Massive Neutrinos in Cosmology Part I: Theory and Phenomenology of Massive Neutrinos Carlo Giunti INFN, Torino, Italy giunti@to.infn.it Neutrino Unbound: http://www.nu.to.infn.it Torino Graduate School in Physics and Astrophysics

Torino Graduate School in Thysics and Astrophysic

Torino, May 2018

C. Giunti and C.W. Kim Fundamentals of Neutrino Physics and Astrophysics Oxford University Press 15 March 2007 – 728 pages

Fermion Mass Spectrum

Standard Model

- Glashow (1961), Weinberg (1967) and Salam (1968) formulate the Standard Model of ElectroWeak Interactions (1979 Physics Nobel Prize) assuming that neutrinos are massless and left-handed
- Universal V A Weak Interactions
- Quantum Field Theory: $\nu_L \Rightarrow |\nu(h=-1)\rangle$ and $|\bar{\nu}(h=+1)\rangle$
- ► Particle-Antiparticle symmetry (Charge Conjugation) is violated: $\nu_L \xrightarrow{\mathsf{C}} (\overline{\nu^e})_L \xrightarrow{\mathsf{C}} (\nu_R)^c$ $|\nu(h = -1)\rangle \xrightarrow{\mathsf{C}} [\overline{\nu}(h = -1))$

C. Giunti – Massive Neutrinos in Cosmology – I – Torino PhD Course – May 2018 – 3/40

Standard Model: Massless Neutrinos

	1 st Generation	2 nd Generation	3 rd Generation
Quarks	$\begin{pmatrix} u_L \\ d_L \end{pmatrix} \begin{array}{c} u_R \\ d_R \end{array}$	$\begin{pmatrix} c_L \\ s_L \end{pmatrix} \begin{array}{c} c_R \\ s_R \end{array}$	$\begin{pmatrix} t_L \\ b_L \end{pmatrix} \begin{array}{c} t_R \\ b_R \end{array}$
Leptons	$\begin{pmatrix} \nu_{eL} \\ e_L \end{pmatrix} \stackrel{\checkmark}{=} e_R$	$\begin{pmatrix} \nu_{\mu L} \\ \mu_L \end{pmatrix} \overset{\flat}{\mu_R}$	$\begin{pmatrix} \nu_{\tau L} \\ \tau_L \end{pmatrix} \stackrel{\text{\tiny Ver}}{\tau_R}$

► No $\nu_R \implies$ No Dirac mass Lagrangian $\mathcal{L}_D \sim m_D \overline{\nu_L} \nu_R$

► Majorana Neutrinos: $\nu = \nu^c \implies \nu_R = (\nu^c)_R = \nu_L^c$

Majorana mass Lagrangian: $\mathcal{L}_{M} \sim m_{M} \overline{\nu_{L}} \nu_{L}^{c}$

forbidden by Standard Model $SU(2)_L \times U(1)_Y$ symmetry!

- In Standard Model neutrinos are massless!
- Experimentally allowed until 1998, when the Super-Kamiokande atmospheric neutrino experiment obtained a model-independent proof of Neutrino Oscillations

SM Extension: Massive Dirac Neutrinos

	1 st Generation	2 nd Generation	3 rd Generation
Quarks:	$\begin{pmatrix} u_L \\ d_L \end{pmatrix} \begin{array}{c} u_R \\ d_R \end{array}$	$\begin{pmatrix} c_L \\ s_L \end{pmatrix} \begin{array}{c} c_R \\ s_R \\ \end{array}$	$\begin{pmatrix} t_L \\ b_L \end{pmatrix} \begin{array}{c} t_R \\ b_R \end{array}$
Leptons:	$\begin{pmatrix} \nu_{eL} \\ e_L \end{pmatrix} \begin{array}{c} \nu_{eR} \\ e_R \\ \end{pmatrix}$	$\begin{pmatrix} \nu_{\mu L} \\ \mu_L \end{pmatrix} \begin{array}{c} \nu_{\mu R} \\ \mu_R \end{pmatrix}$	$\begin{pmatrix} \nu_{\tau L} \\ \tau_L \end{pmatrix} \begin{array}{c} \nu_{\tau R} \\ \tau_R \\ \end{pmatrix}$

 $\blacktriangleright \nu_R \implies \text{Dirac mass Lagrangian} \quad \mathcal{L}_D \sim m_D \overline{\nu_L} \nu_R$

- m_D is generated by the standard Higgs mechanism: $y \overline{L_L} \widetilde{\Phi} \nu_R \rightarrow y v \overline{\nu_L} \nu_R$
- Necessary assumption: lepton number conservation to forbid the Majorana mass terms

 $\mathcal{L}_{M} \sim m_{M} \overline{\nu_{R}} \nu_{R}^{c}$ singlet under SM symmetries!

- Extremely small Yukawa couplings: $y \lesssim 10^{-11}$
- Not theoretically attractive.

Beyond the SM: Massive Majorana Neutrinos

Total Lepton Number is not conserved: $\Delta L = \pm 2$

Best process to find violation of Total Lepton Number:

Neutrinoless Double- β Decay

$$\begin{split} \mathcal{N}(A,Z) &\to \mathcal{N}(A,Z+2) + 2e^- + 2 \overleftarrow{\ast}_{e} & (\beta \beta_{0\nu}^-) \\ \mathcal{N}(A,Z) &\to \mathcal{N}(A,Z-2) + 2e^+ + 2 \overleftarrow{\ast}_{e} & (\beta \beta_{0\nu}^+) \end{split}$$

Seesaw Mechanism

$$\mathcal{L}^{\mathsf{D}+\mathsf{M}} = -\frac{1}{2} \begin{pmatrix} \overline{\nu_L^{\mathsf{c}}} & \overline{\nu_R} \end{pmatrix} \begin{pmatrix} 0 & m^{\mathsf{D}} \\ m^{\mathsf{D}} & m^{\mathsf{M}}_R \end{pmatrix} \begin{pmatrix} \nu_L \\ \nu_R^{\mathsf{c}} \end{pmatrix} + \mathsf{H.c.}$$

 m_R^{M} can be arbitrarily large (not protected by SM symmetries) $m_R^{\text{M}} \sim \text{scale of new physics beyond Standard Model} \Rightarrow m_R^{\text{M}} \gg m^{\text{D}}$ diagonalization of $\begin{pmatrix} 0 & m^{\text{D}} \\ m^{\text{D}} & m_R^{\text{M}} \end{pmatrix} \Rightarrow m_\ell \simeq \frac{(m^{\text{D}})^2}{m_R^{\text{M}}}, \quad m_h \simeq m_R^{\text{M}}$

> natural explanation of smallness of light neutrino masses massive neutrinos are Majorana! 3-GEN \Rightarrow effective low-energy 3- ν mixing

> > [Minkowski, PLB 67 (1977) 42]

[Yanagida (1979); Gell-Mann, Ramond, Slansky (1979); Mohapatra, Senjanovic, PRL 44 (1980) 912]

seesaw mechanism

Neutrino Mixing

Left-handed Flavor Neutrinos produced in Weak Interactions

$$\begin{split} |\nu_{e},-\rangle & |\nu_{\mu},-\rangle & |\nu_{\tau},-\rangle \\ \mathcal{H}_{\mathsf{CC}} &= \frac{g}{\sqrt{2}} W_{\rho} \left(\overline{\nu_{eL}} \gamma^{\rho} e_{L} + \overline{\nu_{\mu L}} \gamma^{\rho} \mu_{L} + \overline{\nu_{\tau L}} \gamma^{\rho} \tau_{L} \right) + \mathsf{H.c.} \\ \mathsf{Fields} \quad \nu_{\alpha L} &= \sum_{k} U_{\alpha k} \nu_{kL} \implies |\nu_{\alpha},-\rangle = \sum_{k} U_{\alpha k}^{*} |\nu_{k},-\rangle \quad \mathsf{States} \\ |\nu_{1},-\rangle & |\nu_{2},-\rangle & |\nu_{3},-\rangle \end{split}$$

Left-handed Massive Neutrinos propagate from Source to Detector

$$3 imes 3$$
 Unitary Mixing Matrix: $U = egin{pmatrix} U_{e1} & U_{e2} & U_{e3} \ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} \ \end{pmatrix}$

Neutrino Oscillations

 $|\nu(t=0)\rangle = |\nu_{\alpha}\rangle = U_{\alpha1}^* |\nu_1\rangle + U_{\alpha2}^* |\nu_2\rangle + U_{\alpha3}^* |\nu_3\rangle$

 $\begin{aligned} |\nu(t>0)\rangle &= U_{\alpha 1}^{*} e^{-iE_{1}t} |\nu_{1}\rangle + U_{\alpha 2}^{*} e^{-iE_{2}t} |\nu_{2}\rangle + U_{\alpha 3}^{*} e^{-iE_{3}t} |\nu_{3}\rangle \neq |\nu_{\alpha}\rangle \\ E_{k}^{2} &= p^{2} + m_{k}^{2} \qquad t = L \\ P_{\nu_{\alpha} \to \nu_{\beta}}(L) &= |\langle \nu_{\beta} | \nu(L) \rangle|^{2} = \sum_{i=i} U_{\beta k} U_{\alpha k}^{*} U_{\beta j}^{*} U_{\alpha j} \exp\left(-i\frac{\Delta m_{k j}^{2}L}{2E}\right) \end{aligned}$

the oscillation probabilities depend on U and $\Delta m_{ki}^2 \equiv m_k^2 - m_i^2$

Tiny neutrino masses lead to observable macroscopic oscillation distances!

 $\frac{L}{E} \lesssim \begin{cases} 10 \frac{m}{\text{MeV}} \left(\frac{\text{km}}{\text{GeV}}\right) & \text{short-baseline experiments} & \Delta m^2 \gtrsim 10^{-1} \text{ eV}^2 \\ 10^3 \frac{m}{\text{MeV}} \left(\frac{\text{km}}{\text{GeV}}\right) & \text{long-baseline experiments} & \Delta m^2 \gtrsim 10^{-3} \text{ eV}^2 \\ 10^4 \frac{\text{km}}{\text{GeV}} & \text{atmospheric neutrino experiments} & \Delta m^2 \gtrsim 10^{-4} \text{ eV}^2 \\ 10^{11} \frac{m}{\text{MeV}} & \text{solar neutrino experiments} & \Delta m^2 \gtrsim 10^{-11} \text{ eV}^2 \end{cases}$

Neutrino oscillations are the optimal tool to reveal tiny neutrino masses!

C. Giunti – Massive Neutrinos in Cosmology – I – Torino PhD Course – May 2018 – 10/40

A Brief History of Neutrino Oscillations

- ▶ 1957: Pontecorvo proposed Neutrino Oscillations in analogy with $K^0 \leftrightarrows \bar{K}^0$ oscillations (Gell-Mann and Pais, 1955) $\implies \nu \leftrightarrows \bar{\nu}$
- In 1957 only one neutrino type ν = ν_e was known! The possible existence of ν_μ was discussed by several authors. Maybe the first have been Sakata and Inoue in 1946 and Konopinski and Mahmoud in 1953. Maybe Pontecorvo did not know. He discussed the possibility to distinguish ν_μ from ν_e in 1959.
- ► 1962: Maki, Nakagava, Sakata proposed a model with ν_e and ν_µ and Neutrino Mixing:

"weak neutrinos are not stable due to the occurrence of a virtual transmutation $\nu_e \leftrightarrows \nu_\mu$ "

- ▶ 1962: Lederman, Schwartz and Steinberger discover ν_{μ}
- ▶ 1967: Pontecorvo: intuitive $\nu_e \leftrightarrows \nu_\mu$ oscillations with maximal mixing. Applications to reactor and solar neutrinos ("prediction" of the solar neutrino problem).
- ▶ 1969: Gribov and Pontecorvo: $\nu_e \nu_\mu$ mixing and oscillations. But no clear derivation of oscillations with a factor of 2 mistake in the phase (misprint?).

- 1975-76: Start of the "Modern Era" of Neutrino Oscillations with a general theory of neutrino mixing and a rigorous derivation of the oscillation probability by Eliezer and Swift, Fritzsch and Minkowski, and Bilenky and Pontecorvo. [Bilenky, Pontecorvo, Phys. Rep. (1978) 225]
- 1978: Wolfenstein discovers the effect on neutrino oscillations of the matter potential ("Matter Effect")
- ▶ 1985: Mikheev and Smirnov discover the resonant amplification of solar $\nu_e \rightarrow \nu_\mu$ oscillations due to the Matter Effect ("MSW Effect")
- 1998: the Super-Kamiokande experiment observed in a model-independent way the Vacuum Oscillations of atmospheric neutrinos (ν_μ → ν_τ).
- ► 2002: the SNO experiment observed in a model-independent way the flavor transitions of solar neutrinos ($\nu_e \rightarrow \nu_\mu, \nu_\tau$), mainly due to adiabatic MSW transitions. [see: Smirnov, arXiv:1609.02386]
- 2015: Takaaki Kajita (Super-Kamiokande) and Arthur B. McDonald (SNO) received the Physics Nobel Prize "for the discovery of neutrino oscillations, which shows that neutrinos have mass"

Three-Neutrino Mixing Paradigm

Standard Parameterization of Mixing Matrix

$$U = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13}e^{-i\delta_{13}} \\ 0 & 1 & 0 \\ -s_{13}e^{i\delta_{13}} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & e^{i\lambda_{21}} & 0 \\ 0 & 0 & e^{i\lambda_{31}} \end{pmatrix}$$

$$=\begin{pmatrix} c_{12}c_{13} & s_{12}c_{13} & s_{13}e^{-i\delta_{13}} \\ -s_{12}c_{23}-c_{12}s_{23}s_{13}e^{i\delta_{13}} & c_{12}c_{23}-s_{12}s_{23}s_{13}e^{i\delta_{13}} & s_{23}c_{13} \\ s_{12}s_{23}-c_{12}c_{23}s_{13}e^{i\delta_{13}} & -c_{12}s_{23}-s_{12}c_{23}s_{13}e^{i\delta_{13}} & c_{23}c_{13} \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & e^{i\lambda_{21}} & 0 \\ 0 & 0 & e^{i\lambda_{31}} \end{pmatrix}$$

$$c_{ab} \equiv \cos \vartheta_{ab}$$
 $s_{ab} \equiv \sin \vartheta_{ab}$ $0 \le \vartheta_{ab} \le \frac{\pi}{2}$ $0 \le \delta_{13}, \lambda_{21}, \lambda_{31} < 2\pi$

 $\begin{array}{l} \begin{array}{c} \mathsf{OSCILLATION} \\ \mathsf{PARAMETERS:} \end{array} \left\{ \begin{array}{l} 3 \text{ Mixing Angles: } \vartheta_{12}, \, \vartheta_{23}, \, \vartheta_{13} \\ 1 \text{ CPV Dirac Phase: } \delta_{13} \\ 2 \text{ independent } \Delta m_{ki}^2; \, \Delta m_{21}^2, \, \Delta m_{31}^2 \end{array} \right. \end{array}$

2 CPV Majorana Phases: λ_{21} , $\lambda_{31} \iff |\Delta L| = 2$ processes $(\beta \beta_{0\nu})$

Three-Neutrino Mixing Ingredients

 $U = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13}e^{-i\delta_{13}} \\ 0 & 1 & 0 \\ -s_{13}e^{i\delta_{13}} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & e^{i\lambda_{21}} & 0 \\ 0 & 0 & e^{i\lambda_{31}} \end{pmatrix}$

VLBL Reactor $\bar{\nu}_{e}$ disappearance

 $\begin{array}{c} \text{Solar} \\ \nu_{e} \rightarrow \nu_{\mu}, \nu_{\tau} \end{array} \begin{pmatrix} \text{SNO, Borexino} \\ \text{Super-Kamiokande} \\ \text{GALLEX/GNO, SAGE} \\ \text{Homestake, Kamiokande} \end{pmatrix} \\ \rightarrow \begin{cases} \Delta m_{\text{S}}^{2} = \Delta m_{21}^{2} \simeq 7.4 \times 10^{-5} \text{ eV}^{2} \\ \sin^{2} \vartheta_{\text{S}} = \sin^{2} \vartheta_{12} \simeq 0.30 \end{cases}$ $\begin{array}{c} \text{VLBL Reactor} \\ \text{disappearance} \end{cases}$

Three-Neutrino Mixing Ingredients

$$U = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13}e^{-i\delta_{13}} \\ 0 & 1 & 0 \\ -s_{13}e^{i\delta_{13}} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & e^{i\lambda_{21}} & 0 \\ 0 & 0 & e^{i\lambda_{31}} \end{pmatrix}$$

$$Atmospheric
\nu_{\mu} \rightarrow \nu_{\tau} \qquad \begin{pmatrix} Super-Kamiokande \\ Kamiokande, IMB \\ MACRO, Soudan-2 \end{pmatrix} \\ LBL Accelerator
\nu_{\mu} disappearance \qquad \begin{pmatrix} K2K, MINOS \\ T2K, NO\nuA \end{pmatrix} \qquad \rightarrow \begin{cases} \Delta m_{A}^{2} \simeq |\Delta m_{31}^{2}| \simeq 2.5 \times 10^{-3} \text{ eV}^{2} \\ \sin^{2} \vartheta_{A} = \sin^{2} \vartheta_{23} \simeq 0.50 \end{cases}$$

$$LBL Accelerator
\nu_{\mu} \rightarrow \nu_{\tau} \qquad (OPERA)$$

Three-Neutrino Mixing Ingredients

$$U = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13}e^{-i\delta_{13}} \\ 0 & 1 & 0 \\ -s_{13}e^{i\delta_{13}} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & e^{i\lambda_{21}} & 0 \\ 0 & 0 & e^{i\lambda_{31}} \end{pmatrix}$$

C. Giunti – Massive Neutrinos in Cosmology – I – Torino PhD Course – May 2018 – 18/40

Towards Precision Neutrino Physics

[NuFIT 3.2 (2018), www.nu-fit.org; T. Schwetz @ CERN Neutrino Platform Week, 1 Feb 2018] [See also: Capozzi et al., Phys.Rev. D95 (2017) 096014, arXiv:1703.04471; de Salas et al., arXiv:1708.01186]

SOL:
$$\Delta m_{21}^2 = 7.40^{+0.21}_{-0.20} \times 10^{-5} \text{ eV}^2$$
 precision $\simeq 2.8\%$
ATM:
 $\begin{cases}
NO: \Delta m_{31}^2 = 2.494^{+0.033}_{-0.031} \times 10^{-3} \text{ eV}^2 & \text{precision } \simeq 1.3\% \\
IO: \Delta m_{32}^2 = -2.465^{+0.032}_{-0.031} \times 10^{-3} \text{ eV}^2 & \text{precision } \simeq 1.3\%
\end{cases}$

Normal Ordering is preferred by $\Delta \chi^2 = 4.1$

C. Giunti – Massive Neutrinos in Cosmology – I – Torino PhD Course – May 2018 – 19/40

 $\begin{array}{c} \mbox{Solar} \\ \nu_e \rightarrow \nu_{\mu}, \nu_{\tau} \end{array} \begin{pmatrix} {}^{\mbox{SNO, Borexino}} \\ {}^{\mbox{Super-Kamiokande}} \\ \mbox{GALLEX/GNO, SAGE} \\ {}^{\mbox{Homestake, Kamiokande}} \end{pmatrix} \\ \hline \mbox{VLBL Reactor} \\ \bar{\nu}_e \mbox{ disappearance} & (KamLAND) \\ \mbox{sin}^2 \vartheta_{12} = 0.307^{+0.013}_{-0.012} & \mbox{precision} \simeq 4.2\% \end{array}$

C. Giunti – Massive Neutrinos in Cosmology – I – Torino PhD Course – May 2018 – 20/40

 $\begin{array}{lll} \mbox{Atmospheric} & \left(\begin{array}{c} \mbox{Sup} \\ \nu_{\mu} \rightarrow \nu_{\tau} \end{array} \right) & \left(\begin{array}{c} \mbox{Sup} \\ \mbox{Kan} \\ \mbox{MAC} \end{array} \right) \\ \mbox{LBL Accelerator} & \left(\begin{array}{c} \mbox{Kan} \\ \mbox{MAC} \\ \mbox{LBL Accelerator} \\ \mbox{LBL Accelerator} \\ \nu_{\mu} \rightarrow \nu_{\tau} \end{array} \right) \end{array}$

Super-Kamiokande Kamiokande, IMB MACRO, Soudan-2 (K2K, MINOS T2K, NOvA)

(OPERA)

 $\label{eq:sin2} \sin^2 \vartheta_{23} = \left\{ \begin{array}{ll} 0.538^{+0.033}_{-0.069} \quad (\text{NO}) \quad \text{precision} \simeq 13\% \\ & \text{Maximal Mixing allowed at} < 1\sigma \\ \\ 0.554^{+0.023}_{-0.033} \quad (\text{IO}) \quad \text{precision} \simeq 6\% \\ & \text{Second octant "favored" by } \Delta\chi^2 \simeq 2 \end{array} \right.$

Difficulty of measuring precisely ϑ_{23}

The octant degeneracy is resolved by small ϑ_{13} effects:

$$\begin{split} P^{\text{LBL}}_{\nu_{\mu} \to \nu_{\mu}} &\simeq 1 - \left[\sin^2 2\vartheta_{23}\cos^2 \vartheta_{13} + \sin^4 \vartheta_{23}\sin^2 2\vartheta_{13}\right]\sin^2 \left(\frac{\Delta m_{31}^2 L}{4E}\right) \\ P^{\text{LBL}}_{\nu_{\mu} \to \nu_{e}} &\simeq \sin^2 \vartheta_{23}\sin^2 2\vartheta_{13}\,\sin^2 \left(\frac{\Delta m_{31}^2 L}{4E}\right) \end{split}$$

Towards a precise determination of the mixing matrix

only the mass composition of ν_e is well determined

Why it is important to measure accurately the mixing parameters?

- U

- They are fundamental parameters.
- ► They lead to selection in huge model space. Examples:
 - Deviation from Tribimaximal Mixing

$$\simeq \begin{pmatrix} \sqrt{2/3} & 1/\sqrt{3} & 0\\ -1/\sqrt{6} & 1/\sqrt{3} & 1/\sqrt{2}\\ 1/\sqrt{6} & -1/\sqrt{3} & 1/\sqrt{2} \end{pmatrix}$$

- Violation of μ - τ symmetry ($|U_{\mu k}| = |U_{\tau k}|$)
- ► They have phenomenological usefulness (e.g. to determine the initial flavor composition of astrophysical neutrinos).
- ► CP:
 - CP conservation would need an explanation (a new symmetry?).
 - CP violation may be linked to the CP violation in the sector of heavy neutrinos which generate the matter-antimatter asymmetry in the Universe through leptogenesis (CP-violating decay of heavy neutrinos).

Absolute Scale of Neutrino Masses

Mass Hierarchy or Degeneracy?

Tritium Beta-Decay

Neutrino Mixing
$$\implies \mathcal{K}(T) = \left[(Q-T) \sum_{k} |U_{ek}|^2 \sqrt{(Q-T)^2 - m_k^2} \right]^{1/2}$$

analysis of data is
different from the
no-mixing case:
 $2N - 1$ parameters
 $\left(\sum_{k} |U_{ek}|^2 = 1 \right)$
if experiment is not sensitive to masses $(m_k \ll Q - T)$
effective mass:
 $m_\beta^2 = \sum_{k} |U_{ek}|^2 m_k^2$
 $\mathcal{K}^2 = (Q-T)^2 \sum_{k} |U_{ek}|^2 \sqrt{1 - \frac{m_k^2}{(Q-T)^2}} \simeq (Q-T)^2 \sum_{k} |U_{ek}|^2 \left[1 - \frac{1}{2} \frac{m_k^2}{(Q-T)^2} \right]$
 $= (Q-T)^2 \left[1 - \frac{1}{2} \frac{m_\beta^2}{(Q-T)^2} \right] \simeq (Q-T) \sqrt{(Q-T)^2 - m_\beta^2}$

C. Giunti – Massive Neutrinos in Cosmology – I – Torino PhD Course – May 2018 – 29/40

Predictions of 3 ν **-Mixing Paradigm**

 $m_{\beta}^2 = |U_{e1}|^2 m_1^2 + |U_{e2}|^2 m_2^2 + |U_{e3}|^2 m_3^2$

C. Giunti – Massive Neutrinos in Cosmology – I – Torino PhD Course – May 2018 – 30/40

Neutrinoless Double-Beta Decay

Two-Neutrino Double- β Decay: $\Delta L = 0$

$$\mathcal{N}(A, Z)
ightarrow \mathcal{N}(A, Z+2) + e^- + e^- + ar{
u}_e + ar{
u}_e$$

 $(T_{1/2}^{2\nu})^{-1} = G_{2\nu} |\mathcal{M}_{2\nu}|^2$

second order weak interaction process in the Standard Model

Neutrinoless Double- β Decay: $\Delta L = 2$

$$\mathcal{N}(A,Z)
ightarrow \mathcal{N}(A,Z+2) + e^- + e^-$$

$$(T_{1/2}^{0
u})^{-1} = \mathit{G}_{0
u} \, |\mathcal{M}_{0
u}|^2 \, |m_{\beta\beta}|^2$$

effective Majorana $|m_{\beta\beta}| = \left| \sum_{k} U_{ek}^2 m_k \right|$ mass

C. Giunti – Massive Neutrinos in Cosmology – I – Torino PhD Course – May 2018 – 32/40

Effective Majorana Neutrino Mass

2015 90% C.L. Experimental Bounds

$etaeta^-$ decay	experiment	$T_{1/2}^{0 u}$ [y]	m_{etaeta} [eV]
$^{48}_{20}\mathrm{Ca} ightarrow ^{48}_{22}\mathrm{Ti}$	ELEGANT-VI	$> 1.4 imes 10^{22}$	< 6.6 - 31
	Heidelberg-Moscow	$> 1.9 imes 10^{25}$	< 0.23 - 0.67
$^{76}_{32}\mathrm{Ge} ightarrow ^{76}_{34}\mathrm{Se}$	IGEX	$> 1.6 imes 10^{25}$	< 0.25 - 0.73
	GERDA	$>2.1 imes10^{25}$	< 0.22 - 0.64
$\frac{^{82}}{^{34}}\text{Se} \rightarrow \frac{^{82}}{^{36}}\text{Kr}$	NEMO-3	$> 1.0 imes 10^{23}$	< 1.8 - 4.7
$^{100}_{42}\mathrm{Mo} ightarrow ^{100}_{44}\mathrm{Ru}$	NEMO-3	$>2.1 imes10^{25}$	< 0.32 - 0.88
$^{116}_{48}\mathrm{Cd} \rightarrow ^{116}_{50}\mathrm{Sn}$	Solotvina	$> 1.7 imes 10^{23}$	< 1.5 - 2.5
$^{128}_{52}\text{Te} \rightarrow ^{128}_{54}\text{Xe}$	CUORICINO	$> 1.1 imes 10^{23}$	< 7.2 - 18
$^{130}_{52}\mathrm{Te} ightarrow ^{130}_{54}\mathrm{Xe}$	CUORICINO	$> 2.8 imes 10^{24}$	< 0.32 - 1.2
$136 \mathbf{v}_{0}$ $136 \mathbf{R}_{0}$	EXO	$> 1.1 imes 10^{25}$	< 0.2 - 0.69
$54^{\text{Ae}} \rightarrow 56^{\text{Da}}$	KamLAND-Zen	$> 1.9 imes 10^{25}$	< 0.15 - 0.52
$^{150}_{60}\mathrm{Nd} ightarrow ^{150}_{62}\mathrm{Sm}$	NEMO-3	$> 2.1 imes 10^{25}$	< 2.6 - 10

[Bilenky, CG, IJMPA 30 (2015) 0001]

Predictions of 3ν **-Mixing Paradigm**

 $m_{\beta\beta} = |U_{e1}|^2 m_1 + |U_{e2}|^2 e^{i\alpha_2} m_2 + |U_{e3}|^2 e^{i\alpha_3} m_3$

C. Giunti – Massive Neutrinos in Cosmology – I – Torino PhD Course – May 2018 – 38/40

$$m_{\beta\beta} = |U_{e1}|^2 m_1 + |U_{e2}|^2 e^{i\alpha_2} m_2 + |U_{e3}|^2 e^{i\alpha_3} m_3$$

Summary

To Do

Theory: Why lepton mixing \neq quark mixing? (Due to Majorana nature of ν 's?) Why $0 < \sin^2 \vartheta_{13} \ll \sin^2 \vartheta_{12} < \sin^2 \vartheta_{23} \simeq 0.5$? Experiments: Measure mass ordering and CP violation. Find absolute mass scale and Majorana or Dirac.