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I There is a wind of crisis in traditional Particle Physics (mitigated by the
flourishing of Astroparticle Physics and Cosmology).

I The discovery of the Higgs boson in 2012 at LHC was the triumph of
the Standard Model of Glashow, Weinberg and Salam.

I After this peak of success now we live in an era in which the Standard
Model is both a blessing and a curse:

I Blessing: it is a consistent Quantum Field Theory that allows to compute
with high precision all the known interactions of the known elementary
particles.

I Curse: its perfect working is hiding the way of further understanding of the
fundamental properties of nature.

I Neutrinos can be powerful messengers of the physics beyond the SM.
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Open problems that require New Physics
I From experiment:

I Neutrino masses.
I Dark Matter (keV sterile neutrino is a candidate).
I Dark Energy (connection with the neutrino mass scale?).
I Matter-antimatter asymmetry in the Universe (neutrino-induced

leptogenesis).
I From theory:

I Too many free numerical parameters (19 + 7 neutrino masses and mixing).
I Why neutrino masses are so small? (seesaw Majorana neutrino masses?)
I Why neutrino mixing is so different from quark mixing? (due to Majorana

neutrino masses?)
I Hierarchy problem (why the electroweak scale is so much smaller than the

Planck scale?).
I The strong CP problem.
I Accidental conservation of B − L global symmetry (broken by Majorana

neutrino masses?).
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The Power of Neutrinos
I Neutrinos are neutral and the weakest-interacting known particles.

I Fantastic astrophysical messenger in the arising multimessenger era.

I Sensitive to very weak new interactions beyond the Standard Model:
I New non-standard interactions.
I Electromagnetic interactions (magnetic moments and charges).
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I Neutrinos are the lightest known elementary particles with a huge gap in
the mass scale of about 6-7 orders of magnitude.
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Quasi-Degenerate →
Inverted Ordering→

Normal Ordering→
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I The neutrino mass ordering is a model selector.
I The small neutrino masses can be Majorana masses beyond the

Standard Model that break Lepton number conservation (L and B − L).
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Origin of Neutrino Masses
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I Standard Model extension: νR ⇒ Dirac mass term LD ∼ mDνLνR

I This is Standard Model physics, because mD is generated by the
standard Higgs mechanism:

yLLΦ̃νR
Symmetry−−−−−−→
Breaking

yvνLνR ⇒ mD ∼ yv

I Bad: extremely small Yukawa couplings: y . 10−11
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Beyond the Standard Model

I The introduction of νR leads us beyond the Standard Model because
they can have the Majorana mass term

LM ∼ mMνRν
c
R singlet under SM symmetries!

I This is beyond the Standard Model because mM is not generated by the
Higgs mechanism of the Standard Model ⇒ new physics is required.

I The Majorana mass term can be avoided by imposing lepton number
conservation which should anyway be explained by some physics beyond
the Standard Model.
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Seesaw Mechanism

without lepton number conservation

LD+M = −1
2
(
νc

L νR
)( 0 mD

mD mM

)(
νL
νc

R

)
+ H.c.

mM can be arbitrarily large (not protected by SM symmetries)

mM ∼ scale of new physics beyond Standard Model ⇒ mM � mD

diagonalization of
(

0 mD
mD mM

)
=⇒ mν '

m2
D
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ν

seesaw mechanism

natural explanation of smallness
of light neutrino masses

massive neutrinos are Majorana ⇒ ββ0ν

ν ' −i
(
νL − νc

L
)

N ' νR + νc
R

3-GEN ⇒ effective low-energy 3-ν mixing

C. Giunti − The Theoretical Perspective on Future Neutrino Experiments − Hong Kong − 1 July 2019 − 9/27



Majorana Neutrinos
There are compelling arguments in favor of Majorana Neutrinos:
I A Majorana field is simpler than a Dirac field: it corresponds to the

fundamental spinor representation of the Lorentz group.
A Dirac field is more complicated: it is made of two Majorana fields
degenerate in mass.
If there is no additional constraint (as L conservation), a neutral
elementary particle as the neutrino is naturally Majorana.

I The seesaw mechanism if νR is introduced to generate neutrino masses.

I A general Effective Field Theory argument from high-energy new physics:

L = LSM +
g5
M

O5 +
g6
M2 O6 + . . .

I O5: Majorana neutrino masses (Lepton number violation and ββ0ν decay).

O5 = (L Φ̃) (Φ̃T Lc) L =

(
νL
`L

)
Φ̃ =

(
φ0
−φ+

)
I O6: Baryon number violation (proton decay)

and Neutrino Non-Standard Interactions (NSI).
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Leptogenesis

I Off-equilibrium L and CP violating heavy Majorana neutrino decays at
T ∼ MN :

LI ∼ L Φ̃Y νR

AL ∼
∑

k,α
[
Γ(Nk → Φ`α)− Γ(Nk → Φ̄¯̀

α)
]∑

k,α
[
Γ(Nk → Φ`α) + Γ(Nk → Φ̄¯̀

α)
]

Nk

ℓα

Φ

Yαk

I The lepton asymmetry AL is converted into a baryon asymmetry AB at
T ∼ 100 GeV by electroweak sphalerons that conserve B − L and break
B + L.

I Seesaw ⇒ Y ∼ 1
v M1/2

R R︸ ︷︷ ︸
inaccessible

m1/2
ν U3×3︸ ︷︷ ︸

measurable

(RRT = 1)
[Casas, Ibarra, NPB 618 (2001) 171]

I CP-violating U3×3 ⇒ plausible CP-violating Y
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I The discovery of L violation (ββ0ν decay due to Majorana neutrinos)
and CP violation in the lepton sector (through neutrino oscillations)
would be a strong indication in favor of leptogenesis as the origin of the
matter-antimatter asymmetry in the Universe.
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I Seesaw with leptogenesis is a very attractive and compelling theory.

I However, in general there is no constraint on the number and mass scale
of the νR ’s.

I It is possible and interesting that there is low-energy new physics (maybe
connected with dark matter).

I Light fermions beyond the Standard Model are neutral and can mix with
neutrinos: they are νR ’s.

I Light left-handed anti-νR are light sterile neutrinos

νc
R→νsL (left-handed)

I Sterile means no standard model interactions
[Pontecorvo, Sov. Phys. JETP 26 (1968) 984]
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Light Sterile Neutrinos
Short-Baseline Anomalies

Reactor Anomaly: ν̄e → ν̄x (∼ 3σ)
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Reactor Spectral Ratios
NEOS [PRL 118 (2017) 121802 (arXiv:1610.05134)]
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Model-Independent νe and ν̄e Disappearance
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Huge potential for epochal New Physics discovery!
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Neutrinoless Double-Beta Decay
mββ =
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Non-Standard Interactions
I Observable non-renormalizable effective NSI of left-handed neutrinos:

Charged-Current-like NSI: (α, β = e, µ, τ)

HCC
NSI = 2

√
2GFVud

∑
α,β

(
`αLγρνβL

) [
εudL
αβ uLγ

ρdL + εudR
αβ uRγ

ρdR

]
+ H.c.

+2
√

2GF
∑
α,β

(ναLγρνβL)
∑
σ 6=δ

[
εσδL
αβ `σLγ

ρ`δL + εσδR
αβ `σRγ

ρ`δR

]
Neutral-Current-like or Matter NSI: (εfP

αβ = εfP∗
βα )

HNC
NSI = 2

√
2GF

∑
α,β

(ναLγρνβL)
∑

f =e,u,d

[
εfL
αβfLγρfL + εfR

αβfRγρfR
]

I Obtained in Effective Field Theory from operators of dimension 6 and
higher:

O6 =
∑

α,β,σ,δ

Cαβσδ

(
Lαγ

ρLβ

) (
LσγρLδ

)
+ . . .

Constraints are required to suppress unobserved large charged lepton
transitions as µ → 3e. [see: Gavela, Hernandez, Ota, Winter, PRD 79 (2009) 013007]
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NSI Effects on Oscillations
I Standard oscillations with matter effects:
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I NC NSI in neutrino propagation in matter ∼ ε:
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[Esteban, Gonzalez-Garcia, Maltoni, JHEP 1906 (2019) 055, arXiv:1905.05203]
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Electromagnetic Interactions

I Effective Hamiltonian: H(ν)
em (x) = j(ν)µ (x)Aµ(x) =

∑
k,j=1

νk(x)Λkj
µ νj(x)Aµ(x)

I Effective electromagnetic vertex: νi(pi)

Λ

γ(q)

νf (pf )

〈νf (pf )|j(ν)µ (0)|νi(pi)〉 = uf (pf )Λ
fi
µ(q)ui(pi)

q = pi − pf

I Vertex function:
Λµ(q) =

(
γµ − qµ/q/q2) [FQ(q2) + FA(q2)q2γ5

]
− iσµνqν

[
FM(q2) + iFE (q2)γ5

]
form factors:

Lorentz-invariant
charge anapole magnetic electric

q2 = 0 =⇒ q a µ ε
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Neutrino Charge Radii

I In the Standard Model neutrinos are neutral and there are no
electromagnetic interactions at the tree-level.

I Radiative corrections generate an effective electromagnetic interaction
vertex

Λµ(q) =
(
γµ − qµ/q/q2)F (q2)

W

ℓ ℓ

γ

ν ν
ℓ

W W

γ

ν ν

I F (q2) =���HHHF (0) + q2 dF (q2)

dq2

∣∣∣∣
q2=0

+ . . . = q2 〈r2〉
6 + . . .

I In the Standard Model: [Bernabeu et al, PRD 62 (2000) 113012, NPB 680 (2004) 450]

〈r2
ν`
〉SM = − GF

2
√

2π2

[
3 − 2 log

(
m2

`

m2
W

)] 〈r2
νe
〉SM = −8.2 × 10−33 cm2

〈r2
νµ
〉SM = −4.8 × 10−33 cm2

〈r2
ντ
〉SM = −3.0 × 10−33 cm2
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Experimental Bounds
Method Experiment Limit [cm2] CL Year

Reactor ν̄e e− Krasnoyarsk |〈r2
νe
〉| < 7.3 × 10−32 90% 1992

TEXONO −4.2 × 10−32 < 〈r2
νe
〉 < 6.6 × 10−32 90% 2009

Accelerator νe e− LAMPF −7.12 × 10−32 < 〈r2
νe
〉 < 10.88 × 10−32 90% 1992

LSND −5.94 × 10−32 < 〈r2
νe
〉 < 8.28 × 10−32 90% 2001

Accelerator νµ e− BNL-E734 −5.7 × 10−32 < 〈r2
νµ
〉 < 1.1 × 10−32 90% 1990

CHARM-II |〈r2
νµ
〉| < 1.2 × 10−32 90% 1994

[see the review Giunti, Studenikin, RMP 87 (2015) 531, arXiv:1403.6344

and the update in Cadeddu, Giunti, Kouzakov, Y.F. Li, Studenikin, Y.Y. Zhang, PRD 98 (2018) 113010, arXiv:1810.05606]

I Neutrino charge radii contribute coherently to standard neutral-current weak

interactions ⇒ shifts sin2ϑW → sin2ϑW

(
1 +

1
3m2

W 〈r2
ν`
〉
)

I The current limits are not too far from the SM prediction: about 1 order of
magnitude.

I Powerful precision test of the SM.

I A failure to measure the SM values would imply BSM physics!
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Neutrino Magnetic and Electric Moments
I Extended Standard Model with right-handed neutrinos and ∆L = 0:

µD
kk ' 3.2 × 10−19µB

(mk
eV

)
εD

kk = 0

µD
kj

iεD
kj

}
' −3.9 × 10−23µB

(
mk ± mj

eV

) ∑
`=e,µ,τ

U∗
`kU`j

(
m`

mτ

)2

off-diagonal moments are GIM-suppressed
[Fujikawa, Shrock, PRL 45 (1980) 963; Pal, Wolfenstein, PRD 25 (1982) 766; Shrock, NPB 206 (1982) 359;

Dvornikov, Studenikin, PRD 69 (2004) 073001, JETP 99 (2004) 254]

I Extended Standard Model with Majorana neutrinos (|∆L| = 2):

µM
kj ' −7.8 × 10−23µBi (mk + mj)

∑
`=e,µ,τ

Im [U∗
`kU`j ]

m2
`

m2
W

εM
kj ' 7.8 × 10−23µBi (mk − mj)

∑
`=e,µ,τ

Re [U∗
`kU`j ]

m2
`

m2
W

[Shrock, NPB 206 (1982) 359]

GIM-suppressed, but additional model-dependent contributions of the scalar
sector can enhance the Majorana transition dipole moments

[Pal, Wolfenstein, PRD 25 (1982) 766; Barr, Freire, Zee, PRL 65 (1990) 2626; Pal, PRD 44 (1991) 2261]
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(
dσνe−

dTe

)
mag

=
πα2

m2
e

(
1

Te
− 1

Eν

)(
µν

µB

)2
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Method Experiment Limit [µB] CL Year

Reactor ν̄e e−

Krasnoyarsk µνe < 2.4 × 10−10 90% 1992
Rovno µνe < 1.9 × 10−10 95% 1993
MUNU µνe < 9 × 10−11 90% 2005
TEXONO µνe < 7.4 × 10−11 90% 2006
GEMMA µνe < 2.9 × 10−11 90% 2012

Accelerator νe e− LAMPF µνe < 1.1 × 10−9 90% 1992
Accelerator (νµ, ν̄µ) e− BNL-E734 µνµ < 8.5 × 10−10 90% 1990

LAMPF µνµ < 7.4 × 10−10 90% 1992
LSND µνµ < 6.8 × 10−10 90% 2001

Accelerator (ντ , ν̄τ ) e− DONUT µντ < 3.9 × 10−7 90% 2001

Solar νe e−
Super-Kamiokande µS(Eν & 5 MeV) < 1.1 × 10−10 90% 2004
Borexino µS(Eν . 1 MeV) < 2.8 × 10−11 90% 2017

[see the review Giunti, Studenikin, RMP 87 (2015) 531, arXiv:1403.6344]

I Gap of about 8 orders of magnitude between the experimental limits and
the . 10−19 µB prediction of the minimal Standard Model extensions.

I µν � 10−19 µB discovery ⇒ non-minimal new physics beyond the SM.
I Neutrino spin-flavor precession in a magnetic field

[Lim, Marciano, PRD 37 (1988) 1368; Akhmedov, PLB 213 (1988) 64]
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Conclusions
I Neutrinos can be powerful messengers of the physics beyond the SM.

I The discovery of L violation through ββ0ν decay is of paramount
importance.

I The additional discovery of CP violation in the lepton sector in LBL
neutrino oscillation experiments will represent a strong indication in
favor of leptogenesis as the origin of the matter-antimatter asymmetry in
the Universe.

I The search for sterile neutrinos may open a cornucopia of new
phenomena.

I Look out for neutrino Non-Standard Interactions and Electromagnetic
Interactions.
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