Status of the Sterile Neutrino(s)

Carlo Giunti

INFN, Torino, Italy

Recent Developments in Neutrino Physics and Astrophysics 10th Anniversary of Borexino LNGS and GSSI, Assergi and L'Aquila, Italy, 4-7 September 2017

C. Giunti – Status of the Sterile Neutrino(s) – LNGS – 7 September 2017 – 1/40

ISND

[PRL 75 (1995) 2650; PRC 54 (1996) 2685; PRL 77 (1996) 3082; PRD 64 (2001) 112007]

 $\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e}$ 20 MeV $\leq E \leq$ 52.8 MeV

• Well-known and pure source of $\bar{\nu}_{\mu}$

Well-known detection process of $\bar{\nu}_e$

- \blacktriangleright \approx 3.8 σ excess
- But signal not seen by KARMEN at $L \simeq 18 \text{ m}$ with the same method

[PRD 65 (2002) 112001]

C. Giunti – Status of the Sterile Neutrino(s) – LNGS – 7 September 2017 – 3/40

MiniBooNE

 $200 \,\mathrm{MeV} \le E \lesssim 3 \,\mathrm{GeV}$ $L\simeq 541\,{
m m}$

- Purpose: check LSND signal.
- Different L and E.
- Similar L/E (oscillations).

- LSND signal: E > 475 MeV.
- Agreement with LSND signal?
- CP violation?
- No money, no Near Detector. \blacktriangleright Low-energy anomaly! \Rightarrow MicroBooNE

Gallium Anomaly

C. Giunti – Status of the Sterile Neutrino(s) – LNGS – 7 September 2017 – 5/40

Reactor Electron Antineutrino Anomaly

[Mention et al, PRD 83 (2011) 073006]

 $pprox 2.8\sigma$ deficit

 $\Delta m^2_{
m SBL}\gtrsim 0.5\,{
m eV}^2\gg\Delta m^2_{
m ATM}\gg\Delta m^2_{
m SOL}$

[PRL 118 (2017) 121802 (arXiv:1610.05134)]

- Hanbit Nuclear Power Complex in Yeong-gwang, Korea.
- ► Thermal power of 2.8 GW.
- Detector: a ton of Gd-loaded liquid scintillator in a gallery approximately 24 m from the reactor core.
- The measured antineutrino event rate is 1976 per day with a signal to background ratio of about 22.

Beyond Three-Neutrino Mixing: Sterile Neutrinos

Terminology: a eV-scale sterile neutrino means: a eV-scale massive neutrino which is mainly sterile

Effective 3+1 SBL Oscillation Probabilities

Common Parameterization of 4×4 Mixing Matrix

$$U = \left[W^{34} R^{24} W^{14} R^{23} W^{13} R^{12} \right] \mathsf{diag} \left(1, e^{i\lambda_{21}}, e^{i\lambda_{31}}, e^{i\lambda_{41}} \right)$$

$$|U_{e4}|^2 = \sin^2 \vartheta_{14} \implies \sin^2 2\vartheta_{ee} = 4|U_{e4}|^2 \left(1 - |U_{e4}|^2\right) = \sin^2 2\vartheta_{14}$$
$$U_{\mu4}|^2 = \cos^2 \vartheta_{14} \sin^2 \vartheta_{24} \simeq \sin^2 \vartheta_{24} \Rightarrow \sin^2 2\vartheta_{\mu\mu} = 4|U_{\mu4}|^2 \left(1 - |U_{\mu4}|^2\right) \simeq \sin^2 2\vartheta_{24}$$

Global ν_e and $\bar{\nu}_e$ Disappearance

[Gariazzo, CG, Laveder, Li, JHEP 1706 (2017) 135 (arXiv:1703.00860)]

• KARMEN+LSND ν_e^{-12} C

[Conrad, Shaevitz, PRD 85 (2012) 013017] [CG, Laveder, PLB 706 (2011) 20]

- ► Solar v_e + KamLAND v̄_e [Li et al, PRD 80 (2009) 113007, PRD 86 (2012) 113014] [Palazzo, PRD 83 (2011) 113013, PRD 85 (2012) 077301]
- T2K Near Detector ν_e disappearance [T2K, PRD 91 (2015) 051102]

•
$$\Delta \chi^2_{\rm NO}/{\rm NDF_{\rm NO}} = 14.1/2 \Rightarrow \approx 3.3\sigma$$
 anom.

• Best Fit: $\Delta m_{41}^2 = 1.7 \text{ eV}^2$ $\sin^2 2\vartheta_{ee} = 0.066 \iff |U_{e4}|^2 = 0.017$

•
$$\chi^2_{\rm min}/{\rm NDF} = 163.0/174 \Rightarrow {\rm GoF} = 71\%$$

Tritium Beta-Decay: ${}^{3}\text{H} \rightarrow {}^{3}\text{He} + e^{-} + \bar{\nu}_{e}$

$$Q = M_{^{3}\text{H}} - M_{^{3}\text{He}} - m_{e} = 18.58 \text{ keV}$$

$$\frac{d\Gamma}{dT} = \frac{(\cos\vartheta_{C}G_{\text{F}})^{2}}{2\pi^{3}} |\mathcal{M}|^{2} F(E) p E K^{2}(T)$$

$$\frac{K^{2}(T)}{Q - T} = \sum_{k} |U_{ek}|^{2} \sqrt{(Q - T)^{2} - m_{k}^{2}} \theta(Q - T - m_{k})$$

$$m_{4} \gg m_{1,2,3} \Rightarrow \simeq (1 - |U_{e4}|^{2}) \sqrt{(Q - T)^{2} - m_{\beta}^{2}} \theta(Q - T - m_{\beta})$$

$$+ |U_{e4}|^{2} \sqrt{(Q - T)^{2} - m_{4}^{2}} \theta(Q - T - m_{4})$$

$$m_{\beta}^{2} = \sum_{k=1}^{3} |U_{ek}|^{2} m_{k}^{2}$$

C. Giunti – Status of the Sterile Neutrino(s) – LNGS – 7 September 2017 – 14/40

Mainz and Troitsk Limit on $\Delta m_{41}^2 \simeq m_4^2$

$$m_4 \gg m_{1,2,3} \implies \Delta m_{41}^2 \equiv m_4^2 - m_1^2 \simeq m_4^2$$

[Kraus, Singer, Valerius, Weinheimer, EPJC 73 (2013) 2323]

[Belesev et al, JPG 41 (2014) 015001]

Global ν_e and $\bar{\nu}_e$ Disappearance + β Decay

[Gariazzo, CG, Laveder, Li, JHEP 1706 (2017) 135 (arXiv:1703.00860)]

The Race for ν_e and $\bar{\nu}_e$ Disappearance

CeSOX (Gran Sasso, Italy) ¹⁴⁴Ce $\rightarrow \bar{\nu}_e$ BOREXINO: $L \simeq 5-12m$ [Vivier@TAUP2015]

KATRIN (Karlsruhe, Germany) ${}^{3}H \rightarrow \bar{\nu}_{e}$ [Drexlin@NOW2016] DANSS (Kalinin, Russia) $L \simeq 10-12m$ [arXiv:1606.02896] Neutrino-4 (RIAR, Russia) $L \simeq 6-11m$ [JETP 121 (2015) 578] PROSPECT (ORNL, USA) $L \simeq 7-12m$ [arXiv:1512.02202] SoLid (SCK-CEN, Belgium) $L \simeq 5-8m$ [arXiv:1510.07835] STEREO (ILL, France) $L \simeq 8-12m$ [arXiv:1602.00568]

C. Giunti – Status of the Sterile Neutrino(s) – LNGS – 7 September 2017 – 17/40

C. Giunti – Status of the Sterile Neutrino(s) – LNGS – 7 September 2017 – 18/40

 ν_{μ} and $\bar{\nu}_{\mu}$ Disappearance

C. Giunti – Status of the Sterile Neutrino(s) – LNGS – 7 September 2017 – 19/40

3+1 Appearance-Disappearance Tension

C. Giunti – Status of the Sterile Neutrino(s) – LNGS – 7 September 2017 – 20/40

Effects of MINOS and IceCube

- IceCube effect in agreement with Collin, Arguelles, Conrad, Shaevitz, PRL 117 (2016) 221801
- Best Fit: $\Delta m_{41}^2 = 1.6 \,\mathrm{eV}^2 |U_{e4}|^2 = 0.028 |U_{\mu4}|^2 = 0.014$
- ► $\chi^2_{\rm min}/{\rm NDF} = 556.9/525 \Rightarrow {\rm GoF} = 16\%$
- ► $\chi^2_{PG}/NDF_{PG} = 14.4/2 \Rightarrow GoF_{PG} = 0.075\%$ \leftarrow Strong tension!

C. Giunti – Status of the Sterile Neutrino(s) – LNGS – 7 September 2017 – 21/40

Effects of NEOS

• Best Fit: $\Delta m_{41}^2 = 1.7 \,\mathrm{eV}^2 |U_{e4}|^2 = 0.021 |U_{\mu4}|^2 = 0.016$

► $\chi^2_{\rm min}/{\rm NDF} = 622.1/585 \Rightarrow {\rm GoF} = 14\%$

► $\chi^2_{PG}/NDF_{PG} = 17.2/2 \Rightarrow GoF_{PG} = 0.019\%$ ← Strong tension!

MiniBooNE Low-Energy Anomaly

C. Giunti – Status of the Sterile Neutrino(s) – LNGS – 7 September 2017 – 23/40

Global \rightarrow **Pragmatic**

[CG, Laveder, Li, Long, PRD 88 (2013) 073008]

- App: all Appearance data
- PrApp: all Appearance data, except MiniBooNE low-energy bins

C. Giunti - Status of the Sterile Neutrino(s) - LNGS - 7 September 2017 - 24/40

Pragmatic Global 3+1 Fit

[Gariazzo, CG, Laveder, Li, JHEP 1706 (2017) 135 (arXiv:1703.00860)]

• $\Delta \chi^2_{\rm NO}/{\rm NDF_{\rm NO}} = 47.4/4 \Rightarrow \approx 6.1\sigma$ anomaly

- Best Fit: $\Delta m_{41}^2 = 1.7 \text{ eV}^2 |U_{e4}|^2 = 0.020 |U_{\mu4}|^2 = 0.015$
- ► $\chi^2_{\rm min}/{\rm NDF} = 595.1/579 \Rightarrow {\rm GoF} = 31\%$
- ► $\chi^2_{PG}/NDF_{PG} = 7.2/2 \Rightarrow GoF_{PG} = 2.7\%$ \leftarrow Mild tolerable tension!

The Race for the Light Sterile

 $\stackrel{(-)}{\nu_e} \rightarrow \stackrel{(-)}{\nu_e}$

Reactor Antineutrino 5 MeV Bump

[Daya Bay, arXiv:1508.04233]

- Cannot be explained by neutrino oscillations (SBL oscillations are averaged in Double Chooz, Daya Bay, RENO).
- Very likely due to theoretical miscalculation of the spectrum.
- ► ~ 3% effect on total flux, but if it is an excess it increases the anomaly!
- No post-bump complete calculation of the neutrino fluxes.

- Saclay-Huber flux calculation uncertainty is about 2.5%.
- Increasing the flux uncertainty is a game that one can play, but there are only guesses, e.g. about 5%. [Hayes and Vogel, 2016]
- Better to exclude the reactor rates from the global fit. [suggestion of Pedro Machado at WIN 2017]

Global Fit

Without Reactor Rates

The Reactor Antineutrino Anomaly has small impact on the global fit.

Without Reactor Rates and Gallium Data

Given the current constraints, only the LSND signal is crucial for a positive indication in favor of active-sterile SBL oscillations.

Global Analysis without LSND

► All MiniBooNE data, including the low-energy bins

- $\Delta \chi^2_{\rm NO}/{\rm NDF_{\rm NO}} = 17.1/4 \Rightarrow \approx 3.1\sigma$ anomaly
- Best Fit: $\Delta m_{41}^2 = 1.8 \,\mathrm{eV}^2 |U_{e4}|^2 = 0.017 |U_{\mu4}|^2 = 0.0065$
- ► $\chi^2_{\rm min}/{\rm NDF} = 604.1/581 \Rightarrow {\rm GoF} = 25\%$
- ► $\chi^2_{PG}/NDF_{PG} = 9.3/2 \Rightarrow GoF_{PG} = 0.96\%$ ← Tension!

C. Giunti – Status of the Sterile Neutrino(s) – LNGS – 7 September 2017 – 31/40

Daya Bay Reactor Fuel Evolution

[Dava Bay, PRL 118 (2017) 251801 (arXiv:1704.01082)]

- Reactor $\bar{\nu}_e$ flux produced by the β decays of the fission products of ²³⁵U. ²³⁸U. ²³⁹Pu. ²⁴¹Pu.
- Effective fission fractions:

100

90

80

70

60

50

40 30

20

10

0

0

Fission fraction (%)

F235, F238, F230, F241.

C. Giunti – Status of the Sterile Neutrino(s) – LNGS – 7 September 2017 – 32/40

• Best fit: mainly suppression of $\sigma_{f,235}$

• Equal fluxes suppression:
$$\Delta\chi^2/{\rm NDF}=7.9/1$$
 disfavored at 2.8 σ

 Equal fluxes suppression corresponds to SBL oscillations, but theoretical flux uncertainties must be taken into account

With theoretical flux uncertainties:

Daya Bay	²³⁵ U	OSC
$\chi^2_{\rm min}$	3.8	9.5
NDF	7	7
GoF	80%	22%

• MC: OSC disfavored at 2.6σ

[CG, X.P. Ji, M. Laveder, Y.F. Li, B.R. Littlejohn, arXiv:1708.01133]

C. Giunti – Status of the Sterile Neutrino(s) – LNGS – 7 September 2017 – 33/40

Fuel Fractions of All Reactor Experiments

_		²³⁵ U	235 U + 239 U	OSC	²³⁵ U+OSC	²³⁹ U+OSC
	$\chi^2_{\rm min}$	25.3	24.8	23.0	20.2	17.5
	NDF	32	31	31	30	30
	GoF	79%	78%	85%	91%	100%
	Δm_{41}^2	_	_	0.48	0.48	0.48
	$\sin^2 2\vartheta_{ee}$	_	_	0.14	0.11	0.15
	r ₂₃₅	0.934	0.934	_	0.987	_
	r ₂₃₉	_	0.970	_	—	1.099

C. Giunti – Status of the Sterile Neutrino(s) – LNGS – 7 September 2017 – 35/40

Preliminary Bound from MINOS & MINOS+

C. Giunti – Status of the Sterile Neutrino(s) – LNGS – 7 September 2017 – 36/40

Preliminary Bound from DANSS

[Danilov @ Moriond EW 2017, Svirida @ WIN2017, Danilov @ EPS-HEP 2017] Detector of reactor AntiNeutrino based on Solid Scintillator

C. Giunti – Status of the Sterile Neutrino(s) – LNGS – 7 September 2017 – 38/40

Conclusions

- Exciting indications of sterile neutrinos (new physics!) at the eV scale:
 - LSND $\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e}$ signal (caveat: single experimental signal).
 - Gallium ν_e disappearance (caveat: overestimated detector efficiency?).
 - ▶ Reactor $\bar{\nu}_e$ disappearance (caveat: flux calculation dependence).
- ► Vigorous experimental program to check conclusively in a few years:
 - ν_e and $\bar{\nu}_e$ disappearance with reactors and radioactive sources.
 - $\nu_{\mu} \rightarrow \nu_{e}$ transitions with accelerator neutrinos.
 - u_{μ} disappearance with accelerator neutrinos.
- ▶ Independent tests through effect of m_4 in β -decay and $\beta\beta_{0\nu}$ -decay.
- ► Cosmology: strong tension with △N_{eff} = 1 and m₄ ≈ 1 eV. It may be solved by a non-standard cosmological mechanism.
- Possibilities for the next years:
 - ▶ Reactor and source experiments ν_e and $\bar{\nu}_e$ observe SBL oscillations: big excitement and explosion of the field.
 - ▶ Otherwise: still marginal interest to check the LSND appearance signal.
 - In any case the possibility of the existence of sterile neutrinos related to New Physics beyond the Standard Model will continue to be studied (e.g keV sterile neutrinos).