\alpha4}|^2 \sin^2 \Delta_{41} + |U_{\alpha5}|^2 \sin^2 \Delta_{51}) \\ &- 4|U_{\alpha4}|^2 |U_{\alpha5}|^2 \sin^2 \Delta_{54} \end{split}$$

[Sorel, Conrad, Shaevitz, PRD 70 (2004) 073004; Maltoni, Schwetz, PRD 76 (2007) 093005; Karagiorgi et al, PRD 80 (2009) 073001; Kopp, Maltoni, Schwetz, PRL 107 (2011) 091801; Giunti, Laveder, PRD 84 (2011) 073008; Donini et al, JHEP 07 (2012) 161; Archidiacono et al, PRD 86 (2012) 065028; Jacques, Krauss, Lunardini, PRD 87 (2013) 083515; Conrad et al, AHEP 2013 (2013) 163897; Archidiacono et al, PRD 87 (2013) 125034; Kopp, Machado, Maltoni, Schwetz, JHEP 1305 (2013) 050; Giunti, Laveder, Y.F. Li, H.W. Long, PRD 88 (2013) 073008; Girardi, Meroni, Petcov, JHEP 1311 (2013) 146]

- Good: CP violation
- Bad: Two massive sterile neutrinos at the eV scale!

4 more parameters: $\Delta m_{41}^2, |U_{e4}|^2, |U_{\mu4}|^2, \Delta m_{51}^2, |U_{e5}|^2, |U_{\mu5}|^2, \eta$

3+1

Global Fits	Our Fit		KMMS	
	3+1	3+2	3+1	3+2
GoF	6%	10%	19%	23%
PGoF	0.06%	0.3%	0.01%	0.003%

- Our Fit: Gariazzo, CG, Laveder, Li, Zavanin, JPG 43 (2016) 033001
- KMMS: Kopp, Machado, Maltoni, Schwetz, JHEP 1305 (2013) 050

3+2 cannot fit MiniBooNE Low-Energy Excess

- ▶ Note difference between 3+2 ν_e and $\bar{\nu}_e$ histograms due to CP violation
- ▶ 3+2 can fit slightly better the small $\bar{\nu}_e$ excess at about 600 MeV
- ▶ 3+2 fit of low-energy excess as bad as 3+1
- Claims that 3+2 can fit low-energy excess do not take into account constraints from other data
- Conclusion: 3+2 is not needed

Appearance vs Disappearance in $N = 3 + N_s$ Mixing

[CG, Zavanin, MPLA 31 (2015) 1650003]

$$\frac{\Delta m_{21}^2 L}{4E} \ll \frac{\Delta m_{31}^2 L}{4E} \ll 1$$

$$P_{\nu_{\alpha} \to \nu_{\beta}}^{\text{SBL}} \simeq \delta_{\alpha\beta} - 4 \sum_{k=4}^{N} |U_{\alpha k}|^2 \left(\delta_{\alpha\beta} - |U_{\beta k}|^2 \right) \sin^2 \Delta_{k1} \\ + 8 \sum_{k=4}^{N} \sum_{j=k+1}^{N} |U_{\alpha j} U_{\beta j} U_{\alpha k} U_{\beta k}| \sin \Delta_{k1} \sin \Delta_{j1} \cos(\Delta_{jk} \stackrel{(+)}{-} \eta_{\alpha\beta jk})$$

$$\Delta_{jk} = \frac{\Delta m_{jk}^2 L}{4E} \qquad \qquad \eta_{\alpha\beta jk} = \arg \left[U_{\alpha j}^* U_{\beta j} U_{\alpha k} U_{\beta k}^* \right]$$

Survival Probabilities

$$P^{\text{SBL}}_{\substack{\nu_{\alpha} \to \nu_{\alpha}}} \simeq 1 - 4 \sum_{\substack{k=4 \ N}}^{N} |U_{\alpha k}|^2 \left(1 - |U_{\alpha k}|^2\right) \sin^2 \Delta_{k1} \\ + 8 \sum_{\substack{k=4 \ j=k+1}}^{N} \sum_{\substack{j=k+1}}^{N} |U_{\alpha j}|^2 |U_{\alpha k}|^2 \sin \Delta_{j1} \sin \Delta_{k1} \cos \Delta_{jk}$$

Effective amplitude of $\stackrel{(-)}{\nu_{\alpha}}$ disappearance due to $\nu_{\alpha} - \nu_k$ mixing:

$$\sin^{2} 2\vartheta_{\alpha\alpha}^{(k)} = 4|U_{\alpha k}|^{2} \left(1 - |U_{\alpha k}|^{2}\right) \simeq 4|U_{\alpha k}|^{2}$$
$$|U_{\alpha k}|^{2} \ll 1 \qquad (\alpha = e, \mu, \tau; \quad k = 4, \dots, N)$$
$$P_{\substack{(-) \\ \nu_{\alpha} \to \nu_{\alpha}}}^{\text{SBL}} \simeq 1 - \sum_{k=4}^{N} \sin^{2} 2\vartheta_{\alpha\alpha}^{(k)} \sin^{2} \Delta_{k1}$$

Appearance Probabilities ($\alpha \neq \beta$)

$$P_{\nu_{\alpha} \to \nu_{\beta}}^{\text{SBL}} \simeq 4 \sum_{k=4}^{N} |U_{\alpha k}|^{2} |U_{\beta k}|^{2} \sin^{2} \Delta_{k1} + 8 \sum_{k=4}^{N} \sum_{j=k+1}^{N} |U_{\alpha j} U_{\beta j} U_{\alpha k} U_{\beta k}| \sin \Delta_{k1} \sin \Delta_{j1} \cos(\Delta_{jk} \stackrel{(+)}{-} \eta_{\alpha \beta jk})$$

Effective amplitude of $\stackrel{(-)}{\nu_{\alpha}} \rightarrow \stackrel{(-)}{\nu_{\beta}}$ transitions due to $\nu_{\alpha} - \nu_{k}$ mixing:

$$\sin^2 2\vartheta_{\alpha\beta}^{(k)} = 4|U_{\alpha k}|^2|U_{\beta k}|^2$$

$$P^{\text{SBL}}_{\substack{(-)\\\nu_{\alpha}\to\nu_{\beta}}} \simeq \sum_{k=4}^{N} \sin^{2} 2\vartheta^{(k)}_{\alpha\beta} \sin^{2} \Delta_{k1} + 2\sum_{k=4}^{N} \sum_{j=k+1}^{N} \sin 2\vartheta^{(k)}_{\alpha\beta} \sin 2\vartheta^{(j)}_{\alpha\beta} \sin \Delta_{k1} \sin \Delta_{j1} \cos(\Delta_{jk} \stackrel{(+)}{-} \eta_{\alpha\beta jk})$$

$$\begin{aligned} \sin^2 2\vartheta_{\alpha\alpha}^{(k)} &= 4|U_{\alpha k}|^2 \left(1 - |U_{\alpha k}|^2\right) \simeq 4|U_{\alpha k}|^2\\ \sin^2 2\vartheta_{\alpha\beta}^{(k)} &= 4|U_{\alpha k}|^2|U_{\beta k}|^2\\ \\ \boxed{\sin^2 2\vartheta_{\alpha\beta}^{(k)} \simeq \frac{1}{4}\sin^2 2\vartheta_{\alpha\alpha}^{(k)}\sin^2 2\vartheta_{\beta\beta}^{(k)}}\\ \sin^2 2\vartheta_{ee}^{(k)} \ll 1\\ \sin^2 2\vartheta_{\mu\mu}^{(k)} \ll 1 \end{aligned} \right\} \quad \Rightarrow \quad \sin^2 2\vartheta_{e\mu}^{(k)} \quad \text{is quadratically suppressed} \end{aligned}$$

on the other hand, observation of $\stackrel{(-)}{\nu_{\alpha}} \rightarrow \stackrel{(-)}{\nu_{\beta}}$ transitions due to Δm_{k1}^2 imply that the corresponding $\stackrel{(-)}{\nu_{\alpha}}$ and $\stackrel{(-)}{\nu_{\beta}}$ disappearances must be observed

Effects of light sterile neutrinos should also be seen in:

• β Decay Experiments

[Hannestad et al, JCAP 1102 (2011) 011, PRC 84 (2011) 045503; Formaggio, Barrett, PLB 706 (2011) 68; Esmaili, Peres, PRD 85 (2012) 117301; Gastaldo et al, JHEP 1606 (2016) 061]

Neutrinoless Double-β Decay Experiments

[Rodejohann et al, JHEP 1107 (2011) 091; Li, Liu, PLB 706 (2012) 406; Meroni et al, JHEP 1311 (2013) 146, PRD 90 (2014) 053002; Pascoli et al, PRD 90 (2014) 093005; CG, Zavanin, JHEP 1507 (2015) 171; Guzowski et al, PRD 92 (2015) 012002]

Long-baseline Neutrino Oscillation Experiments

[de Gouvea et al, PRD 91 (2015) 053005, PRD 92 (2015) 073012, arXiv:1605.09376; Palazzo et al, PRD 91 (2015) 073017, PLB 757 (2016) 142, JHEP 1602 (2016) 111, JHEP 1609 (2016) 016, PRL 118 (2017) 031804; Kayser et al, JHEP 1511 (2015) 039, JHEP 1611 (2016) 122; Pant et al, NPB 909 (2016) 1079, Choubey, Pramanik, PLB 764 (2017) 135]

Solar neutrinos

[Dooling et al, PRD 61 (2000) 073011, Gonzalez-Garcia et al, PRD 62 (2000) 013005; Palazzo, PRD 83 (2011) 113013, PRD 85 (2012) 077301; Li et al, PRD 80 (2009) 113007, PRD 87, 113004 (2013), JHEP 1308 (2013) 056; Kopp et al, JHEP 1305 (2013) 050]

Atmospheric neutrinos

[Goswami, PRD 55 (1997) 2931; Bilenky et al, PRD 60 (1999) 073007; Maltoni et al, NPB 643 (2002) 321, PRD 67 (2003) 013011; Choubey, JHEP 0712 (2007) 014; Razzaque, Smirnov, JHEP 1107 (2011) 084, PRD 85 (2012) 093010; Gandhi, Ghoshal, PRD 86 (2012) 037301; Barger et al, PRD 85 (2012) 011302; Esmaili et al, JCAP 1211 (2012) 041, JCAP 1307 (2013) 048, JHEP 1312 (2013) 014; Rajpoot et al, EPJC 74 (2014) 2936; Lindner et al, JHEP 1601 (2016) 124; Behera et al, arXiv:1605.08607]

Supernova neutrinos

[Caldwell, Fuller, Qian, PRD 61 (2000) 123005; Peres, Smirnov, NPB 599 (2001); Sorel, Conrad, PRD 66 (2002) 033009; Tamborra et al, JCAP 1201 (2012) 013; Wu et al, PRD 89 (2014) 061303; Esmaili et al, PRD 90 (2014) 033013]

Cosmic neutrinos

[Cirelli et al, NPB 708 (2005) 215; Donini, Yasuda, arXiv:0806.3029; Barry et al, PRD 83 (2011) 113012]

Indirect dark matter detection [Esmaili, Peres, JCAP 1205 (2012) 002]

Cosmology [see: Wong, ARNPS 61 (2011) 69; Archidiacono et al, AHEP 2013 (2013) 191047]

C. Giunti – Oscillations Beyond Three-Neutrino Mixing – VII Pontecorvo Neutrino School – 25 August 2017 – 64/69

Effective 3+1 LBL Oscillation Probabilities

[de Gouvea et al, PRD 91 (2015) 053005, PRD 92 (2015) 073012, arXiv:1605.09376; Palazzo et al, PRD 91 (2015) 073017, PLB 757 (2016) 142, JHEP 1602 (2016) 111, JHEP 1609 (2016) 016, PRL 118 (2017) 031804; Kayser et al, JHEP 1511 (2015) 039, JHEP 1611 (2016) 122]

 $|U_{e3}| \simeq \sin \vartheta_{13} \simeq 0.15 \sim \varepsilon \implies \varepsilon^2 \sim 0.03$ $|U_{e4}| \simeq \sin \vartheta_{14} \simeq 0.17 \sim \varepsilon$ $|U_{\mu4}| \simeq \sin \vartheta_{24} \simeq 0.11 \sim \varepsilon$ $\alpha \equiv \frac{\Delta m_{21}^2}{|\Delta m_{21}^2|} \simeq \frac{7 \times 10^{-5}}{2.4 \times 10^{-3}} \simeq 0.031 \sim \varepsilon^2$ At order ε^3 : $\Delta_{ki} \equiv \Delta m_{ki}^2 L/4E$ [Klop, Palazzo, PRD 91 (2015) 073017] $P_{\nu_{1} \rightarrow \nu_{2}}^{\text{LBL}} \simeq 4 \sin^{2} \vartheta_{13} \sin^{2} \vartheta_{23} \sin^{2} \Delta_{31}$ $\sim \epsilon^2$ $+2\sin\vartheta_{13}\sin2\vartheta_{12}\sin2\vartheta_{23}(\alpha\Delta_{31})\sin\Delta_{31}\cos(\Delta_{32}+\delta_{13}) \sim \varepsilon^3$

+4 sin ϑ_{13} sin ϑ_{14} sin ϑ_{24} sin ϑ_{23} sin Δ_{31} sin $(\Delta_{31} + \delta_{13} - \delta_{14}) \sim \varepsilon^3$

CP Violation in T2K and NOvA

C. Giunti – Oscillations Beyond Three-Neutrino Mixing – VII Pontecorvo Neutrino School – 25 August 2017 – 66/69

Neutrinoless Double-Beta Decay

 $m_{\beta\beta} = |U_{e1}|^2 m_1 + |U_{e2}|^2 e^{i\alpha_{21}} m_2 + |U_{e3}|^2 e^{i\alpha_{31}} m_3 + |U_{e4}|^2 e^{i\alpha_{41}} m_4$

$$m_{\beta\beta}^{(k)} = |U_{ek}|^2 m_k$$

warning: possible cancellation with $m^{(3
u)}_{\beta\beta}$

[Barry, Rodejohann, Zhang, JHEP 07 (2011) 091]
 [Li, Liu, PLB 706 (2012) 406]
 [Rodejohann, JPG 39 (2012) 124008]
 [Girardi, Meroni, Petcov, JHEP 1311 (2013) 146]
 [CG, Zavanin, JHEP 07 (2015) 171]

C. Giunti – Oscillations Beyond Three-Neutrino Mixing – VII Pontecorvo Neutrino School – 25 August 2017 – 68/69

Conclusions

- Exciting indications of sterile neutrinos (new physics!) at the eV scale:
 - LSND $\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e}$ signal (caveat: single experimental signal).
 - Gallium ν_e disappearance (caveat: overestimated detector efficiency?).
 - ▶ Reactor $\bar{\nu}_e$ disappearance (caveat: flux calculation dependence).
- ► Vigorous experimental program to check conclusively in a few years:
 - \blacktriangleright ν_e and $\bar{\nu}_e$ disappearance with reactors and radioactive sources.
 - $\nu_{\mu} \rightarrow \nu_{e}$ transitions with accelerator neutrinos.
 - u_{μ} disappearance with accelerator neutrinos.
- ▶ Independent tests through effect of m_4 in β -decay and $\beta\beta_{0\nu}$ -decay.
- ► Cosmology: strong tension with △N_{eff} = 1 and m₄ ≈ 1 eV. It may be solved by a non-standard cosmological mechanism.
- Possibilities for the next years:
 - ▶ Reactor and source experiments ν_e and $\bar{\nu}_e$ observe SBL oscillations: big excitement and explosion of the field.
 - Otherwise: still marginal interest to check the LSND appearance signal.
 - In any case the possibility of the existence of sterile neutrinos related to New Physics beyond the Standard Model will continue to be studied (e.g keV sterile neutrinos).