Status of Light Sterile Neutrinos

Carlo Giunti

INFN, Torino, Italy

ICPPA2020 5th International Conference on Particle Physics and Astrophysics

5 - 9 October 2020

The 5th international conference on particle physics and astrophysics

Standard Three Neutrino Mixing

- Flavor Neutrinos: ν_e , ν_μ , ν_τ produced in Weak Interactions
- Massive Neutrinos: ν_1 , ν_2 , ν_3 propagate from Source to Detector
- Neutrino Mixing: a Flavor Neutrino is a superposition of Massive Neutrinos

$$\begin{pmatrix} |\nu_e\rangle\\ |\nu_\mu\rangle\\ |\nu_\mu\rangle \end{pmatrix} = \begin{pmatrix} U_{e1}^* & U_{e2}^* & U_{e3}^*\\ U_{\mu1}^* & U_{\mu2}^* & U_{\mu3}^*\\ U_{\tau1}^* & U_{\tau2}^* & U_{\tau3}^* \end{pmatrix} \begin{pmatrix} |\nu_1\rangle\\ |\nu_2\rangle\\ |\nu_3\rangle \end{pmatrix}$$

U is the 3 × 3 unitary Neutrino Mixing Matrix

$$\blacktriangleright P_{\nu_{\alpha} \to \nu_{\beta}}(L) = \sum_{k,j} U_{\beta k} U_{\alpha k}^{*} U_{\beta j}^{*} U_{\alpha j} \exp\left(-i\frac{\Delta m_{kj}^{2}L}{2E}\right) \qquad (\alpha, \beta = e, \mu, \tau)$$

The oscillation probabilities depend on

U (osc. amplitude) and $\Delta m_{kj}^2 \equiv m_k^2 - m_j^2$ (osc. phase)

C. Giunti – Status of Light Sterile Neutrinos – ICPPA2020 – 8 October 2020 – 2/30

In the standard framework of three-neutrino mixing there are two independent Δm²'s:

•
$$\Delta m_{SOL}^2 = \Delta m_{21}^2 \simeq 7.4 \times 10^{-5} \,\mathrm{eV}^2$$
 Solar Mass Splitting

•
$$\Delta m^2_{\rm ATM} \simeq |\Delta m^2_{31}| \simeq 2.5 \times 10^{-3} \, {\rm eV}^2$$

Atmospheric Mass Splitting

The solar and atmospheric mass splittings generate oscillations that are detectable at the distances

$$L_{\rm SOL}^{\rm osc} \gtrsim \frac{E_{\nu}}{\Delta m_{\rm SOL}^2} \approx 50 \, \rm km \, \frac{E_{\nu}}{\rm MeV}$$

$$L_{\rm ATM}^{\rm osc} \gtrsim \frac{E_{\nu}}{\Delta m_{\rm ATM}^2} \approx 1 \, \rm km \, \frac{E_{\nu}}{\rm MeV}$$

The solar and atmospheric mass splittings cannot explain flavor neutrino transitions at shorter distances.

Short-Baseline Neutrino Oscillation Anomalies

Minimal perturbation of 3ν mixing: effective 3+1 with $|U_{e4}|, |U_{\mu4}|, |U_{\tau4}| \ll 1$

C. Giunti - Status of Light Sterile Neutrinos - ICPPA2020 - 8 October 2020 - 4/30

Effective 3+1 SBL Oscillation Probabilities

Short-Baseline Reactor Neutrino Oscillations 1.20 Krasnovarsk 米 Nucifer Bugev-4 Rovno88 Gosgen Royno91 Bugey-3 SRP \rightarrow ILL 1.10 00.1 $\mathsf{P}_{\overline{\mathrm{v}}_{\theta}\to\overline{\mathrm{v}}_{\theta}}$ DC 0.90 DC DB $\overline{E} \approx 4 MeV - sin^2 2 \vartheta_{ee} = 0.1$ 0.80 $\frac{\Delta m_{41}^2 = 0.1 \text{ eV}^2}{\Delta m_{41}^2 = 0.5 \text{ eV}^2}$ $\frac{\Delta m_{41}^2 = 1.0 \text{ eV}^2}{\Delta m_{41}^2 = 1.0 \text{ eV}^2}$ 0.70 10^{2} 10^{3} 10 [m]

- $\Delta m_{\rm SBL}^2 \gtrsim 0.5 \, {\rm eV}^2 \gg \Delta m_{\rm ATM}^2$
- SBL oscillations are averaged at the Daya Bay, RENO, and Double Chooz near detectors no spectral distortion
- The reactor antineutrino anomaly is model dependent (depends on the theoretical reactor neutrino flux calculation; is it reliable?).

Reactor Antineutrino 5 MeV Bump

- Cannot be explained by neutrino oscillations (SBL oscillations are averaged in RENO, DC, DB).
- If it is due to a theoretical miscalculation of the spectrum, it can have opposite effects on the anomaly:

[see: Berryman, Huber, arXiv:1909.09267]

 If it is a 4-6 MeV excess it increases the anomaly: new HKSS flux calculation

[Hayen, Kostensalo, Severijns, Suhonen, arXiv:1908.08302]

 If it is a 1-4 MeV suppression it decreases the anomaly: new EF flux calculation

[Estienne, Fallot, et al, arXiv:1904.09358]

C. Giunti – Status of Light Sterile Neutrinos – ICPPA2020 – 8 October 2020 – 7/30

Model Indep. Measurements of Reactor ν Osc.

Ratios of spectra at different distances

DANSS on a lifting platform

Neutrino-4

PROSPECT

STEREO

SoLid

C. Giunti - Status of Light Sterile Neutrinos - ICPPA2020 - 8 October 2020 - 8/30

2018 Results

2018 model independent indication in favor of SBL oscillations NEOS: $\sim 2.0\sigma$ DANSS-2018: $\sim 2.2\sigma$ Combined: $\sim 3.5\sigma$

[Gariazzo, Giunti, Laveder, Li, arXiv:1801.06467] [Dentler, Hernandez-Cabezudo, Kopp, Machado, Maltoni, Martinez-Soler, Schwetz, arXiv:1803.10661]

C. Giunti - Status of Light Sterile Neutrinos - ICPPA2020 - 8 October 2020 - 9/30

2019 Results

The agreement between NEOS and DANSS diminished.

2020 Results

- No indication of oscillations from DANNS data.
- In practice these reactor spectral ratios give upper bound on

 $\sin^2 2\vartheta_{ee} \simeq 4|U_{e4}|^2$

Neutrino-4

[arXiv:1708.00421, arXiv:1809.10561, arXiv:2003.03199, arXiv:2005.05301, arXiv:2006.13639]

C. Giunti – Status of Light Sterile Neutrinos – ICPPA2020 – 8 October 2020 – 12/30

- Neutrino-4 best fit: $\sin^2 2\vartheta_{ee} = 0.26$ $\Delta m_{41}^2 = 7.25 \text{ eV}^2$
- Very large mixing!
- Not a small perturbation of 3ν mixing.
- Tension with solar neutrino bound.

[Palazzo, arXiv:1105.1705, arXiv:1201.4280] [Giunti, Laveder, Li, Liu, Long, arXiv:1210.5715] [Gariazzo, Giunti, Laveder, Li, arXiv:1703.00860]

Oscillations or Fluctuations?

C. Giunti – Status of Light Sterile Neutrinos – ICPPA2020 – 8 October 2020 – 14/30

Deviations from χ^2 Distribution (Wilks' Theorem)

[Agostini, Neumair, arXiv:1906.11854; Silaeva, Sinev, arXiv:2001.10752; Giunti, arXiv:2004.07577] [PROSPECT+STEREO, arXiv:2006.13147; Coloma, Huber, Schwetz, arXiv:2008.06083]

Even in the absence of real oscillations, binned data can often be fitted better by oscillations that reproduce the statistical fluctuations of the bins.

[Coloma, Huber, Schwetz, arXiv:2008.06083]

- Numerical simulations of a reactor neutrino experiment experiment: v
 e disappearance.
- Location of the best-fit points of 20,000 pseudo-experiments simulated under the no-oscillation hypothesis.
- Vertical lines: expected analytical $\langle \sin^2 2\theta \rangle$ from a toy model.
- Solid curves: sensitivity at 95% CL assuming that Wilks' theorem holds.

MC evaluation of test statistic distribution

MC calculations are unfortunately difficult and require a lot of computer time.

They must be completely redone for each combination of experiments.

- The MC evaluation of test statistic distribution decreases the statistical significance of the indications in favor of oscillations.
- ▶ Nevertheless, the indications must be checked by other experiments.
- We do not want to miss a chance to discover sterile neutrinos and physics beyond the Standard Model.
- ▶ This is valid for Neutrino-4 as well as for any other indication.
- It would be very interesting if the Neutrino-4 results are confirmed by other experiments, opening an unexpected new scenario.

Robust kinematical probe of $\nu_e - \nu_s$ mixing

C. Giunti – Status of Light Sterile Neutrinos – ICPPA2020 – 8 October 2020 – 18/30

[Kraus, Singer, Valerius, Weinheimer, arXiv:1210.4194]

[Belesev et al, arXiv:1307.5687]

Bound from first KATRIN data

 $\Delta m^2_{41} \simeq m^2_4$

[KATRIN @ Neutrino 2020]

Gallium Anomaly

Gallium Radioactive Source Experiments: GALLEX and SAGE ν_e Sources: $e^- + {}^{51}Cr \rightarrow {}^{51}V + \nu_e$ $e^- + {}^{37}\text{Ar} \rightarrow {}^{37}\text{Cl} + \nu_e$ $E \simeq 0.75 \,\mathrm{MeV}$ $E\simeq 0.81\,{
m MeV}$ $^{\prime 1}$ Ga ightarrow 71 Ge $+ e^{-1}$ Test of Solar ν_e Detection: N, + GeCL Ξ GALLEX SAGE Cr1 Cr 0.1 $R = N_{exp}/N_{cal}$ GALLEX SAGE GaCl Δr RCI 0.9 (54 m³, 110 t) 8.0 $\overline{R} = 0.84 \pm 0.05$ 0.7 $\approx 2.9\sigma$ deficit $\langle L \rangle_{\text{GALLEX}} = 1.9 \text{ m} \quad \langle L \rangle_{\text{SAGE}} = 0.6 \text{ m}$ [SAGE, nucl-ex/0512041, arXiv:0901.2200; Laveder et al, Nucl.Phys.Proc.Suppl. 168 (2007) 344, hep-ph/0610352, arXiv:0711.4222. $\Delta m_{\rm SPL}^2 \ge 1 \, {\rm eV}^2 \gg \Delta m_{\rm ATM}^2$ arXiv:1006.3244]

► Deficit could be due to an overestimate of $\sigma(\nu_e + {}^{71}\text{Ga} \rightarrow {}^{71}\text{Ge} + e^-)$

First calculation: Bahcall, PRC 56 (1997) 3391

▶ $\sigma_{
m G.S.}$ from $T_{1/2}(^{71}
m{Ge}) = 11.43 \pm 0.03$ days [Hampel, Remsberg, PRC 31 (1985) 666]

$$\sigma_{\rm G.S.}({}^{51}{\rm Cr}) = 55.3 \times 10^{-46} \,{\rm cm}^2 \,(1 \pm 0.004)_{3\sigma}$$

• $\sigma(^{51}\text{Cr}) = \sigma_{\text{G.S.}}(^{51}\text{Cr})\left(1 + 0.669 \frac{\text{BGT}_{175}}{\text{BGT}_{\text{G.S.}}} + 0.220 \frac{\text{BGT}_{500}}{\text{BGT}_{\text{G.S.}}}\right)$

The contribution of excited states is only ~ 5%, but it is crucial for the size of the Gallium anomaly!

Cross sections in units of 10^{-45}cm^2 :		
	$\sigma(^{51}Cr)$	$\sigma(^{37}Ar)$
Bahcall	5.81 ± 0.16	7.00 ± 0.21
Haxton	$\textbf{6.39} \pm \textbf{0.65}$	7.72 ± 0.81
Frekers	5.92 ± 0.11	7.15 ± 0.14
JUN45	5.67 ± 0.06	6.80 ± 0.08

[Kostensalo, Suhonen, Giunti, Srivastava, arXiv:1906.10980]

BEST

[arXiv:1006.2103, arXiv:1602.03826, arXiv:1710.06326, arXiv:1807.02977, arXiv:1905.07437] Direct test of the Gallium anomaly with 51 Cr source.

Allowed regions of oscillations parameters if the result of the BEST experiment corresponds to the best fit point for combining the SAGE + GALLEX. The numbers in parentheses indicate the most probable ratios R of observed-to-expected without sterile neutrinos germanium atoms in the two vessels.

C. Giunti – Status of Light Sterile Neutrinos – ICPPA2020 – 8 October 2020 – 24/30

 $\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e}$ and $\nu_{\mu} \rightarrow \nu_{e}$ Appearance

C. Giunti – Status of Light Sterile Neutrinos – ICPPA2020 – 8 October 2020 – 25/30

 ν_{μ} and $\bar{\nu}_{\mu}$ Disappearance

[Gariazzo, Giunti, Li, Ternes, Zhang, in preparation]

3+1: Appearance vs Disappearance

- ► SBL Oscillation parameters: $\Delta m_{41}^2 |U_{e4}|^2 |U_{\mu4}|^2 (|U_{\tau4}|^2)$
- Amplitude of ν_e disappearance:

$$\sin^2 2\vartheta_{ee} = 4|U_{e4}|^2 \left(1 - |U_{e4}|^2\right) \simeq 4|U_{e4}|^2$$

• Amplitude of ν_{μ} disappearance:

$$\sin^2 2\vartheta_{\mu\mu} = 4|U_{\mu4}|^2 \left(1 - |U_{\mu4}|^2\right) \simeq 4|U_{\mu4}|^2$$

• Amplitude of $\nu_{\mu} \rightarrow \nu_{e}$ appearance:

$$\sin^{2} 2\vartheta_{e\mu} = 4|U_{e4}|^{2}|U_{\mu4}|^{2} \simeq \frac{1}{4}\sin^{2} 2\vartheta_{ee}\sin^{2} 2\vartheta_{\mu\mu}$$
quadratically suppressed for small $|U_{e4}|^{2}$ and $|U_{\mu4}|^{2}$

$$\downarrow$$

Appearance-Disappearance Tension

[Okada, Yasuda, hep-ph/9606411; Bilenky, CG, Grimus, hep-ph/9607372]

Global Appearance-Disappearance Tension

C. Giunti – Status of Light Sterile Neutrinos – ICPPA2020 – 8 October 2020 – 28/30

New Dedicated Experiments

Conclusions

- Neutrinos can be powerful messengers of new physics beyond the SM.
- The existence of light sterile neutrinos beyond the SM is indicated by the Reactor, Gallium and LSND anomalies.
- Experimental results are confusing, pointing in different directions.
- Therefore, there is no definitive conclusion yet.
- The search must be continued with enthusiasm, because a positive outcome would yield a huge reward.
- Oscillation experiments suffer of misleading oscillatory fit of statistical fluctuations of the data. Difficult MC evaluation of test statistic distribution is needed to obtain reliable confidence levels.
- ▶ Robust kinematical probe of $\nu_e \nu_s$ mixing with β decay (KATRIN, Project 8, ...) and electron-capture (ECHo, HOLMES, ...) experiments.