Harvesting the Data of the COHERENT Experiment

Carlo Giunti and Matteo Cadeddu

Torino, Italy

Cagliari, Italy

WIN 2019 XXVII International Workshop on Weak Interactions and Neutrinos 3-8 June 2019, Bari, Italy

Harvesting the Data of the COHERENT Experiment

Carlo Giunti and Matteo Cadeddu

Torino, Italy

Cagliari, Italy

WIN 2019

XXVII International Workshop on Weak Interactions and Neutrinos 3-8 June 2019, Bari, Italy

Based on:

- Cadeddu, Giunti, Y.F. Li, Y.Y. Zhang, Average Csl neutron density distribution from COHERENT data, PRL 120 (2018) 072501, arXiv:1710.02730
- Cadeddu, Dordei, Reinterpreting the weak mixing angle from atomic parity violation in view of the Cs neutron rms radius measurement from COHERENT, PRD 99 (2019) 033010, arXiv:1808.10202
- Cadeddu, Giunti, Kouzakov, Y.F. Li, Studenikin, Y.Y. Zhang, Neutrino Charge Radii from COHERENT Elastic Neutrino-Nucleus Scattering, PRD 98 (2018) 113010, arXiv:1810.05606

Coherent Elastic Neutrino-Nucleus Scattering

MINER, Ricochet, TEXONO, ν GEN

C. Giunti – Neutrino and Nuclear Properties from CE ν NS – Bari – 4 June 2019 – 3/18

[E. Lisi, Neutrino 2018]

Taking into account interactions with both neutrons and protons

$$\frac{d\sigma}{dT}(E_{\nu},T) = \frac{G_{\rm F}^2 M}{\pi} \left(1 - \frac{MT}{2E_{\nu}^2}\right) \left[g_V^n N F_N(|\vec{q}|^2) + g_V^p Z F_Z(|\vec{q}|^2)\right]^2$$
$$g_V^n = -\frac{1}{2} \qquad g_V^p = \frac{1}{2} - 2\sin^2\vartheta_W = 0.0227 \pm 0.0002$$

The neutron contribution is dominant!

$$\implies \quad \frac{d\sigma}{dT} \sim N^2 F_N^2(|\vec{q}|^2)$$

► The form factors $F_N(|\vec{q}|^2)$ and $F_Z(|\vec{q}|^2)$ describe the loss of coherence for $|\vec{q}|R \gtrsim 1$. [see: Bednyakov, Naumov, arXiv:1806.08768]

Coherence requires very small values of the nuclear kinetic recoil energy T ~ |q|²/2M:

$$ert ec q ert R \lesssim 1 \iff T \lesssim rac{1}{2MR^2}$$

 $M \approx 100 \, {
m GeV}, \quad R \approx 5 \, {
m fm} \implies T \lesssim 10 \, {
m keV}$

The COHERENT Experiment

Oak Ridge Spallation Neutron Source

[COHERENT, arXiv:1803.09183]

COHERENT Neutrino Spectrum and Time

2.0

1.6

- Neutrinos at the Oak Ridge Spallation Neutron Source are produced by a pulsed proton beam striking a mercury target.
- Prompt monochromatic ν_{μ} from stopped pion decays:

 $\pi^+ \rightarrow \mu^+ + \nu_\mu$

• Delayed $\bar{\nu}_{\mu}$ and ν_{e} from the subsequent muon decays:

 $\mu^+ \rightarrow e^+ + \bar{\nu}_{\mu} + \nu_e$

The COHERENT energy and time information allow us to distinguish the interactions of ν_e , ν_{μ} , and $\bar{\nu}_{\mu}$.

C. Giunti – Neutrino and Nuclear Properties from $CE\nu NS - Bari - 4$ June 2019 - 7/18

In the COHERENT experiment neutrino-nucleus scattering is not completely coherent:

[Cadeddu, Giunti, Y.F. Li, Y.Y. Zhang, PRL 120 (2018) 072501, arXiv:1710.02730]

▶ Partial coherency gives information on the nuclear neutron form factor $F_N(|\vec{q}|^2)$, which is the Fourier transform of the neutron distribution in the nucleus.

C. Giunti – Neutrino and Nuclear Properties from CE_VNS – Bari – 4 June 2019 – 8/18

The Nuclear Proton and Neutron Distributions

- The nuclear proton distribution (charge density) is probed with electromagnetic interactions.
- Most sensitive are electron-nucleus elastic scattering and muonic atom spectroscopy.
- Hadron scattering experiments give information on the nuclear neutron distribution, but their interpretation depends on the model used to describe non-perturbative strong interactions.
- More reliable are neutral current weak interaction measurements.
 But they are more difficult.
- Before 2017 there was only one measurement of *R_n* with neutral-current weak interactions through parity-violating electron scattering:

 $R_n(^{208}\text{Pb}) = 5.78^{+0.16}_{-0.18} \,\text{fm}$

[PREX, PRL 108 (2012) 112502]

The rms radii of the proton distributions of ¹³³Cs and ¹²⁷I have been determined with muonic atom spectroscopy: [Fricke et al, ADNDT 60 (1995) 177]
 R^(µ)_p(¹³³Cs) = 4.804 fm R^(µ)_p(¹²⁷I) = 4.749 fm

Fit of the COHERENT data to get $R_n(^{133}Cs) \simeq R_n(^{127}I)$:

$$R_n(^{133}\text{Cs}) \simeq R_n(^{127}\text{I}) = 5.5^{+0.9}_{-1.1}\,\text{fm}$$

[Cadeddu, Giunti, Li, Zhang, PRL 120 (2018) 072501, arXiv:1710.02730]

- This is the first determination of R_n with neutrino-nucleus scattering.
- The uncertainty is large, but it can be improved in future experiments.
- Predictions of nonrelativistic Skyrme-Hartree-Fock (SHF) and relativistic mean field (RMF) nuclear models:

	¹³³ Cs		127	
	R _p	R _n	R _p	R _n
SHF SkM*	4.76	4.90	4.71	4.84
SHF SkP	4.79	4.91	4.72	4.84
SHF Skl4	4.73	4.88	4.67	4.81
SHF Sly4	4.78	4.90	4.71	4.84
SHF UNEDF1	4.76	4.90	4.68	4.83
RMF NL-SH	4.74	4.93	4.68	4.86
RMF NL3	4.75	4.95	4.69	4.89
RMF NL-Z2	4.79	5.01	4.73	4.94
Exp. (μ -atom spect.)	4.804		4.749	

C. Giunti – Neutrino and Nuclear Properties from CE_VNS – Bari – 4 June 2019 – 11/18

Weak Mixing Angle from Atomic Parity Violation

[Cadeddu, Dordei, PRD 99 (2019) 033010, arXiv:1808.10202]

$$Q_W \simeq q_p Z \left(1 - 4\sin^2 \vartheta_W\right) - q_n N$$

 $\label{eq:coherent_$

Electromagnetic Interactions

- Effective Hamiltonian: $\mathcal{H}_{em}^{(\nu)}(x) = j_{\mu}^{(\nu)}(x)A^{\mu}(x) = \sum_{k,j=1} \overline{\nu_k}(x)\Lambda_{\mu}^{kj}\nu_j(x)A^{\mu}(x)$
- Effective electromagnetic vertex:

 $\langle \nu_f(p_f)|j^{(\nu)}_{\mu}(0)|\nu_i(p_i)\rangle = \overline{u_f}(p_f)\Lambda^{fi}_{\mu}(q)u_i(p_i)$

 $q = p_i - p_f$

Vertex function:

$$\Lambda_{\mu}(q) = \left(\gamma_{\mu} - q_{\mu} \not{q} / q^{2}\right) \begin{bmatrix} F_{Q}(q^{2}) + F_{A}(q^{2})q^{2}\gamma_{5} \end{bmatrix} - i\sigma_{\mu\nu}q^{\nu} \begin{bmatrix} F_{M}(q^{2}) + iF_{E}(q^{2})\gamma_{5} \end{bmatrix}$$
Lorentz-invariant form factors: charge anapole magnetic electric
$$q^{2} = 0 \implies q \qquad a \qquad \mu \qquad \varepsilon$$

Neutrino Charge Radius

- In the Standard Model neutrinos are neutral and there are no electromagnetic interactions at the tree-level.
- Radiative corrections generate an effective electromagnetic interaction vertex

 ^γ
 ^γ
 ^γ

► In the Standard Model: [Bernabeu et al, PRD 62 (2000) 113012, NPB 680 (2004) 450]

$$\langle r_{\nu_{\ell}}^{2} \rangle_{\rm SM} = -\frac{G_{\rm F}}{2\sqrt{2}\pi^{2}} \begin{bmatrix} 3 - 2\log\left(\frac{m_{\ell}^{2}}{m_{W}^{2}}\right) \end{bmatrix} \qquad \begin{cases} \langle r_{\nu_{\ell}}^{2} \rangle_{\rm SM} = -8.2 \times 10^{-33} \, {\rm cm}^{2} \\ \langle r_{\nu_{\mu}}^{2} \rangle_{\rm SM} = -4.8 \times 10^{-33} \, {\rm cm}^{2} \\ \langle r_{\nu_{\tau}}^{2} \rangle_{\rm SM} = -3.0 \times 10^{-33} \, {\rm cm}^{2} \end{cases}$$

C. Giunti – Neutrino and Nuclear Properties from CE_VNS – Bari – 4 June 2019 – 14/18

Experimental Bounds

Method	Experiment	Limit [cm ²]		Year
Reactor $\bar{\nu}_e e^-$	Krasnoyarsk	$ \langle r^2_{ u_e} angle < 7.3 imes 10^{-32}$	90%	1992
	TEXONO	$-4.2 imes 10^{-32} < \langle r^2_{ u_e} angle < 6.6 imes 10^{-32}$	90%	2009
Accelerator $\nu_e e^-$	LAMPF	$-7.12 imes 10^{-32} < \langle r_{ u_e}^2 angle < 10.88 imes 10^{-32}$	90%	1992
	LSND	$-5.94 imes 10^{-32} < \langle r^2_{ u_e} angle < 8.28 imes 10^{-32}$	90%	2001
Accelerator $ u_{\mu} e^{-}$	BNL-E734	$-5.7 imes 10^{-32} < \langle r^2_{ u_{\mu}} angle < 1.1 imes 10^{-32}$	90%	1990
	CHARM-II	$ \langle r^2_{ u_\mu} angle < 1.2 imes 10^{-32}$	90%	1994

[see the review Giunti, Studenikin, RMP 87 (2015) 531, arXiv:1403.6344

and the update in Cadeddu, Giunti, Kouzakov, Y.F. Li, Studenikin, Y.Y. Zhang, PRD 98 (2018) 113010, arXiv:1810.05606]

Neutrino charge radii contributions to ν_ℓ-N CEνNS:

$$\frac{d\sigma_{\nu_{\ell}-\mathcal{N}}}{dT}(E_{\nu},T) = \frac{G_{\mathsf{F}}^{2}M}{\pi} \left(1 - \frac{MT}{2E_{\nu}^{2}}\right) \left\{ \left[g_{V}^{n}NF_{N}(|\vec{q}|^{2}) + \left(\frac{1}{2} - 2\sin^{2}\vartheta_{W} - \frac{2}{3}m_{W}^{2}\sin^{2}\vartheta_{W}\langle r_{\nu_{\ell\ell}}^{2}\rangle\right) ZF_{Z}(|\vec{q}|^{2})\right]^{2} + \frac{4}{9}m_{W}^{4}\sin^{4}\vartheta_{W}Z^{2}F_{Z}^{2}(|\vec{q}|^{2})\sum_{\ell'\neq\ell}|\langle r_{\nu_{\ell'\ell}}^{2}\rangle|^{2} \right\}$$

- ▶ In the Standard Model there are only diagonal charge radii $\langle r_{\nu_{\ell}}^2 \rangle \equiv \langle r_{\nu_{\ell\ell}}^2 \rangle$ because lepton numbers are conserved.
- Diagonal charge radii generate the coherent shifts

$$\sin^2\vartheta_W \to \sin^2\vartheta_W \left(1 + \frac{1}{3}m_W^2 \langle r_{\nu_\ell}^2 \rangle\right) \quad \Longleftrightarrow \quad \nu_\ell + \mathcal{N} \to \nu_\ell + \mathcal{N}$$

► Transition charge radii generate the incoherent contribution $\frac{4}{9} m_W^4 \sin^4 \vartheta_W Z^2 F_Z^2 (|\vec{q}|^2) \sum_{\ell' \neq \ell} |\langle r_{\nu_{\ell'\ell}}^2 \rangle|^2 \iff \nu_\ell + \mathcal{N} \rightarrow \sum_{\substack{\ell' \neq \ell \\ \text{[Kouzakov, Studenikin, PRD 95 (2017) 055013, arXiv:1703.00401]}}$

C. Giunti – Neutrino and Nuclear Properties from CE_VNS – Bari – 4 June 2019 – 16/18

Fit of COHERENT data

[Cadeddu, Giunti, Kouzakov, Y.F. Li, Studenikin, Y.Y. Zhang, PRD 98 (2018) 113010, arXiv:1810.05606]

- Fixed neutron distribution radii (RMF NL-Z2): $R_n(^{133}Cs) = 5.01 \text{ fm}$ $R_n(^{127}I) = 4.94 \text{ fm}$ $\chi^2_{\min} = 154.2 \text{ NDF} = 139 \text{ GoF} = 18\%$ Marginal 90% CL bounds $[10^{-32} \text{ cm}^2]$: $-63 < \langle r^2_{\nu_e} \rangle < 12 - 7 < \langle r^2_{\nu_\mu} \rangle < 9$ $|\langle r^2_{\nu_{e\mu}} \rangle| < 22 |\langle r^2_{\nu_{e\tau}} \rangle| < 37 |\langle r^2_{\nu_{\mu\tau}} \rangle| < 26$
- ► Free neutron distribution radii: $\chi^2_{min} = 154.2$ NDF = 137 GoF = 15% Marginal 90% CL bounds $[10^{-32} \text{ cm}^2]$: $-63 < \langle r^2_{\nu_e} \rangle < 12$ $-8 < \langle r^2_{\nu_\mu} \rangle < 11$ $|\langle r^2_{\nu_{e\mu}} \rangle| < 22$ $|\langle r^2_{\nu_{e\tau}} \rangle| < 38$ $|\langle r^2_{\nu_{\mu\tau}} \rangle| < 27$

The COHERENT energy and time information allow us to distinguish the charge radii of ν_e and ν_µ.

Conclusions

- The observation of CEvNS in the COHERENT experiment opened the way for new powerful measurements of the properties of nuclei and neutrinos.
- We obtained the first determination of R_n with ν -nucleus scattering.
- We constrained the neutrino charge radii and obtained the first constraints on the transition charge radii.
- An improvement of about 1 order of magnitude is necessary to be competitive with the current limits on $\langle r_{\nu_e}^2 \rangle$ and $\langle r_{\nu_\mu}^2 \rangle$.
- An improvement of about 2 orders of magnitude is necessary to reach the Standard Model values of $\langle r_{\nu_e}^2 \rangle$ and $\langle r_{\nu_u}^2 \rangle$.
- The new CE ν NS experiments may allow to approach this goal.

Backup Slides

Cross Section

C. Giunti – Neutrino and Nuclear Properties from $CE\nu NS - Bari - 4$ June 2019 – 21/18

C. Giunti – Neutrino and Nuclear Properties from $CE_{\nu}NS - Bari - 4$ June 2019 – 22/18

Electromagnetic Vertex Function

- ▶ Hermitian form factors: $F_Q = F_Q^{\dagger}$, $F_A = F_A^{\dagger}$, $F_M = F_M^{\dagger}$, $F_E = F_E^{\dagger}$
- ► Majorana neutrinos: $F_Q = -F_Q^T$, $F_A = F_A^T$, $F_M = -F_M^T$, $F_E = -F_E^T$ no diagonal charges and electric and magnetic moments
- For ultrarelativistic neutrinos γ₅→ − 1 ⇒ The phenomenology of the charge and anapole moments are similar and the phenomenology of the magnetic and electric moments are similar.
- For ultrarelativistic neutrinos the charge and anapole terms conserve helicity, whereas the magnetic and electric terms invert helicity.