Neutrino and Nuclear Properties from Coherent Elastic Neutrino-Nucleus Scattering Carlo Giunti

INFN, Torino, Italy Seminar at IPN 26 September 2018, Orsay

Coherent Elastic Neutrino-Nucleus Scattering

 Several oncoming new experiments: CONUS, CONNIE, NU-CLEUS, MINER, Ricochet, TEXONO, vGEN

C. Giunti – Neutrino and Nuclear Properties from CE_{\u03c0}NS – IPN – Orsay – 26 Sep 2018 – 2/35

[E. Lisi, Neutrino 2018]

Taking into account interactions with both neutrons and protons

$$\frac{d\sigma}{dT}(E_{\nu},T) = \frac{G_{\rm F}^2 M}{\pi} \left(1 - \frac{MT}{2E_{\nu}^2}\right) \left[g_V^n N F_N(|\vec{q}|^2) + g_V^p Z F_Z(|\vec{q}|^2)\right]^2$$
$$g_V^n = -\frac{1}{2} \qquad g_V^p = \frac{1}{2} - 2\sin^2\vartheta_W = 0.0227 \pm 0.0002$$

The neutron contribution is dominant!

$$\implies \quad \frac{d\sigma}{dT} \sim N^2 F_N^2(|\vec{q}|^2)$$

- ► The form factors $F_N(|\vec{q}|^2)$ and $F_Z(|\vec{q}|^2)$ describe the loss of coherence for $|\vec{q}|R \gtrsim 1$. [see: Bednyakov, Naumov, arXiv:1806.08768]
- ► Coherence requires very small values of the nuclear kinetic recoil energy T ≃ |q|²/2M:

$$|\vec{q}|R \lesssim 1 \iff T \lesssim \frac{1}{2MR^2}$$

 $M \approx 100 \,\text{GeV}, \quad R \approx 5 \,\text{fm} \implies T \lesssim 10 \,\text{keV}$

The COHERENT Experiment

Oak Ridge Spallation Neutron Source

[COHERENT, arXiv:1803.09183]

COHERENT Neutrino Spectrum

Neutrinos at the Oak Ridge Spallation Neutron Source are produced by a pulsed proton beam striking a mercury target.

Prompt monochromatic ν_μ from stopped pion decays:

$$\pi^+ o \mu^+ +
u_\mu$$
 $rac{dN_{
u_\mu}}{dE_
u} = \eta \, \delta \left(E_
u - rac{m_\pi^2 - m_\mu^2}{2m_\pi}
ight)$

$$\mu^+ \rightarrow e^+ + \bar{\nu}_\mu + \nu_e$$
$$\frac{dN_{\nu_{\bar{\mu}}}}{dE_{\nu}} = \eta \, \frac{64E_{\nu}^2}{m_{\mu}^3} \left(\frac{3}{4} - \frac{E_{\nu}}{m_{\mu}}\right)$$
$$\frac{dN_{\nu_e}}{dE_{\nu}} = \eta \, \frac{192E_{\nu}^2}{m_{\mu}^3} \left(\frac{1}{2} - \frac{E_{\nu}}{m_{\mu}}\right)$$

Cross Section

In the COHERENT experiment neutrino-nucleus scattering is not completely coherent:

[Cadeddu, CG, Y.F. Li, Y.Y. Zhang, PRL 120 (2018) 072501, arXiv:1710.02730]

• Partial coherency gives information on the nuclear neutron form factor $F_N(|\vec{q}|^2)$, which is the Fourier transform of the neutron distribution in the nucleus.

C. Giunti – Neutrino and Nuclear Properties from CE_{\u03c0}NS – IPN – Orsay – 26 Sep 2018 – 8/35

The Nuclear Proton and Neutron Distributions

- The nuclear proton distribution (charge density) is probed with electromagnetic interactions.
- Most sensitive are electron-nucleus elastic scattering and muonic atom spectroscopy.
- Hadron scattering experiments give information on the nuclear neutron distribution, but their interpretation depends on the model used to describe non-perturbative strong interactions.
- More reliable are neutral current weak interaction measurements.
 But they are more difficult.
- Before 2017 there was only one measurement of *R_n* with neutral-current weak interactions through parity-violating electron scattering:

$$R_n(^{208}\text{Pb}) = 5.78^{+0.16}_{-0.18} \,\text{fm}$$

[PREX, PRL 108 (2012) 112502]

► The rms radii of the proton distributions of ¹³³Cs and ¹²⁷I have been determined with muonic atom spectroscopy: [Fricke et al, ADNDT 60 (1995) 177] $R_p^{(\mu)}(^{133}Cs) = 4.804 \text{ fm} \qquad R_p^{(\mu)}(^{127}I) = 4.749 \text{ fm}$

Fit of the COHERENT data to get $R_n(^{133}Cs) \simeq R_n(^{127}I)$:

$$R_n(^{133}\text{Cs}) \simeq R_n(^{127}\text{I}) = 5.5^{+0.9}_{-1.1} \,\text{fm}$$

[Cadeddu, CG, Li, Zhang, PRL 120 (2018) 072501, arXiv:1710.02730]

- This is the first determination of R_n with neutrino-nucleus scattering.
- ▶ The uncertainty is large, but it can be improved in future experiments.
- Predictions of nonrelativistic Skyrme-Hartree-Fock (SHF) and relativistic mean field (RMF) nuclear models:

	¹³³ Cs		127	
	R _p	R _n	R _p	R _n
SHF SkM*	4.76	4.90	4.71	4.84
SHF SkP	4.79	4.91	4.72	4.84
SHF Skl4	4.73	4.88	4.67	4.81
SHF Sly4	4.78	4.90	4.71	4.84
SHF UNEDF1	4.76	4.90	4.68	4.83
RMF NL-SH	4.74	4.93	4.68	4.86
RMF NL3	4.75	4.95	4.69	4.89
RMF NL-Z2	4.79	5.01	4.73	4.94
Exp. (μ -atom spect.)	4.804		4.749	

C. Giunti – Neutrino and Nuclear Properties from CE ν NS – IPN – Orsay – 26 Sep 2018 – 13/35

- Effective Hamiltonian: $\mathcal{H}_{em}^{(\nu)}(x) = j_{\mu}^{(\nu)}(x)A^{\mu}(x) = \sum_{k,j=1} \overline{\nu_k}(x)\Lambda_{\mu}^{kj}\nu_j(x)A^{\mu}(x)$
- Effective electromagnetic vertex:

$$egin{aligned} &\langle
u_f(p_f) | j^{(
u)}_\mu(0) |
u_i(p_i)
angle &= \overline{u_f}(p_f) \Lambda^{fi}_\mu(q) u_i(p_i) \ & q = p_i - p_f \end{aligned}$$

Vertex function:

 $\Lambda_{\mu}(q) = (\gamma_{\mu} - q_{\mu} \not{q} / q^{2}) [F_{Q}(q^{2}) + F_{A}(q^{2})q^{2}\gamma_{5}] - i\sigma_{\mu\nu}q^{\nu} [F_{M}(q^{2}) + iF_{E}(q^{2})\gamma_{5}]$ Lorentz-invariant form factors: charge anapole magnetic electric $q^{2} = 0 \implies q \qquad a \qquad \mu \qquad \varepsilon$

• Hermitian form factor matrices \implies $q = q^{\dagger}$ $a = a^{\dagger}$ $\mu = \mu^{\dagger}$ $\varepsilon = \varepsilon^{\dagger}$

- Effective Hamiltonian: $\mathcal{H}_{em}^{(\nu)}(x) = j_{\mu}^{(\nu)}(x)A^{\mu}(x) = \sum_{k,j=1} \overline{\nu_k}(x)\Lambda_{\mu}^{kj}\nu_j(x)A^{\mu}(x)$
- Effective electromagnetic vertex:

$$egin{aligned} &\langle
u_f(p_f) | j^{(
u)}_\mu(0) |
u_i(p_i)
angle &= \overline{u_f}(p_f) \Lambda^{fi}_\mu(q) u_i(p_i) \ & q = p_i - p_f \end{aligned}$$

Vertex function:

$$\begin{split} \Lambda_{\mu}(q) &= \left(\gamma_{\mu} - q_{\mu} \not{q} / q^{2}\right) \begin{bmatrix} F_{Q}(q^{2}) + F_{A}(q^{2})q^{2}\gamma_{5} \end{bmatrix} - i\sigma_{\mu\nu}q^{\nu} \begin{bmatrix} F_{M}(q^{2}) + iF_{E}(q^{2})\gamma_{5} \end{bmatrix} \\ \text{Lorentz-invariant} & \uparrow & \uparrow & \uparrow & \uparrow & \uparrow \\ \text{form factors:} & \text{charge} & \text{anapole} & \text{magnetic} & \text{electric} \\ & \downarrow & \downarrow & \downarrow & \downarrow \\ q^{2} &= 0 & \Longrightarrow & \mathbb{Q} & a & \mu & \varepsilon \end{split}$$

► Majorana neutrinos \implies $q = -q^T$ $a = a^T$ $\mu = -\mu^T$ $\varepsilon = -\varepsilon^T$ no diagonal charges and electric and magnetic moments

- Effective Hamiltonian: $\mathcal{H}_{em}^{(\nu)}(x) = j_{\mu}^{(\nu)}(x)A^{\mu}(x) = \sum_{k,j=1} \overline{\nu_k}(x)\Lambda_{\mu}^{kj}\nu_j(x)A^{\mu}(x)$
- Effective electromagnetic vertex:

$$egin{aligned} &\langle
u_f(p_f) | j^{(
u)}_\mu(0) |
u_i(p_i)
angle &= \overline{u_f}(p_f) \Lambda^{fi}_\mu(q) u_i(p_i) \ & q = p_i - p_f \end{aligned}$$

 $\nu_i(p_i) \qquad \nu_f(p_f)$

Vertex function:

 $\Lambda_{\mu}(q) = (\gamma_{\mu} - q_{\mu} \not{q} / q^{2}) [F_{Q}(q^{2}) + F_{A}(q^{2})q^{2}\gamma_{5}] - i\sigma_{\mu\nu}q^{\nu} [F_{M}(q^{2}) + iF_{E}(q^{2})\gamma_{5}]$ Lorentz-invariant form factors: charge anapole magnetic electric $q^{2} = 0 \implies q \qquad a \qquad \mu \qquad \varepsilon$

C. Giunti – Neutrino and Nuclear Properties from CE ν NS – IPN – Orsay – 26 Sep 2018 – 16/35

- Effective Hamiltonian: $\mathcal{H}_{em}^{(\nu)}(x) = j_{\mu}^{(\nu)}(x)A^{\mu}(x) = \sum_{k,j=1} \overline{\nu_k}(x)\Lambda_{\mu}^{kj}\nu_j(x)A^{\mu}(x)$
- Effective electromagnetic vertex:

$$egin{aligned} &\langle
u_f(p_f) | j^{(
u)}_\mu(0) |
u_i(p_i)
angle &= \overline{u_f}(p_f) \Lambda^{fi}_\mu(q) u_i(p_i) \ & q = p_i - p_f \end{aligned}$$

Vertex function:

 $\Lambda_{\mu}(q) = (\gamma_{\mu} - q_{\mu} \not{q} / q^{2}) [F_{Q}(q^{2}) + F_{A}(q^{2})q^{2}\gamma_{5}] - i\sigma_{\mu\nu}q^{\nu} [F_{M}(q^{2}) + iF_{E}(q^{2})\gamma_{5}]$ Lorentz-invariant form factors: charge anapole magnetic electric $q^{2} = 0 \implies q \qquad q \qquad a \qquad \mu \qquad \varepsilon$

► For ultrarelativistic neutrinos the charge and anapole terms conserve helicity, whereas the magnetic and electric terms invert helicity.

Neutrino Charge Radius

- In the Standard Model neutrinos are neutral and there are no electromagnetic interactions at the tree-level.
- Radiative corrections generate an effective electromagnetic interaction vertex

$$\Lambda_{\mu}(q) = \left(\gamma_{\mu} - q_{\mu} \not q/q^{2}\right) F(q^{2})$$

$$F(q^{2}) = F(q) + q^{2} \left. \frac{dF(q^{2})}{dq^{2}} \right|_{q^{2}=0} + \ldots = q^{2} \left. \frac{\langle r^{2} \rangle}{6} + \ldots \right.$$

In the Standard Model:

[Bernabeu et al, PRD 62 (2000) 113012, NPB 680 (2004) 450]

$$\langle r_{\nu_{\ell}}^2 \rangle_{\rm SM} = -\frac{G_{\rm F}}{2\sqrt{2}\pi^2} \left[3 - 2\log\left(\frac{m_{\ell}^2}{m_W^2}\right) \right]$$

Neutrino Charge Radius

- In the Standard Model neutrinos are neutral and there are no electromagnetic interactions at the tree-level.
- Radiative corrections generate an effective electromagnetic interaction vertex

$$\Lambda_{\mu}(q) = \left(\gamma_{\mu} - q_{\mu} q/q^2
ight) F(q^2)$$

$$\mathsf{F}(q^2) = \mathsf{F}(q^2) + q^2 \left. \frac{d \mathsf{F}(q^2)}{dq^2} \right|_{q^2 = 0} + \ldots = q^2 \left. \frac{\langle r^2 \rangle}{6} + \ldots \right.$$

In the Standard Model:

[Bernabeu et al, PRD 62 (2000) 113012, NPB 680 (2004) 450]

$$\langle r_{\nu_{\ell}}^2 \rangle_{\text{SM}} = -\frac{G_{\text{F}}}{2\sqrt{2}\pi^2} \left[3 - 2\log\left(\frac{m_{\ell}^2}{m_W^2}\right) \right]$$

Neutrino Charge Radius

- In the Standard Model neutrinos are neutral and there are no electromagnetic interactions at the tree-level.
- Radiative corrections generate an effective electromagnetic interaction vertex

•
$$F(q^2) = \mathcal{F}(q) + q^2 \left. \frac{dF(q^2)}{dq^2} \right|_{q^2=0} + \ldots = q^2 \left. \frac{\langle r^2 \rangle}{6} + \ldots \right.$$

In the Standard Model:

[Bernabeu et al, PRD 62 (2000) 113012, NPB 680 (2004) 450]

 $\langle r_{\nu_e}^2 \rangle_{\rm SM} = -8.2 \times 10^{-33} \, {\rm cm}^2 \quad \langle r_{\nu_\mu}^2 \rangle_{\rm SM} = -4.8 \times 10^{-33} \, {\rm cm}^2 \quad \langle r_{\nu_\tau}^2 \rangle_{\rm SM} = -3.0 \times 10^{-33} \, {\rm cm}^2$

Experimental Bounds

Method	Experiment	Limit [cm ²]	CL	Year
Reactor $\bar{\nu}_e e^-$	Krasnoyarsk	$ \langle r^2_{ u_e} angle < 7.3 imes 10^{-32}$	90%	1992
	TEXONO	$-4.2 imes 10^{-32} < \langle r^2_{ u_e} angle < 6.6 imes 10^{-32}$	90%	2009
Accelerator $\nu_e e^-$	LAMPF	$-7.12 imes 10^{-32} < \langle r^2_{ u_e} angle < 10.88 imes 10^{-32}$	90%	1992
	LSND	$-5.94 imes 10^{-32} < \langle r^2_{ u_e} angle < 8.28 imes 10^{-32}$	90%	2001
Accelerator $ u_{\mu} e^{-}$	BNL-E734	$-4.22 imes 10^{-32} < \langle r^2_{ u_{\mu}} angle < 0.48 imes 10^{-32}$	90%	1990
	CHARM-II	$ \langle r^2_{ u_\mu} angle < 1.2 imes 10^{-32}$	90%	1994

[see the review CG, Studenikin, RMP 87 (2015) 531, arXiv:1403.6344]

• Neutrino charge radii contributions to CE ν NS $\nu_{\ell} + \mathcal{N} \rightarrow \nu_{\ell} + \mathcal{N}$:

$$\frac{d\sigma_{\nu\ell-\mathcal{N}}}{dT}(E_{\nu},T) = \frac{G_{\mathsf{F}}^{2}M}{\pi} \left(1 - \frac{MT}{2E_{\nu}^{2}}\right) \left\{ \left[g_{V}^{n}NF_{N}(|\vec{q}|^{2}) + \left(g_{V}^{p} - \frac{2}{3}m_{W}^{2}\sin^{2}\vartheta_{W}\langle r_{\nu_{\ell\ell}}^{2}\rangle\right) ZF_{Z}(|\vec{q}|^{2})\right]^{2} + \frac{4}{9}m_{W}^{4}\sin^{4}\vartheta_{W}Z^{2}F_{Z}^{2}(|\vec{q}|^{2})\sum_{\ell'\neq\ell}|\langle r_{\nu_{\ell'\ell}}^{2}\rangle|^{2} \right\}$$

► In the Standard Model there are only diagonal charge radii $\langle r_{\nu_{\ell}}^2 \rangle \equiv \langle r_{\nu_{\ell\ell}}^2 \rangle$ because lepton numbers are conserved.

► Since $g_V^p = \frac{1}{2} - 2\sin^2\vartheta_W$, diagonal charge radii generate the coherent (helicity conserving) shifts $\sin^2\vartheta_W = \sin^2\vartheta_W$, $\sin^2\vartheta_W = \sin^2\vartheta_W$, $(1 + \frac{1}{2}m^2/r^2)$)

$$\sin^2\vartheta_W \to \sin^2\vartheta_W \left(1 + \frac{1}{3}m_W^2 \langle r_{\nu_\ell}^2 \rangle\right)$$

▶ In general, the neutrino charge radius matrix $\langle r_{\nu}^2 \rangle$ can be non-diagonal and the transition charge radii generate the incoherent contribution

$$\frac{4}{9} m_W^4 \sin^4 \vartheta_W Z^2 F_Z^2(|\vec{q}|^2) \sum_{\ell' \neq \ell} |\langle r_{\nu_{\ell'\ell}}^2 \rangle|^2 \iff \nu_\ell + \mathcal{N} \to \sum_{\ell' \neq \ell} \nu_{\ell' \neq \ell} + \mathcal{N}$$

[Kouzakov, Studenikin, PRD 95 (2017) 055013, arXiv:1703.00401

C. Giunti – Neutrino and Nuclear Properties from CE_νNS – IPN – Orsay – 26 Sep 2018 – 22/35

Fit of the COHERENT Energy Spectrum

- The spectrum is especially sensitive to the difference of the properties of ν_{μ} and those of $\bar{\nu}_{\mu}$ and ν_{e} .
- Note that $\langle r_{\bar{\nu}_{\ell\ell'}}^2 \rangle = \langle r_{\nu_{\ell\ell'}}^2 \rangle$.

Fit without transition charge radii

[Cadeddu, CG, Kouzakov, Y.F. Li, Studenikin, Y.Y. Zhang, in preparation] Time-integrated COHERENT data

Fixed neutron distribution radii (RMF NL-Z2):

$$R_n(^{133}Cs) = 5.01 \text{ fm}$$
 $R_n(^{127}I) = 4.94 \text{ fm}$
 $\chi^2_{min} = 2.7 \text{ NDF} = 10 \text{ GoF} = 99\%$
Marginal 90% CL bounds $[10^{-32} \text{ cm}^2]$:
 $-69 < \langle r^2_{\nu_e} \rangle < 19 - 15 < \langle r^2_{\nu_\mu} \rangle < 21$

Free neutron distribution radii: $\chi^2_{min} = 2.5$ NDF = 8 GoF = 96% Marginal 90% CL bounds $[10^{-32} \text{ cm}^2]$: $-69 < \langle r^2_{\nu_e} \rangle < 40$ $-33 < \langle r^2_{\nu_{\mu}} \rangle < 38$

Fit with transition charge radii

[Cadeddu, CG, Kouzakov, Y.F. Li, Studenikin, Y.Y. Zhang, in preparation] Time-integrated COHERENT data

Fixed neutron distribution radii (RMF					
NL-Z2):					
$R_n(^{133}\text{Cs}) = 5.01 \text{fm}$ $R_n(^{127}\text{I}) = 4.94 \text{fm}$					
$\chi^2_{\rm min} = 2.6$ NDF = 7 GoF = 92%					
Marginal 90% CL bounds [10 ⁻³² cm ²]:					
$-69 < \langle r^2_{ u_e} angle < 19$ $-15 < \langle r^2_{ u_\mu} angle < 22$					
$ \langle r^2_{\nu_{e\mu}}\rangle < 25 \langle r^2_{\nu_{e\tau}}\rangle < 44 \langle r^2_{\nu_{\mu\tau}}\rangle < 31$					

► Free neutron distribution radii: $\chi^2_{\min} = 2.5$ NDF = 5 GoF = 77% Marginal 90% CL bounds $[10^{-32} \text{ cm}^2]$: $-69 < \langle r^2_{\nu_e} \rangle < 40$ $-33 < \langle r^2_{\nu_\mu} \rangle < 38$ $|\langle r^2_{\nu_{e\mu}} \rangle| < 29$ $|\langle r^2_{\nu_{e\tau}} \rangle| < 49$ $|\langle r^2_{\nu_{\mu\tau}} \rangle| < 36$

- Our results are different from those of Papoulias, Kosmas, PRD 97 (2018) 033003, arXiv:1711.09773
- Fitting only the total number of events:

- A factor of 2 difference is due to different definitions of the charge radii.
- ► The shape difference may be due to the fact that they considered $\langle r_{\bar{\nu}_{\ell}}^2 \rangle = \langle r_{\nu_{\ell}}^2 \rangle \Leftrightarrow$ approximate $\langle r_{\nu_{e}}^2 \rangle \langle r_{\nu_{\mu}}^2 \rangle$ symmetry.

COHERENT Time Distribution

- Prompt monochromatic ν_μ from stopped pion decays:
- Delayed ν
 _μ and ν_e from the subsequent muon decays: μ⁺ → e⁺ + ν
 _μ + ν_e

The time distribution of the data increases the information on the difference between the properties of ν_{μ} and those of $\bar{\nu}_{\mu}$ and ν_{e} .

 $\pi^+ \to \mu^+ + \nu_\mu$

Fit of Time-dependent COHERENT data

[Cadeddu, CG, Kouzakov, Y.F. Li, Studenikin, Y.Y. Zhang, in preparation]

- ► The time-dependent spectral data of the COHERENT experiment constrain (at 90% CL with a free average neutron distribution radius) $-61 < \langle r_{\nu_e}^2 \rangle < 16 \qquad -11 < \langle r_{\nu_\mu}^2 \rangle < 22 \qquad (90\% \text{ CL})$ $[10^{-32} \text{ cm}^2]$
- First constraints on transition charge radii:

 $|\langle r_{\nu_{e\mu}}^2 \rangle| < 26 \qquad |\langle r_{\nu_{e\tau}}^2 \rangle| < 40 \qquad |\langle r_{\nu_{\mu\tau}}^2 \rangle| < 30 \qquad (90\% \text{ CL})$

- An improvement of about 1 order of magnitude is necessary to be competitive with the current limits of the order of few × 10⁻³² cm².
- An improvement of about 2 orders of magnitude is necessary to reach the Standard Model values

 $\langle r_{\nu_e}^2 \rangle_{\rm SM} = -8.2 \times 10^{-33} \, {\rm cm}^2 \qquad \langle r_{\nu_\mu}^2 \rangle_{\rm SM} = -4.8 \times 10^{-33} \, {\rm cm}^2$

• The new CE ν NS experiments may allow to approach these values.

Magnetic and Electric Moments

• Extended Standard Model with right-handed neutrinos and $\Delta L = 0$:

$$\mu_{kk}^{\mathsf{D}} \simeq 3.2 \times 10^{-19} \mu_{\mathsf{B}} \left(\frac{m_k}{\mathsf{eV}}\right) \qquad \varepsilon_{kk}^{\mathsf{D}} = 0$$
$$\mu_{kj}^{\mathsf{D}} \\ i\varepsilon_{kj}^{\mathsf{D}} \\ \simeq -3.9 \times 10^{-23} \mu_{\mathsf{B}} \left(\frac{m_k \pm m_j}{\mathsf{eV}}\right) \sum_{\ell=\mathsf{e},\mu,\tau} U_{\ell k}^* U_{\ell j} \left(\frac{m_\ell}{m_\tau}\right)^2$$

off-diagonal moments are GIM-suppressed

[Fujikawa, Shrock, PRL 45 (1980) 963; Pal, Wolfenstein, PRD 25 (1982) 766; Shrock, NPB 206 (1982) 359; Dvornikov, Studenikin, PRD 69 (2004) 073001, JETP 99 (2004) 254]

• Extended Standard Model with Majorana neutrinos $(|\Delta L| = 2)$:

$$\mu_{kj}^{\mathsf{M}} \simeq -7.8 \times 10^{-23} \mu_{\mathsf{B}} i (m_{k} + m_{j}) \sum_{\ell=e,\mu,\tau} \operatorname{Im} \left[U_{\ell k}^{*} U_{\ell j} \right] \frac{m_{\ell}^{2}}{m_{W}^{2}}$$
$$\varepsilon_{kj}^{\mathsf{M}} \simeq 7.8 \times 10^{-23} \mu_{\mathsf{B}} i (m_{k} - m_{j}) \sum_{\ell=e,\mu,\tau} \operatorname{Re} \left[U_{\ell k}^{*} U_{\ell j} \right] \frac{m_{\ell}^{2}}{m_{W}^{2}}$$
[Shrock, NPB 206 (1982) 359]

GIM-suppressed, but additional model-dependent contributions of the scalar sector can enhance the Majorana transition dipole moments

[Pal, Wolfenstein, PRD 25 (1982) 766; Barr, Freire, Zee, PRL 65 (1990) 2626; Pal, PRD 44 (1991) 2261]

C. Giunti – Neutrino and Nuclear Properties from $CE\nu NS - IPN - Orsay - 26 Sep 2018 - 30/35$

Method	Experiment	Limit $[\mu_B]$	CL	Year
Reactor $\bar{\nu}_e e^-$	Krasnoyarsk	$\mu_{ u_e} < 2.4 imes 10^{-10}$	90%	1992
	Rovno	$\mu_{ u_e} < 1.9 imes 10^{-10}$	95%	1993
	MUNU	$\mu_{ u_e} < 9 imes 10^{-11}$	90%	2005
	TEXONO	$\mu_{ u_e} < 7.4 imes 10^{-11}$	90%	2006
	GEMMA	$\mu_{ u_e} < 2.9 imes 10^{-11}$	90%	2012
Accelerator $\nu_e e^-$	LAMPF	$\mu_{ u_e} < 1.1 imes 10^{-9}$	90%	1992
Accelerator $(u_{\mu},ar{ u}_{\mu})e^-$	BNL-E734	$\mu_{ u_{\mu}} < 8.5 imes 10^{-10}$	90%	1990
	LAMPF	$\mu_{ u_\mu} < 7.4 imes 10^{-10}$	90%	1992
	LSND	$\mu_{ u_{\mu}} < 6.8 imes 10^{-10}$	90%	2001
Accelerator $(u_{ au}, ar{ u}_{ au}) e^-$	DONUT	$\mu_{ u_{ au}} < 3.9 imes 10^{-7}$	90%	2001
Solar $\nu_e e^-$	Super-Kamiokande	$\mu_{\sf S}({\it E}_ u\gtrsim5{\sf MeV})<1.1 imes10^{-10}$	90%	2004
	Borexino	$\mu_{ m S}(\textit{E}_{ u} \lesssim 1{ m MeV}) < 2.8 imes 10^{-11}$	90%	2017

[see the review CG, Studenikin, RMP 87 (2015) 531, arXiv:1403.6344]

- ► Gap of about 8 orders of magnitude between the experimental limits and the $\lesssim 10^{-19} \mu_{\rm B}$ prediction of the minimal Standard Model extensions.
- $\mu_{\nu} \gg 10^{-19} \,\mu_{\rm B}$ discovery \Rightarrow non-minimal new physics beyond the SM.
- Neutrino spin-flavor precession in a magnetic field [Lim, Marciano, PRD 37 (1988) 1368; Akhmedov, PLB 213 (1988) 64]

C. Giunti – Neutrino and Nuclear Properties from CE ν NS – IPN – Orsay – 26 Sep 2018 – 31/35

► Neutrino magnetic (and electric) moment contributions to CE ν NS $\nu_{\ell} + \mathcal{N} \rightarrow \sum_{\ell'} \nu_{\ell'} + \mathcal{N}$:

$$\begin{aligned} \frac{d\sigma_{\nu_{\ell}-\mathcal{N}}}{dT}(E_{\nu},T) &= \frac{G_{\mathsf{F}}^{2}M}{\pi} \left(1 - \frac{MT}{2E_{\nu}^{2}}\right) \left[g_{V}^{n}NF_{N}(|\vec{q}|^{2}) + g_{V}^{p}ZF_{Z}(|\vec{q}|^{2})\right]^{2} \\ &+ \frac{\pi\alpha^{2}}{m_{e}^{2}} \left(\frac{1}{T} - \frac{1}{E_{\nu}}\right) Z^{2}F_{Z}^{2}(|\vec{q}|^{2}) \sum_{\ell'\neq\ell} \frac{|\mu_{\ell\ell'}|^{2}}{\mu_{\mathsf{B}}^{2}} \end{aligned}$$

- The magnetic moment interaction adds incoherently to the weak interaction because it flips helicity.
- The m_e is due to the definition of the Bohr magneton: $\mu_B = e/2m_e$.

Cross sections averaged over the COHERENT neutrino energy spectra

- The COHERENT energy threshold is about 4 keV.
- It is possible to constrain μ_{ν} only at the level of a few $\times 10^{-9} \mu_{\rm B}$.
- It is about 2 orders of magnitude larger than the best upper bound on μ_{νe}.
- It is only about 1 order of magnitude larger than the best upper bound on μ_{νµ}.

[Papoulias, Kosmas, PRD 97 (2018) 033003, arXiv:1711.09773]

Conclusions

- The observation of CE\u03c6NS in the COHERENT experiment opened the way for new powerful measurements of the properties of nuclei and neutrinos.
- We obtained the first determination of R_n with ν -nucleus scattering.
- We constrained the neutrino charge radii and obtained the first constraints on the transition charge radii.
- An improvement of about 1 order of magnitude is necessary to be competitive with the current limits on ⟨r²_{ν_ν}⟩ and ⟨r²_{ν_ν}⟩.
- An improvement of about 2 orders of magnitude is necessary to reach the Standard Model values of $\langle r_{\nu_e}^2 \rangle$ and $\langle r_{\nu_u}^2 \rangle$.
- ► The COHERENT data constrain also the neutrino magnetic moments.
- An improvement of about 2 orders of magnitude is necessary to be competitive with the current limits on μ_{νe}.
- An improvement of only 1 order of magnitude is necessary to be competitive with the current limits on μ_{νµ}.
- The new CE ν NS experiments may allow to approach these goals.

C. Giunti – Neutrino and Nuclear Properties from $CE_{\nu}NS - IPN - Orsay - 26$ Sep 2018 – 35/35