Neutrino Physics

Part I: Theory of Neutrino Masses and Mixing

Carlo Giunti

INFN, Torino, Italy
giunti@to.infn.it
Neutrino Unbound: http://www.nu.to.infn.it
Torino Graduate School in Physics and Astrophysics
Torino, 30 November - 4 December 2020
http://personalpages.to.infn.it/~giunti/slides/2020/giunti-201130-phdto1.pdf

C. Giunti and C.W. Kim

Fundamentals of Neutrino Physics and Astrophysics
Oxford University Press
15 March 2007 - 728 pages
C. Giunti - Neutrino Physics - I - Torino PhD Course - Torino - 30 Nov - 4 Dec 2020 - $\mathbf{1 / 1 1 8}$

Why Neutrino Physics

- Neutrinos are special among the known particles (fermions):
- Neutrinos are the only neutral fermions.
- Neutrinos interact very weakly, only with left-handed weak interactions (and of course gravitational interactions).
- Their mass is extremely small.
- In the Standard Model neutrinos are assumed to be left-handed and massless.
- The observation of neutrino oscillations implies that neutrinos are massive.
- Neutrino masses are so far the only certain phenomenon Beyond the Standard Model (BSM).
- Neutrino masses and non-standard neutrino properties and interactions are windows on the physics Beyond the Standard Model.
- Neutrinos are powerful astrophysical messengers (from Sun, supernovae, AGNs, ...) thanks to their extremely weak interactions and neutrality.
C. Giunti - Neutrino Physics - I - Torino PhD Course - Torino - 30 Nov - 4 Dec $2020-2 / 118$

Fermion Mass Spectrum

C. Giunti - Neutrino Physics - I - Torino PhD Course - Torino - 30 Nov - 4 Dec 2020 - 3/118

Part I: Theory of Neutrino Masses and Mixing

- Dirac Neutrino Masses and Mixing
- Majorana Neutrino Masses and Mixing
- Dirac-Majorana Mass Term
- Sterile Neutrinos

Dirac Neutrino Masses and Mixing

- Dirac Neutrino Masses and Mixing
- Higgs Mechanism in SM
- SM Extension: Dirac Neutrino Masses
- Three-Generations Dirac Neutrino Masses
- Mixing
- CP Violation
- Jarlskog Invariant
- Lepton Numbers Violating Processes
- Majorana Neutrino Masses and Mixing
- Dirac-Majorana Mass Term

Dirac Mass

- Dirac Equation: $(i \not \partial-m) \nu(x)=0$
- Dirac Lagrangian: $\mathscr{L}_{\mathrm{D}}(x)=\bar{\nu}(x)(i \not \partial-m) \nu(x)$
- Chiral decomposition: $\nu_{L} \equiv P_{L} \nu, \quad \nu_{R} \equiv P_{R} \nu, \quad \nu=\nu_{L}+\nu_{R}$

Left and Right-handed Projectors: $\quad P_{L} \equiv \frac{1-\gamma^{5}}{2}, \quad P_{R} \equiv \frac{1+\gamma^{5}}{2}$

$$
\begin{gathered}
P_{L}^{2}=P_{L}, \quad P_{R}^{2}=P_{R}, \quad P_{L}+P_{R}=1, \quad P_{L} P_{R}=P_{R} P_{L}=0 \\
\mathscr{L}=\overline{\nu_{L}} i \not \partial \nu_{L}+\overline{\nu_{R}} i \not \partial \nu_{R}-m\left(\overline{\nu_{L}} \nu_{R}+\overline{\nu_{R}} \nu_{L}\right)
\end{gathered}
$$

- In SM only ν_{L} by assumption \Longrightarrow no neutrino mass

Note that all the other elementary fermion fields (charged leptons and quarks) have both left and right-handed components

- Oscillation experiments have shown that neutrinos are massive
- Simplest and natural extension of the SM: consider also ν_{R} as for all the other elementary fermion fields

Higgs Mechanism in SM

- Higgs Doublet: $\Phi(x)=\binom{\phi_{+}(x)}{\phi_{0}(x)} \quad|\Phi|^{2}=\Phi^{\dagger} \Phi=\phi_{+}^{\dagger} \phi_{+}+\phi_{0}^{\dagger} \phi_{0}$
- Higgs Lagrangian: $\mathscr{L}_{\text {Higgs }}=\left(D_{\mu} \Phi\right)^{\dagger}\left(D^{\mu} \Phi\right)-V\left(|\Phi|^{2}\right)$
- Higgs Potential: $V\left(|\Phi|^{2}\right)=\mu^{2}|\Phi|^{2}+\lambda|\Phi|^{4}$
- $\mu^{2}<0$ and $\lambda>0 \Longrightarrow V\left(|\Phi|^{2}\right)=\lambda\left(|\Phi|^{2}-\frac{v^{2}}{2}\right)^{2}$

$$
v \equiv \sqrt{-\frac{\mu^{2}}{\lambda}}=\left(\sqrt{2} G_{F}\right)^{-1 / 2} \simeq 246 \mathrm{GeV}
$$

- Vacuum: $V_{\text {min }}$ for $|\Phi|^{2}=\frac{v^{2}}{2} \Longrightarrow\langle\Phi\rangle=\frac{1}{\sqrt{2}}\binom{0}{v}$
- Spontaneous Symmetry Breaking: $\mathrm{SU}(2)_{\llcorner } \times \mathrm{U}(1)_{Y} \rightarrow \mathrm{U}(1)_{Q}$

- Unitary Gauge: $\Phi(x)=\frac{1}{\sqrt{2}}\binom{0}{v+H(x)} \Longrightarrow|\Phi|^{2}=\frac{v^{2}}{2}+v H+\frac{1}{2} H^{2}$
- $V=\lambda\left(|\Phi|^{2}-\frac{v^{2}}{2}\right)^{2}=\lambda v^{2} H^{2}+\lambda v H^{3}+\frac{\lambda}{4} H^{4}$

$$
\begin{aligned}
& m_{H}=\sqrt{2 \lambda v^{2}}=\sqrt{-2 \mu^{2}} \simeq 126 \mathrm{GeV} \\
&-\mu^{2} \simeq(89 \mathrm{GeV})^{2} \quad \lambda=-\frac{\mu^{2}}{v^{2}} \simeq 0.13
\end{aligned}
$$

SM Extension: Dirac Neutrino Masses

		I	I_{3}	Y	$Q=I_{3}+\frac{Y}{2}$
SM left-handed lepton doublet	$L_{L}=\binom{\nu_{L}}{\ell_{L}}$	$1 / 2$	$1 / 2$ $-1 / 2$	-1	0
SM right-handed charged lepton singlet	ℓ_{R}	0	0	-2	-1
BSM right-handed neutrino singlet	ν_{R}	0	0	0	0
SM Higgs doublet	$\Phi(x)=\binom{\phi_{+}(x)}{\phi_{0}(x)}$	$1 / 2$	$1 / 2$ $-1 / 2$	+1	1

Third component of weak isospin: $\quad I_{3}=\frac{\sigma_{3}}{2}=\frac{1}{2}\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right)$

$$
I_{3} L_{L}=\frac{1}{2}\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)\binom{\nu_{L}}{\ell_{L}}=\binom{(1 / 2) \nu_{L}}{(-1 / 2) \ell_{L}}
$$

		I	I_{3}	Y	$Q=I_{3}+\frac{Y}{2}$
SM left-handed lepton doublet	$L_{L}=\binom{\nu_{L}}{\ell_{L}}$	$1 / 2$	$1 / 2$ $-1 / 2$	-1	0
SM right-handed charged lepton singlet BSM right-handed neutrino singlet	ℓ_{R}	0	0	-2	-1
SM Higgs doublet ν_{R}	0	0	0	0	

Lepton-Higgs Yukawa Lagrangian:

$$
\begin{gathered}
\mathscr{L}_{H, L}=-y^{\ell} \overline{L_{L}} \Phi \ell_{R}-y^{\nu} \overline{L_{L}} \widetilde{\Phi} \nu_{R}+\text { H.c. } \\
Y: \quad+1+1-2 \quad+1-10
\end{gathered}
$$

with

$$
\widetilde{\Phi}=i \sigma_{2} \Phi^{*}=\binom{\phi_{0}^{*}(x)}{-\phi_{+}^{*}(x)} \quad \leftarrow \quad Y=-1
$$

Invariance under $\operatorname{SU}(2)_{L}$

- $\operatorname{SU}(2)_{L}$ transformation of doublets: $\quad L_{L} \rightarrow U L_{L} \quad$ and $\quad \Phi \rightarrow U \Phi$ with

$$
U=\exp \left(\frac{i}{2} \sum_{k=1}^{3} \theta^{k} \sigma_{k}\right)
$$

- Pauli matrices: $\quad \sigma_{1}=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right) \quad \sigma_{2}=\left(\begin{array}{cc}0 & -i \\ i & 0\end{array}\right) \quad \sigma_{3}=\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right)$

$$
\left(\sigma_{k}\right)^{2}=1 \quad\left(\sigma_{k}\right)^{\dagger}=\sigma_{k} \quad\left(\sigma_{k}\right)^{*}=-\sigma_{2} \sigma_{k} \sigma_{2}
$$

Therefore:

$$
U^{*}=\sigma_{2} U \sigma_{2}
$$

- $\widetilde{\Phi}=i \sigma_{2} \Phi^{*} \rightarrow i \sigma_{2} U^{*} \Phi^{*}=i \sigma_{2} \sigma_{2} U \sigma_{2} \Phi^{*}=U i \sigma_{2} \Phi^{*}=U \widetilde{\Phi}$
- Lepton-Higgs Yukawa terms:

$$
\begin{aligned}
& \overline{L_{L}} \Phi \ell_{R} \rightarrow \overline{L_{L}} U^{\dagger} U \Phi \ell_{R}=\overline{L_{L}} \Phi \ell_{R} \\
& \overline{L_{L}} \widetilde{\Phi} \nu_{R}=\overline{L_{L}} U^{\dagger} U \widetilde{\Phi} \nu_{R}=\overline{L_{L}} \widetilde{\Phi} \nu_{R}
\end{aligned}
$$

Lepton-Higgs Yukawa Lagrangian

$$
\mathscr{L}_{H, L}=-y^{\ell} \overline{L_{L}} \Phi \ell_{R}-y^{\nu} \overline{L_{L}} \widetilde{\Phi} \nu_{R}+\text { H.c. }
$$

Spontaneous Symmetry Breaking

$$
\begin{aligned}
& \Phi(x)=\frac{1}{\sqrt{2}}\binom{0}{v+H(x)} \quad \widetilde{\Phi}=i \sigma_{2} \Phi^{*}=\frac{1}{\sqrt{2}}\binom{v+H(x)}{0} \\
& \mathscr{L}_{H, L}=-\frac{y^{\ell}}{\sqrt{2}}\left(\begin{array}{ll}
\overline{\nu_{L}} & \overline{\ell_{L}}
\end{array}\right)\binom{0}{v+H(x)} \ell_{R} \\
&-\frac{y^{\nu}}{\sqrt{2}}\left(\begin{array}{ll}
\overline{\nu_{L}} & \overline{\ell_{L}}
\end{array}\right)\binom{v+H(x)}{0} \nu_{R}+\text { H.c. }
\end{aligned}
$$

$$
\begin{gathered}
\mathscr{L}_{H, L}= \\
-y^{\ell} \frac{v}{\sqrt{2}} \overline{\ell_{L}} \ell_{R}-y^{\nu} \frac{v}{\sqrt{2}} \overline{\nu_{L}} \nu_{R} \\
\\
-\frac{y^{\ell}}{\sqrt{2}} \overline{\ell_{L}} \ell_{R} H-\frac{y^{\nu}}{\sqrt{2}} \overline{\nu_{L}} \nu_{R} H+\text { H.c. } \\
m_{\ell}=y^{\ell} \frac{v}{\sqrt{2}} \quad m_{\nu}=y^{\nu} \frac{v}{\sqrt{2}} \\
g_{\ell H}=\frac{y^{\ell}}{\sqrt{2}}=\frac{m_{\ell}}{v} \quad g_{\nu H}=\frac{y^{\nu}}{\sqrt{2}}=\frac{m_{\nu}}{v} \\
v=\left(\sqrt{2} G_{F}\right)^{-1 / 2}=246 \mathrm{GeV}
\end{gathered}
$$

$$
\text { PROBLEM: } \quad y^{\nu} \lesssim 10^{-11} \ll y^{e} \sim 10^{-6}
$$

Three-Generations Dirac Neutrino Masses

$L_{e L}^{\prime} \equiv\binom{\nu_{e L}^{\prime}}{\ell_{e L}^{\prime} \equiv e_{L}^{\prime}}$	$L_{\mu L}^{\prime} \equiv\binom{\nu_{\mu L}^{\prime}}{\ell_{\mu L}^{\prime} \equiv \mu_{L}^{\prime}}$	$L_{\tau L}^{\prime} \equiv\binom{\nu_{\tau L}^{\prime}}{\ell_{\tau L}^{\prime} \equiv \tau_{L}^{\prime}}$
$\ell_{e R}^{\prime} \equiv e_{R}^{\prime}$	$\ell_{\mu R}^{\prime} \equiv \mu_{R}^{\prime}$	$\ell_{\tau R}^{\prime} \equiv \tau_{R}^{\prime}$
$\nu_{e R}^{\prime}$	$\nu_{\mu R}^{\prime}$	$\nu_{\tau R}^{\prime}$

Lepton-Higgs Yukawa Lagrangian

$$
\mathscr{L}_{H, L}=-\sum_{\alpha, \beta=e, \mu, \tau}\left[Y_{\alpha \beta}^{\prime \ell} \overline{L_{\alpha L}^{\prime}} \Phi \ell_{\beta R}^{\prime}+Y_{\alpha \beta}^{\prime \nu} \overline{L_{\alpha L}^{\prime}} \widetilde{\Phi} \nu_{\beta R}^{\prime}\right]+\text { Н.c. }
$$

Spontaneous Symmetry Breaking

$$
\Phi(x)=\frac{1}{\sqrt{2}}\binom{0}{v+H(x)} \quad \widetilde{\Phi}=i \sigma_{2} \Phi^{*}=\frac{1}{\sqrt{2}}\binom{v+H(x)}{0}
$$

$$
\begin{gathered}
\mathscr{L}_{H, L}=-\left(\frac{v+H}{\sqrt{2}}\right) \sum_{\alpha, \beta=e, \mu, \tau}\left[Y_{\alpha \beta}^{\prime \ell} \overline{\ell_{\alpha L}^{\prime}} \ell_{\beta R}^{\prime}+Y_{\alpha \beta}^{\prime \nu} \overline{\nu_{\alpha L}^{\prime}} \nu_{\beta R}^{\prime}\right]+\text { H.c. } \\
\mathscr{L}_{H, L}=-\left(\frac{v+H}{\sqrt{2}}\right)\left[\overline{\ell_{L}^{\prime}} Y^{\prime \ell} \ell_{R}^{\prime}+\overline{\nu_{L}^{\prime}} Y^{\prime \nu} \nu_{R}^{\prime}\right]+\mathrm{H} . \mathrm{c} . \\
\ell_{L}^{\prime} \equiv\left(\begin{array}{c}
e_{L}^{\prime} \\
\mu_{L}^{\prime} \\
\tau_{L}^{\prime}
\end{array}\right) \quad \ell_{R}^{\prime} \equiv\left(\begin{array}{c}
e_{R}^{\prime} \\
\mu_{R}^{\prime} \\
\tau_{R}^{\prime}
\end{array}\right) \quad \nu_{L}^{\prime} \equiv\left(\begin{array}{c}
\nu_{e L}^{\prime} \\
\nu_{\mu L}^{\prime} \\
\nu_{\tau L}^{\prime}
\end{array}\right) \quad \nu_{R}^{\prime} \equiv\left(\begin{array}{c}
\nu_{e R}^{\prime} \\
\nu_{\mu R}^{\prime} \\
\nu_{\tau R}^{\prime}
\end{array}\right) \\
Y^{\prime \ell} \equiv\left(\begin{array}{ccc}
Y_{e e}^{\prime \ell} & Y_{e \mu}^{\prime \ell} & Y_{e \tau}^{\prime \ell} \\
Y_{\mu e}^{\prime \ell} & Y_{\mu \mu}^{\prime \ell} & Y_{\mu \tau}^{\prime \ell} \\
Y_{\tau e}^{\prime \ell} & Y_{\tau \mu}^{\prime \prime} & Y_{\tau \tau}^{\prime \prime}
\end{array}\right) \\
M^{\prime \ell}=\frac{v}{\sqrt{2}} Y^{\prime \ell} \\
Y^{\prime \nu} \equiv\left(\begin{array}{ccc}
Y_{e e}^{\prime \nu} & Y_{e \mu}^{\prime \prime} & Y_{e \tau}^{\prime \prime} \\
Y_{\mu e}^{\prime \nu} & Y_{\mu \mu}^{\prime \nu} & Y_{\mu \tau}^{\prime \nu} \\
Y_{\tau e}^{\prime \prime} & Y_{\tau \mu}^{\prime \nu} & Y_{\tau \tau}^{\prime \nu}
\end{array}\right) \\
M^{\prime \nu}=\frac{v}{\sqrt{2}} Y^{\prime \nu}
\end{gathered}
$$

$$
\mathscr{L}_{H, L}=-\left(\frac{v+H}{\sqrt{2}}\right)\left[\overline{\ell_{L}^{\prime}} Y^{\prime \ell} \ell_{R}^{\prime}+\overline{\nu_{L}^{\prime}} Y^{\prime \nu} \nu_{R}^{\prime}\right]+\text { Н.с. }
$$

Diagonalization of $Y^{\prime \ell}$ and $Y^{\prime \nu}$ with unitary $V_{L}^{\ell}, V_{R}^{\ell}, V_{L}^{\nu}, V_{R}^{\nu}$

$$
\ell_{L}^{\prime}=V_{L}^{\ell} \ell_{L} \quad \ell_{R}^{\prime}=V_{R}^{\ell} \ell_{R} \quad \boldsymbol{\nu}_{L}^{\prime}=V_{L}^{\nu} \boldsymbol{n}_{L} \quad \boldsymbol{\nu}_{R}^{\prime}=V_{R}^{\nu} \boldsymbol{n}_{R}
$$

Important general remark: unitary transformations are allowed because they leave invariant the kinetic terms in the Lagrangian

$$
\begin{aligned}
\mathscr{L}_{\text {kin }} & =\overline{\ell_{L}^{\prime}} i \not \partial \ell_{L}^{\prime}+\overline{\ell_{R}^{\prime}} i \not \partial \ell_{R}^{\prime}+\overline{\nu_{L}^{\prime}} i \not \partial \nu_{L}^{\prime}+\overline{\nu_{R}^{\prime}} i \not \partial \nu_{R}^{\prime} \\
& =\overline{\ell_{L}} V_{L}^{\ell \dagger} i \not \partial V_{L}^{\ell} \ell_{L}+\ldots \\
& =\overline{\ell_{L}} i \not \partial \ell_{L}+\overline{\ell_{R}} i \not \partial \ell_{R}+\overline{\nu_{L}} i \not \partial \nu_{L}+\overline{\nu_{R}} i \not \partial \nu_{R}
\end{aligned}
$$

$$
\mathscr{L}_{H, L}=-\left(\frac{v+H}{\sqrt{2}}\right)\left[\overline{\ell_{L}^{\prime}} Y^{\prime \ell} \ell_{R}^{\prime}+\overline{\nu_{L}^{\prime}} Y^{\prime \nu} \nu_{R}^{\prime}\right]+\text { Н.с. }
$$

Diagonalization of $Y^{\prime \ell}$ and $Y^{\prime \nu}$ with unitary $V_{L}^{\ell}, V_{R}^{\ell}, V_{L}^{\nu}, V_{R}^{\nu}$

$$
\ell_{L}^{\prime}=V_{L}^{\ell} \ell_{L} \quad \ell_{R}^{\prime}=V_{R}^{\ell} \ell_{R} \quad \boldsymbol{\nu}_{L}^{\prime}=V_{L}^{\nu} \boldsymbol{n}_{L} \quad \boldsymbol{\nu}_{R}^{\prime}=V_{R}^{\nu} \boldsymbol{n}_{R}
$$

$$
\mathscr{L}_{H, L}=-\left(\frac{v+H}{\sqrt{2}}\right)\left[\overline{\ell_{L}} V_{L}^{\ell \dagger} Y^{\prime \ell} V_{R}^{\ell} \ell_{R}+\overline{\boldsymbol{n}_{L}} V_{L}^{\nu \dagger} Y^{\prime \nu} V_{R}^{\nu} \boldsymbol{n}_{R}\right]+\text { H.c. }
$$

$$
\begin{array}{lll}
V_{L}^{\ell \dagger} Y^{\prime \ell} V_{R}^{\ell}=Y^{\ell} & Y_{\alpha \beta}^{\ell}=y_{\alpha}^{\ell} \delta_{\alpha \beta} & (\alpha, \beta=e, \mu, \tau) \\
V_{L}^{L^{\dagger}} Y^{\prime \nu} V_{R}^{\nu}=Y^{\nu} & Y_{k j}^{\nu}=y_{k}^{\nu} \delta_{k j} & (k, j=1,2,3)
\end{array}
$$

Real and Positive $y_{\alpha}^{\ell}, y_{k}^{\nu}$

$$
\begin{array}{ccc}
V_{L}^{\dagger} & Y^{\prime} & V_{R}= \\
9 & 18 & 9
\end{array}
$$

- Consider the Hermitian matrix $Y^{\prime} Y^{\prime \dagger}$
- It has real eigenvalues and orthonormal eigenvectors:

$$
Y^{\prime} Y^{\prime \dagger} v_{k}=\lambda_{k} v_{k} \Leftrightarrow \sum_{\beta}\left(Y^{\prime} Y^{\prime \dagger}\right)_{\alpha \beta}\left(v_{k}\right)_{\beta}=\lambda_{k}\left(v_{k}\right)_{\alpha}
$$

- Unitary diagonalizing matrix: $\left(V_{L}\right)_{\beta k}=\left(v_{k}\right)_{\beta}$

$$
Y^{\prime} Y^{\prime \dagger} V_{L}=\Lambda V_{L} \quad \Longrightarrow \quad V_{L}^{\dagger} Y^{\prime} Y^{\prime \dagger} V_{L}=\Lambda \quad \text { with } \quad \Lambda_{k j}=\lambda_{k} \delta_{k j}
$$

- The real eigenvalues λ_{k} are positive:

$$
\begin{aligned}
\lambda_{k} & =\sum_{\alpha}\left(V_{L}^{\dagger} Y^{\prime}\right)_{k \alpha}\left(Y^{\prime \dagger} V_{L}\right)_{\alpha k}=\sum_{\alpha}\left(V_{L}^{\dagger} Y^{\prime}\right)_{k \alpha}\left(V_{L}^{\dagger} Y^{\prime}\right)_{\alpha k}^{\dagger} \\
& =\sum_{\alpha}\left(V_{L}^{\dagger} Y^{\prime}\right)_{k \alpha}\left(V_{L}^{\dagger} Y^{\prime}\right)_{k \alpha}^{*}=\sum_{\alpha}\left|\left(V_{L}^{\dagger} Y^{\prime}\right)_{k \alpha}\right|^{2} \geq 0
\end{aligned}
$$

- Then, we can write $V_{L}^{\dagger} Y^{\prime} Y^{\prime \dagger} V_{L}=Y^{2}$ with $\quad(Y)_{k j}=y_{k} \delta_{k j}$ real and positive $y_{k}=\sqrt{\lambda_{k}}$
- Let us write Y^{\prime} as $Y^{\prime}=V_{L} Y V_{R}^{\dagger}$
- This is the diagonalizing equation if V_{R} is unitary.

$$
V_{R}^{\dagger}=Y^{-1} V_{L}^{\dagger} Y^{\prime} \quad V_{R}=Y^{\prime \dagger} V_{L} Y^{-1} \quad \text { with } \quad Y^{\dagger}=Y
$$

- $V_{R}^{\dagger} V_{R}=Y^{-1} V_{L}^{\dagger} Y^{\prime} Y^{\prime \dagger} V_{L} Y^{-1}=Y^{-1} Y^{2} Y^{-1}=\mathbb{1}$
- $V_{R} V_{R}^{\dagger}=Y^{\prime \dagger} V_{L} Y^{-1} Y^{-1} V_{L}^{\dagger} Y^{\prime}=Y^{\prime \dagger} V_{L} Y^{-2} V_{L}^{\dagger} Y^{\prime}$

$$
Y^{-2}=V_{L}^{\dagger}\left(Y^{\prime \dagger}\right)^{-1}\left(Y^{\prime}\right)^{-1} V_{L}
$$

$$
V_{R} V_{R}^{\dagger}=Y^{\prime \dagger} V_{L} V_{L}^{\dagger}\left(Y^{\prime \dagger}\right)^{-1}\left(Y^{\prime}\right)^{-1} V_{L} V_{L}^{\dagger} Y^{\prime}=Y^{\prime \dagger}\left(Y^{\prime \dagger}\right)^{-1}\left(Y^{\prime}\right)^{-1} Y^{\prime}=\mathbb{1}
$$

- In conclusion: $V_{L}^{\dagger} Y^{\prime} V_{R}=Y$ with unitary V_{L} and V_{R}

$$
(Y)_{k j}=y_{k} \delta_{k j} \quad \text { with real and positive } y_{k}
$$

Massive Chiral Lepton Fields

$V_{L}^{\ell \dagger} \ell_{L}^{\prime}=\ell_{L} \equiv\left(\begin{array}{c}e_{L} \\ \mu_{L} \\ \tau_{L}\end{array}\right)$	$V_{R}^{\ell \dagger} \ell_{R}^{\prime}=\ell_{R} \equiv\left(\begin{array}{c}e_{R} \\ \mu_{R} \\ \tau_{R}\end{array}\right)$
$V_{L}^{\nu \dagger} \boldsymbol{\nu}_{L}^{\prime}=\boldsymbol{n}_{L} \equiv\left(\begin{array}{c}\nu_{1 L} \\ \nu_{2 L} \\ \nu_{3 L}\end{array}\right)$	$V_{R}^{\nu \dagger} \boldsymbol{\nu}_{R}^{\prime}=\boldsymbol{n}_{R} \equiv\left(\begin{array}{c}\nu_{1 R} \\ \nu_{2 R} \\ \nu_{3 R}\end{array}\right)$

$$
\begin{aligned}
\mathscr{L}_{H, L} & =-\left(\frac{v+H}{\sqrt{2}}\right)\left[\overline{\ell_{L}} Y^{\ell} \ell_{R}+\overline{n_{L}} Y^{\nu} n_{R}\right]+\text { H.c. } \\
& =-\left(\frac{v+H}{\sqrt{2}}\right)\left[\sum_{\alpha=e, \mu, \tau} y_{\alpha}^{\ell} \overline{\ell_{\alpha L}} \ell_{\alpha R}+\sum_{k=1}^{3} y_{k}^{\nu} \overline{\nu_{k L}} \nu_{k R}\right]+\text { H.c. }
\end{aligned}
$$

Massive Dirac Lepton Fields

$$
\begin{gathered}
\ell_{\alpha} \equiv \ell_{\alpha L}+\ell_{\alpha R} \quad(\alpha=e, \mu, \tau) \\
\nu_{k}=\nu_{k L}+\nu_{k R} \quad(k=1,2,3) \\
\mathscr{L}_{H, L}=-\sum_{\alpha=e, \mu, \tau} \frac{y_{\alpha}^{\ell} v}{\sqrt{2}} \overline{\ell_{\alpha}} \ell_{\alpha}-\sum_{k=1}^{3} \frac{y_{k}^{\nu} v}{\sqrt{2}} \overline{\nu_{k}} \nu_{k} \quad \text { Mass Terms } \\
-\sum_{\alpha=e, \mu, \tau} \frac{y_{\alpha}^{\ell}}{\sqrt{2}} \overline{\ell_{\alpha}} \ell_{\alpha} H-\sum_{k=1}^{3} \frac{y_{k}^{\nu}}{\sqrt{2}} \overline{\nu_{k}} \nu_{k} H \quad \text { Lepton-Higgs Couplings }
\end{gathered}
$$

Charged Lepton and Neutrino Masses

$$
\begin{gathered}
m_{\alpha}=\frac{y_{\alpha}^{\ell} v}{\sqrt{2}} \quad(\alpha=e, \mu, \tau) \quad m_{k}=\frac{y_{k}^{\nu} v}{\sqrt{2}} \quad(k=1,2,3) \\
\text { Lepton-Higgs coupling } \propto \text { Lepton Mass }
\end{gathered}
$$

Quantization

$$
\begin{gathered}
\nu_{k}(x)=\int \frac{d^{3} p}{(2 \pi)^{3} 2 E_{k}} \sum_{h= \pm 1}\left[a_{k}^{(h)}(p) u_{k}^{(h)}(p) e^{-i p \cdot x}+b_{k}^{(h)^{\dagger}}(p) v_{k}^{(h)}(p) e^{i p \cdot x}\right] \\
p^{0}=E_{k}=\sqrt{\vec{p}^{2}+m_{k}^{2}} \quad \begin{array}{l}
\left(p p-m_{k}\right) u_{k}^{(h)}(p)=0 \\
\left(p p+m_{k}\right) v_{k}^{(h)}(p)=0
\end{array} \\
\quad \frac{\vec{p} \cdot \vec{\Sigma}}{|\vec{p}|} u_{k}^{(h)}(p)=h u_{k}^{(h)}(p) \\
\quad \frac{\vec{p} \cdot \vec{\Sigma}}{|\vec{p}|} v_{k}^{(h)}(p)=-h v_{k}^{(h)}(p) \\
\left\{\begin{array}{l}
\text { (h) }
\end{array}\right. \\
\left\{a_{k}^{(h)}(p), a_{k}^{\left(h^{\prime}\right) \dagger}\left(p^{\prime}\right)\right\}=\left\{b_{k}^{(h)}(p), b_{k}^{\left(h^{\prime}\right) \dagger}\left(p^{\prime}\right)\right\}=(2 \pi)^{3} 2 E_{k} \delta^{3}\left(\vec{p}-\vec{p}^{\prime}\right) \delta_{h h^{\prime}} \\
\left\{a_{k}^{(h)}(p), a_{k}^{\left(h^{\prime}\right)}\left(p^{\prime}\right)\right\}=\left\{a_{k}^{(h) \dagger}(p), a_{k}^{\left(h^{\prime}\right) \dagger}\left(p^{\prime}\right)\right\}=0 \\
\left\{b_{k}^{(h)}(p), b_{k}^{\left(h^{\prime}\right)}\left(p^{\prime}\right)\right\}=\left\{b_{k}^{(h) \dagger}(p), b_{k}^{\left(h^{\prime}\right) \dagger}\left(p^{\prime}\right)\right\}=0 \\
\left\{a_{k}^{(h)}(p), b_{k}^{\left(h^{\prime}\right)}\left(p^{\prime}\right)\right\}=\left\{a_{k}^{(h) \dagger}(p), b_{k}^{\left(h^{\prime}\right) \dagger}\left(p^{\prime}\right)\right\}=0 \\
\left\{a_{k}^{(h)}(p), b_{k}^{\left(h^{\prime}\right) \dagger}\left(p^{\prime}\right)\right\}=\left\{a_{k}^{(h) \dagger}(p), b_{k}^{\left(h^{\prime}\right)}\left(p^{\prime}\right)\right\}=0
\end{gathered}
$$

Mixing

Charged-Current Weak Interaction Lagrangian

$$
\mathscr{L}_{1}^{(\mathrm{CC})}=-\frac{g}{2 \sqrt{2}} j_{W}^{\rho} W_{\rho}+\text { H.c. }
$$

Weak Charged Current: $\quad j_{W}^{\rho}=j_{W, \mathrm{~L}}^{\rho}+j_{W, \mathrm{Q}}^{\rho}$
Leptonic Weak Charged Current

$$
\begin{gathered}
j_{W, L}^{\rho \dagger}=2 \sum_{\alpha=e, \mu, \tau} \overline{\ell_{\alpha L}^{\prime}} \gamma^{\rho} \nu_{\alpha L}^{\prime}=2 \overline{\ell_{L}^{\prime}} \gamma^{\rho} \boldsymbol{\nu}_{L}^{\prime} \\
\frac{\ell_{L}^{\prime}=V_{L}^{\ell} \boldsymbol{\ell}_{L}}{\boldsymbol{\nu}_{L}^{\prime}=V_{L}^{\nu} \boldsymbol{n}_{L}} \\
j_{W, L}^{\rho \dagger}=2 \overline{\ell_{L}} V_{L}^{\ell \dagger} \gamma^{\rho} V_{L}^{\nu} \boldsymbol{n}_{L}=2 \overline{\ell_{L}} \gamma^{\rho} V_{L}^{\ell \dagger} V_{L}^{\nu} \boldsymbol{n}_{L}=2 \overline{\ell_{L}} \gamma^{\rho} \cup \boldsymbol{n}_{L} \\
\text { Mixing Matrix: } \quad U=V_{L}^{\ell \dagger} V_{L}^{\nu}
\end{gathered}
$$

- Definition: Left-Handed Flavor Neutrino Fields

$$
\nu_{L}=U \boldsymbol{n}_{L}=V_{L}^{\ell \dagger} V_{L}^{\nu} \boldsymbol{n}_{L}=V_{L}^{\ell \dagger} \boldsymbol{\nu}_{L}^{\prime}=\left(\begin{array}{l}
\nu_{e L} \\
\nu_{\mu L} \\
\nu_{\tau L}
\end{array}\right)
$$

- They allow us to write the Leptonic Weak Charged Current as in the SM:

$$
j_{W, \mathrm{~L}}^{\rho \dagger}=2 \overline{\ell_{L}} \gamma^{\rho} \nu_{L}=2 \sum_{\alpha=e, \mu, \tau} \overline{\ell_{\alpha L}} \gamma^{\rho} \nu_{\alpha L}
$$

- Each left-handed flavor neutrino field is associated with the corresponding charged lepton field which describes a massive charged lepton:

$$
j_{W, L}^{\rho \dagger}=2\left(\overline{e_{L}} \gamma^{\rho} \nu_{e L}+\overline{\mu_{L}} \gamma^{\rho} \nu_{\mu L}+\overline{\tau_{L}} \gamma^{\rho} \nu_{\tau L}\right)
$$

- In practice left-handed flavor neutrino fields are useful for calculations in the SM approximation of massless neutrinos (interactions).
- If neutrino masses must be taken into account, it is necessary to use

$$
j_{W, \mathrm{~L}}^{\rho \dagger}=2 \overline{\ell_{L}} \gamma^{\rho} \cup \boldsymbol{n}_{L}=2 \sum_{\alpha=e, \mu, \tau} \sum_{k=1}^{3} \overline{\ell_{\alpha L}} \gamma^{\rho} U_{\alpha k} \nu_{k L}
$$

Flavor Lepton Numbers

Flavor Neutrino Fields are useful for defining
Flavor Lepton Numbers as in the SM

	L_{e}	L_{μ}	L_{τ}		L_{e}	L_{μ}	L_{τ}
$\left(\nu_{e}, e^{-}\right)$		0	0	$\left(\nu_{e}^{c}, e^{+}\right)$	-1	0	0
$\left(\nu_{\mu}, \mu^{-}\right)$	0	+1	0	$\left(\nu_{\mu}^{c}, \mu^{+}\right)$	0	-1	0
$\left(\nu_{\tau}, \tau^{-}\right)$	0	0	+1	$\left(\nu_{\tau}^{c}, \tau^{+}\right)$	0	0	-1

$$
L=L_{e}+L_{\mu}+L_{\tau}
$$

Standard Model:
Lepton numbers are conserved

- L_{e}, L_{μ}, L_{τ} are conserved in the Standard Model with massless neutrinos
- Dirac mass term:

$$
\mathscr{L}^{\mathrm{D}}=-\left(\begin{array}{lll}
\overline{\nu_{e L}} & \overline{\nu_{\mu L}} & \overline{\nu_{\tau L}}
\end{array}\right)\left(\begin{array}{ccc}
m_{e e}^{\mathrm{D}} & m_{e \mu}^{\mathrm{D}} & m_{e \tau}^{\mathrm{D}} \\
m_{\mu e}^{\mathrm{D}} & m_{\mu \mu}^{\mathrm{D}} & m_{\mu \tau}^{\mathrm{D}} \\
m_{\tau e}^{\mathrm{D}} & m_{\tau \mu}^{\mathrm{D}} & m_{\tau \tau}^{\mathrm{D}}
\end{array}\right)\left(\begin{array}{c}
\nu_{e R} \\
\nu_{\mu R} \\
\nu_{\tau R}
\end{array}\right)+\text { H.c. }
$$

L_{e}, L_{μ}, L_{τ} are not conserved

- L is conserved: $\quad L\left(\nu_{\alpha R}\right)=L\left(\nu_{\beta L}\right) \Longrightarrow|\Delta L|=0$
- Leptonic Weak Charged Current is invariant under the global $U(1)$ gauge transformations

$$
\ell_{\alpha L} \rightarrow e^{i \varphi_{\alpha}} \ell_{\alpha L} \quad \nu_{\alpha L} \rightarrow e^{i \varphi_{\alpha}} \nu_{\alpha L} \quad(\alpha=e, \mu, \tau)
$$

- If neutrinos are massless (SM), Noether's theorem implies that there is, for each flavor, a conserved current:

$$
j_{\alpha}^{\rho}=\overline{\nu_{\alpha L}} \gamma^{\rho} \nu_{\alpha L}+\overline{\ell_{\alpha}} \gamma^{\rho} \ell_{\alpha} \quad \partial_{\rho} j_{\alpha}^{\rho}=0
$$

and a conserved charge:

$$
\begin{gathered}
\mathrm{L}_{\alpha}=\int \mathrm{d}^{3} x j_{\alpha}^{0}(x) \quad \partial_{0} \mathrm{~L}_{\alpha}=0 \\
: \mathrm{L}_{\alpha}:=\int \frac{\mathrm{d}^{3} p}{(2 \pi)^{3} 2 E}\left[a_{\nu_{\alpha}}^{(-) \dagger}(p) a_{\nu_{\alpha}}^{(-)}(p)-b_{\nu_{\alpha}}^{(+) \dagger}(p) b_{\nu_{\alpha}}^{(+)}(p)\right] \\
\\
+\int \frac{\mathrm{d}^{3} p}{(2 \pi)^{3} 2 E} \sum_{h= \pm 1}\left[a_{\ell_{\alpha}}^{(h) \dagger}(p) a_{\ell_{\alpha}}^{(h)}(p)-b_{\ell_{\alpha}}^{(h) \dagger}(p) b_{\ell_{\alpha}}^{(h)}(p)\right]
\end{gathered}
$$

- Lepton-Higgs Yukawa Lagrangian:

$$
\mathscr{L}_{H, L}=-\left(\frac{v+H}{\sqrt{2}}\right)\left[\sum_{\alpha=e, \mu, \tau} y_{\alpha}^{\ell} \overline{\ell_{\alpha L}} \ell_{\alpha R}+\sum_{k=1}^{3} y_{k}^{\nu} \overline{\nu_{k L}} \nu_{k R}\right]+\text { H.c. }
$$

- Mixing: $\nu_{\alpha L}=\sum_{k=1}^{3} U_{\alpha k} \nu_{k L}$
$\Longleftrightarrow \quad \nu_{k L}=\sum_{\alpha=e, \mu, \tau} U_{\alpha k}^{*} \nu_{\alpha L}$

$$
\mathscr{L}_{H, L}=-\left(\frac{v+H}{\sqrt{2}}\right) \sum_{\alpha=e, \mu, \tau}\left[y_{\alpha}^{\ell} \overline{\ell_{\alpha L}} \ell_{\alpha R}+\overline{\nu_{\alpha L}} \sum_{k=1}^{3} U_{\alpha k} y_{k}^{\nu} \nu_{k R}\right]+\text { H.c. }
$$

- Invariant for

$$
\begin{array}{ll}
\ell_{\alpha L} \rightarrow e^{i \varphi_{\alpha}} \ell_{\alpha L}, \quad \nu_{\alpha L} \rightarrow e^{i \varphi_{\alpha}} \nu_{\alpha L} \\
\ell_{\alpha R} \rightarrow e^{i \varphi_{\alpha}} \ell_{\alpha R}, \quad \sum_{k=1}^{3} U_{\alpha k} y_{k}^{\nu} \nu_{k R} \rightarrow e^{i \varphi_{\alpha}} \sum_{k=1}^{3} U_{\alpha k} y_{k}^{\nu} \nu_{k R}
\end{array}
$$

- But kinetic part of neutrino Lagrangian is not invariant

$$
\mathscr{L}_{\text {kinetic }}^{(\nu)}=\sum_{\alpha=e, \mu, \tau} \overline{\nu_{\alpha L}} i \not \partial \nu_{\alpha L}+\sum_{k=1}^{3} \overline{\nu_{k R}} i \not \partial \nu_{k R}
$$

because $\sum_{k=1}^{3} U_{\alpha k} y_{k}^{\nu} \nu_{k R}$ is not a unitary combination of the $\nu_{k R}$'s

Total Lepton Number

- Dirac neutrino masses violate conservation of Flavor Lepton Numbers
- Total Lepton Number is conserved, because Lagrangian is invariant under the global $U(1)$ gauge transformations

$$
\begin{array}{lll}
\nu_{k L} \rightarrow e^{i \varphi} \nu_{k L}, & \nu_{k R} \rightarrow e^{i \varphi} \nu_{k R} & (k=1,2,3) \\
\ell_{\alpha L} \rightarrow e^{i \varphi} \ell_{\alpha L}, & \ell_{\alpha R} \rightarrow e^{i \varphi} \ell_{\alpha R} & (\alpha=e, \mu, \tau)
\end{array}
$$

- From Noether's theorem:

$$
j^{\rho}=\sum_{k=1}^{3} \overline{\nu_{k}} \gamma^{\rho} \nu_{k}+\sum_{\alpha=e, \mu, \tau} \overline{\ell_{\alpha}} \gamma^{\rho} \ell_{\alpha} \quad \partial_{\rho} j^{\rho}=0
$$

Conserved charge: $\mathrm{L}=\int \mathrm{d}^{3} x j^{0}(x) \quad \partial_{0} \mathrm{~L}=0$

$$
\begin{aligned}
: \mathrm{L}:= & \sum_{k=1}^{3} \int \frac{\mathrm{~d}^{3} p}{(2 \pi)^{3} 2 E} \sum_{h= \pm 1}\left[a_{\nu_{k}}^{(h) \dagger}(p) a_{\nu_{k}}^{(h)}(p)-b_{\nu_{k}}^{(h) \dagger}(p) b_{\nu_{k}}^{(h)}(p)\right] \\
& +\sum_{\alpha=e, \mu, \tau} \int \frac{\mathrm{~d}^{3} p}{(2 \pi)^{3} 2 E} \sum_{h= \pm 1}\left[a_{\ell_{\alpha}}^{(h) \dagger}(p) a_{\ell_{\alpha}}^{(h)}(p)-b_{\ell_{\alpha}}^{(h) \dagger}(p) b_{\ell_{\alpha}}^{(h)}(p)\right]
\end{aligned}
$$

Mixing Matrix

$-U=V_{L}^{\ell \dagger} V_{L}^{\nu}=\left(\begin{array}{lll}U_{e 1} & U_{e 2} & U_{e 3} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3}\end{array}\right)$

- A unitary $N \times N$ matrix depends on N^{2} independent real parameters:

$$
N=3 \quad \Longrightarrow \quad \begin{array}{ll}
\frac{N(N-1)}{2}=3 &
\end{array}
$$

- Not all phases are physical observables!
- Neutrino Lagrangian:

$$
\text { kinetic terms }+ \text { mass terms }+ \text { weak interactions }
$$

- Mixing is due to the diagonalization of the mass terms.
- The kinetic terms are invariant under unitary transformations of the fermion fields.
- What is the effect of mixing in weak interactions?
- Weak Charged Current: $j_{W, \mathrm{~L}}^{\rho \dagger}=2 \sum_{\alpha=e, \mu, \tau} \sum_{k=1}^{3} \overline{\ell_{\alpha L}} \gamma^{\rho} U_{\alpha k} \nu_{k L}$
- Apart from the Weak Charged Current, the Lagrangian is invariant under the global phase transformations (6 arbitrary phases)

$$
\ell_{\alpha} \rightarrow e^{i \varphi_{\alpha}} \ell_{\alpha} \quad(\alpha=e, \mu, \tau), \quad \nu_{k} \rightarrow e^{i \varphi_{k}} \nu_{k} \quad(k=1,2,3)
$$

- Performing this transformation, the Weak Charged Current becomes

$$
\begin{gathered}
j_{W, L}^{\rho \dagger}=2 \sum_{\alpha=e, \mu, \tau} \sum_{k=1}^{3} \overline{\ell_{\alpha} L} e^{-i \varphi_{\alpha}} \gamma^{\rho} U_{\alpha k} e^{i \varphi_{k}} \nu_{k L} \\
j_{W, L}^{\rho \dagger}=2 \underbrace{e^{-i\left(\varphi_{e}-\varphi_{1}\right)}}_{1} \sum_{\alpha=e, \mu, \tau} \sum_{k=1}^{3} \overline{\ell_{\alpha} L} \underbrace{e^{-i\left(\varphi_{\alpha}-\varphi_{e}\right)}}_{2} \gamma^{\rho} U_{\alpha k} \underbrace{e^{i\left(\varphi_{k}-\varphi_{1}\right)}}_{2} \nu_{k L}
\end{gathered}
$$

- There are 5 independent combinations of the phases of the fields that can be chosen to eliminate 5 of the 6 phases of the mixing matrix
- 5 and not 6 phases of the mixing matrix can be eliminated because a common rephasing of all the lepton fields leaves the Weak Charged Current invariant \Longleftrightarrow conservation of Total Lepton Number.

[^0]- The mixing matrix contains 1 Physical Phase.
- It is convenient to express the 3×3 unitary mixing matrix only in terms of the four physical parameters:

3 Mixing Angles and 1 Phase

Standard Parameterization of Mixing Matrix

$$
\begin{gathered}
\left(\begin{array}{l}
\nu_{e L} \\
\nu_{\mu L} \\
\nu_{\tau L}
\end{array}\right)=\left(\begin{array}{lll}
U_{e 1} & U_{e 2} & U_{e 3} \\
U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\
U_{\tau 1} & U_{\tau 2} & U_{\tau 3}
\end{array}\right)\left(\begin{array}{l}
\nu_{1 L} \\
\nu_{2 L} \\
\nu_{3 L}
\end{array}\right) \\
U=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & c_{23} & s_{23} \\
0 & -s_{23} & c_{23}
\end{array}\right)\left(\begin{array}{ccc}
c_{13} & 0 & s_{13} e^{-i \delta_{13}} \\
0 & 1 & 0 \\
-s_{13} e^{i \delta_{13}} & 0 & c_{13}
\end{array}\right)\left(\begin{array}{ccc}
c_{12} & s_{12} & 0 \\
-s_{12} & c_{12} & 0 \\
0 & 0 & 1
\end{array}\right) \\
=\left(\begin{array}{ccc}
c_{12} c_{13} & s_{12} c_{13} & s_{13} e^{-i \delta_{13}} \\
-s_{12} c_{23}-c_{12} s_{23} s_{13} e^{i \delta_{13}} & c_{12} c_{23}-s_{12} s_{23} s_{13} e^{i \delta_{13}} & s_{23} c_{13} \\
s_{12} s_{23}-c_{12} c_{23} s_{13} e^{i \delta_{13}} & -c_{12} s_{23}-s_{12} c_{23} s_{13} e^{i \delta_{13}} & c_{23} c_{13}
\end{array}\right) \\
c_{a b} \equiv \cos \vartheta_{a b} \quad s_{a b} \equiv \sin \vartheta_{a b} \quad 0 \leq \vartheta_{a b} \leq \frac{\pi}{2} \quad 0 \leq \delta_{13}<2 \pi
\end{gathered}
$$

3 Mixing Angles $\vartheta_{12}, \vartheta_{23}, \vartheta_{13}$ and 1 Phase δ_{13}

Standard Parameterization

$$
U=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & c_{23} & s_{23} \\
0 & -s_{23} & c_{23}
\end{array}\right)\left(\begin{array}{ccc}
c_{13} & 0 & s_{13} e^{-i \delta_{13}} \\
0 & 1 & 0 \\
-s_{13} e^{i \delta_{13}} & 0 & c_{13}
\end{array}\right)\left(\begin{array}{ccc}
c_{12} & s_{12} & 0 \\
-s_{12} & c_{12} & 0 \\
0 & 0 & 1
\end{array}\right)
$$

Example of Different Phase Convention

$$
U=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & c_{23} & s_{23} e^{i \delta_{23}} \\
0 & -s_{23} e^{-i \delta_{13}} & c_{23}
\end{array}\right)\left(\begin{array}{ccc}
c_{13} & 0 & s_{13} \\
0 & 1 & 0 \\
-s_{13} & 0 & c_{13}
\end{array}\right)\left(\begin{array}{ccc}
c_{12} & s_{12} & 0 \\
-s_{12} & c_{12} & 0 \\
0 & 0 & 1
\end{array}\right)
$$

Example of Different Parameterization

$$
U=\left(\begin{array}{ccc}
c_{12}^{\prime} & s_{12}^{\prime} e^{-i \delta_{12}^{\prime}} & 0 \\
-s_{12}^{\prime} e^{i \delta_{12}^{\prime}} & c_{12}^{\prime} & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & c_{23}^{\prime} & s_{23}^{\prime} \\
0 & -s_{23}^{\prime} & c_{23}^{\prime}
\end{array}\right)\left(\begin{array}{ccc}
c_{13}^{\prime} & 0 & s_{13}^{\prime} \\
0 & 1 & 0 \\
-s_{13}^{\prime} & 0 & c_{13}^{\prime}
\end{array}\right)
$$

CP Violation

- $U \neq U^{*} \Longrightarrow$ CP Violation (CPV)
- General conditions for CP violation (14 conditions):

1. No charged leptons or neutrinos are degenerate in mass (6 conditions)
2. No mixing angle is equal to 0 or $\pi / 2$ (6 conditions)
3. The physical phase is different from 0 or π (2 conditions)

- These 14 conditions are combined into the single condition

$$
\begin{array}{r}
\operatorname{det} C \neq 0 \quad \text { with } \quad C=-i\left[M^{\prime \nu} M^{\prime \nu^{\dagger}}, M^{\prime \ell} M^{\prime \ell \dagger}\right] \\
\operatorname{det} C=-2 J\left(m_{\nu_{2}}^{2}-m_{\nu_{1}}^{2}\right)\left(m_{\nu_{3}}^{2}-m_{\nu_{1}}^{2}\right)\left(m_{\nu_{3}}^{2}-m_{\nu_{2}}^{2}\right) \\
\left(m_{\mu}^{2}-m_{e}^{2}\right)\left(m_{\tau}^{2}-m_{e}^{2}\right)\left(m_{\tau}^{2}-m_{\mu}^{2}\right) \neq 0
\end{array}
$$

- Jarlskog invariant: $J=\operatorname{Im}\left[U_{e 2} U_{e 3}^{*} U_{\mu 2}^{*} U_{\mu 3}\right]$
[C. Jarlskog, Phys. Rev. Lett. 55 (1985) 1039, Z. Phys. C 29 (1985) 491]
[O. W. Greenberg, Phys. Rev. D 32 (1985) 1841]
[I. Dunietz, O. W. Greenberg, Dan-di Wu, Phys. Rev. Lett. 55 (1985) 2935]

Example: $\vartheta_{12}=0$

$$
\begin{gathered}
U=R_{23} R_{13} W_{12} \\
W_{12}=\left(\begin{array}{ccc}
\cos \vartheta_{12} & \sin \vartheta_{12} e^{-i \delta_{12}} & 0 \\
-\sin \vartheta_{12} e^{-i \delta_{12}} & \cos \vartheta_{12} & 0 \\
0 & 0 & 1
\end{array}\right) \\
\vartheta_{12}=0 \quad \Longrightarrow \quad W_{12}=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)=\mathbb{1}
\end{gathered}
$$

$$
\text { Real Mixing Matrix: } \quad U=R_{23} R_{13}
$$

Example: $\vartheta_{13}=\pi / 2$

$$
U=R_{23} W_{13} R_{12}
$$

$$
\begin{gathered}
W_{13}=\left(\begin{array}{ccc}
\cos \vartheta_{13} & 0 & \sin \vartheta_{13} e^{-i \delta_{13}} \\
0 & 1 & 0 \\
-\sin \vartheta_{13} e^{i \delta_{13}} & 0 & \cos \vartheta_{13}
\end{array}\right) \\
\vartheta_{13}=\pi / 2 \quad \Longrightarrow \quad W_{13}=\left(\begin{array}{ccc}
0 & 0 & e^{-i \delta_{13}} \\
0 & 1 & 0 \\
-e^{i \delta_{13}} & 0 & 0
\end{array}\right) \\
U=\left(\begin{array}{ccc}
0 & 0 & e^{-i \delta_{13}} \\
-s_{12} c_{23}-c_{12} s_{23} e^{i \delta_{13}} & c_{12} c_{23}-s_{12} s_{23} e^{i \delta_{13}} & 0 \\
s_{12} s_{23}-c_{12} c_{23} e^{i \delta_{13}} & -c_{12} s_{23}-s_{12} c_{23} e^{i \delta_{13}} & 0
\end{array}\right)
\end{gathered}
$$

$$
\begin{aligned}
& U=\left(\begin{array}{ccc}
0 & 0 & e^{-i \delta_{13}} \\
\left|U_{\mu 1}\right| e^{i \lambda_{\mu 1}} & \left|U_{\mu 2}\right| e^{i \lambda_{\mu 2}} & 0 \\
\left|U_{\tau 1}\right| e^{i \lambda_{\tau 1}} & \left|U_{\tau 2}\right| e^{i \lambda_{\tau 2}} & 0
\end{array}\right) \\
& \lambda_{\mu 1}-\lambda_{\mu 2}=\lambda_{\tau 1}-\lambda_{\tau 2} \pm \pi \\
& \lambda_{\tau 1}-\lambda_{\mu 1}=\lambda_{\tau 2}-\lambda_{\mu 2} \pm \pi \\
& \nu_{k} \rightarrow e^{i \varphi_{k}} \nu_{k} \quad(k=1,2,3), \quad \ell_{\alpha} \rightarrow e^{i \varphi_{\alpha}} \ell_{\alpha} \quad(\alpha=e, \mu, \tau) \\
& U \rightarrow\left(\begin{array}{ccc}
e^{-i \varphi e} & 0 & 0 \\
0 & e^{-i \varphi_{\mu}} & 0 \\
0 & 0 & e^{-i \varphi_{\tau}}
\end{array}\right)\left(\begin{array}{ccc}
0 & 0 & e^{-i \delta_{13}} \\
\left|U_{\mu 1}\right| e^{i \lambda_{\mu 1}} & \left|U_{\mu 2}\right| e^{i \lambda_{\mu 2}} & 0 \\
\left|U_{\tau 1}\right| e^{i \lambda_{\tau 1}} \mid & \left|U_{\tau 2}\right| e^{i \lambda_{\tau 2}} & 0
\end{array}\right)\left(\begin{array}{ccc}
i{ }^{i \varphi_{1}} & 0 & 0 \\
0 & e^{i \varphi_{2}} & 0 \\
0 & 0 & e^{i \varphi_{3}}
\end{array}\right) \\
& U=\left(\begin{array}{cc}
\left|U_{\mu 1}\right| e^{i\left(\lambda_{\mu 1}-\varphi_{\mu}+\varphi_{1}\right)} & \left|U_{\mu 2}\right| e^{i\left(\lambda_{\mu 2}-\varphi_{\mu}+\varphi_{2}\right)} \\
\left|U_{\tau 1}\right| e^{i\left(\lambda_{\tau 1}-\varphi_{\tau}+\varphi_{1}\right)} & \left|U_{\tau 2}\right| e^{i\left(\lambda_{\tau 2}-\varphi_{\tau}+\varphi_{2}\right)}
\end{array} e^{i\left(-\delta_{13}-\varphi_{e}+\varphi_{3}\right)} 00 .\right. \\
& \begin{aligned}
\varphi_{1}=0 \quad \varphi_{\mu} & =\lambda_{\mu 1} \quad \varphi_{\tau}
\end{aligned}=\lambda_{\tau 1} \quad \varphi_{2}=\varphi_{\mu}-\lambda_{\mu 2}=\lambda_{\mu}, ~=\lambda_{\tau 1}-\lambda_{\tau 2} \pm \pi=\lambda_{\mu 1}-\lambda_{\mu 2} . \\
& \text { Real Mixing Matrix: } \quad U=\left(\begin{array}{ccc}
0 & 0 & \pm 1 \\
\left|U_{\mu 1}\right| & \left|U_{\mu 2}\right| & 0 \\
\left|U_{\tau 1}\right| & -\left|U_{\tau 2}\right| & 0
\end{array}\right)
\end{aligned}
$$

Example: $m_{\nu_{2}}=m_{\nu_{3}}$

$$
\begin{gathered}
j_{W, L}^{\rho \dagger}=2 \overline{\ell_{L}} \gamma^{\rho} U n_{L} \\
U=R_{12} R_{13} W_{23} \Longrightarrow \quad j_{W, L}^{\rho \dagger}=2 \overline{\ell_{L}} \gamma^{\rho} R_{12} R_{13} W_{23} \boldsymbol{n}_{L} \\
W_{23}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos \vartheta_{23} & \sin \vartheta_{23} e^{-i \delta_{23}} \\
0 & -\sin \vartheta_{23} e^{-i \delta_{23}} & \cos \vartheta_{23}
\end{array}\right) \\
W_{23} \boldsymbol{n}_{L}=\boldsymbol{n}_{L}^{\prime} \quad R_{12} R_{13}=U^{\prime} \quad \Longrightarrow \quad j_{W, \mathrm{~L}}^{\rho \dagger}=2 \overline{\ell_{L}} \gamma^{\rho} U^{\prime} \boldsymbol{n}_{L}^{\prime}
\end{gathered}
$$

ν_{2} and ν_{3} are indistinguishable if they have the same mass!

$$
\boldsymbol{n}_{L}^{\prime} \text { is equivalent to } \boldsymbol{n}_{L}
$$

Drop the prime $\quad \Longrightarrow \quad j_{W, \mathrm{~L}}^{\rho \dagger}=2 \overline{\ell_{L}} \gamma^{\rho} \cup \boldsymbol{n}_{L}$ With the Real Mixing Matrix $\quad U=R_{12} R_{13}$

Jarlskog Invariant

- Since physics in invariant under reparameterizations of the mixing matrix, all physical quantities can be expressed in terms of reparameterization-invariant quantities.
- Simplest invariants: $\left|U_{\alpha k}\right|^{2}=U_{\alpha k} U_{\alpha k}^{*}, \quad U_{\alpha k} U_{\alpha j}^{*} U_{\beta k}^{*} U_{\beta j}$
- Simplest CPV invariants: $\operatorname{Im}\left[U_{\alpha k} U_{\alpha j}^{*} U_{\beta k}^{*} U_{\beta j}\right]= \pm J$

Jarlskog invariant: $\quad J=\operatorname{Im}\left[U_{e 2} U_{e 3}^{*} U_{\mu 2}^{*} U_{\mu 3}\right]=\operatorname{Im}\left(\begin{array}{ccc}\cdot & 0 & \times \\ \cdot & \times & 0 \\ \cdot & \cdot & \cdot\end{array}\right)$

- In standard parameterization:

$$
\begin{aligned}
J & =c_{12} s_{12} c_{23} s_{23} c_{13}^{2} s_{13} \sin \delta_{13} \\
& =\frac{1}{8} \sin 2 \vartheta_{12} \sin 2 \vartheta_{23} \cos \vartheta_{13} \sin 2 \vartheta_{13} \sin \delta_{13}
\end{aligned}
$$

- For CPV all mixing angles must be different from 0 and $\pi / 2$!
- The Jarlskog invariant is useful for quantifying CPV in a parameterization-independent way.
- All measurable CPV effects depend on J.

[^1]
Maximal CP Violation

- Maximal CP violation is defined as the case in which $|J|$ has its maximum possible value

$$
|J|_{\max }=\operatorname{Max}|\underbrace{c_{12} s_{12}}_{\frac{1}{2}} \underbrace{c_{23} s_{23}}_{\frac{1}{2}} \underbrace{c_{13}^{2} s_{13}}_{\frac{2}{3 \sqrt{3}}} \underbrace{\sin \delta_{13}}_{1}|=\frac{1}{6 \sqrt{3}}
$$

- In the standard parameterization it is obtained for

$$
\vartheta_{12}=\vartheta_{23}=\pi / 4, \quad s_{13}=1 / \sqrt{3}, \quad \sin \delta_{13}= \pm 1
$$

- This case is called Trimaximal Mixing. All the absolute values of the elements of the mixing matrix are equal to $1 / \sqrt{3}$:

$$
U=\left(\begin{array}{ccc}
\frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} & \mp \frac{i}{\sqrt{3}} \\
-\frac{1}{2} \mp \frac{i}{2 \sqrt{3}} & \frac{1}{2} \mp \frac{i}{2 \sqrt{3}} & \frac{1}{\sqrt{3}} \\
\frac{1}{2} \mp \frac{i}{2 \sqrt{3}} & -\frac{1}{2} \mp \frac{i}{2 \sqrt{3}} & \frac{1}{\sqrt{3}}
\end{array}\right)=\frac{1}{\sqrt{3}}\left(\begin{array}{ccc}
1 & 1 & \mp i \\
-e^{ \pm i \pi / 6} & e^{\mp i \pi / 6} & 1 \\
e^{\mp i \pi / 6} & -e^{ \pm i \pi / 6} & 1
\end{array}\right)
$$

GIM Mechanism

[S.L. Glashow, J. Iliopoulos, L. Maiani, Phys. Rev. D 2 (1970) 1285]

- Neutral-Current Weak Interaction Lagrangian:

$$
\mathscr{L}_{1}^{(\mathrm{NC})}=-\frac{g}{2 \cos \vartheta_{\mathrm{W}}} j_{Z}^{\rho} Z_{\rho} \quad j_{Z}^{\rho}=j_{Z, \mathrm{~L}}^{\rho}+j_{Z, Q}^{\rho}
$$

- Leptonic Weak Neutral Current: $\quad\left(g_{L}^{\nu}=\frac{1}{2}, g_{L}^{\ell}=-\frac{1}{2}+\sin ^{2} \vartheta_{\mathrm{w}}, g_{R}^{\ell}=\sin ^{2} \vartheta_{\mathrm{w}}\right)$

$$
j_{Z, \mathrm{~L}}^{\rho}=2 g_{L}^{\nu} \overline{\boldsymbol{\nu}_{L}^{\prime}} \gamma^{\rho} \boldsymbol{\nu}_{L}^{\prime}+2 g_{L}^{\ell} \overline{\ell_{L}^{\prime}} \gamma^{\rho} \boldsymbol{\ell}_{L}^{\prime}+2 g_{R}^{\ell} \overline{\ell_{R}^{\prime}} \gamma^{\rho} \boldsymbol{\ell}_{R}^{\prime}
$$

- Invariant under mixing transformations with unitary $V_{L}^{\ell}, V_{R}^{\ell}, V_{L}^{\nu}$:

$$
\begin{aligned}
j_{Z, L}^{\rho} & =2 g_{L}^{\nu} \overline{\boldsymbol{n}_{L}} V_{L}^{\nu \dagger} \gamma^{\rho} V_{L}^{\nu} \boldsymbol{n}_{L}+2 g_{L}^{\ell} \overline{\ell_{L}} V_{L}^{\ell \dagger} \gamma^{\rho} V_{L}^{\ell} \boldsymbol{\ell}_{L}+2 g_{R}^{\ell} \overline{\ell_{R}} V_{R}^{\ell \dagger} \gamma^{\rho} V_{R}^{\ell} \ell_{R} \\
& =2 g_{L}^{\nu} \overline{\boldsymbol{n}_{L}} \gamma^{\rho} \boldsymbol{n}_{L}+2 g_{L}^{\ell} \overline{\boldsymbol{\ell}_{L}} \gamma^{\rho} \boldsymbol{\ell}_{L}+2 g_{R}^{\ell} \overline{\ell_{R}} \gamma^{\rho} \boldsymbol{\ell}_{R}
\end{aligned}
$$

- Invariant also under the mixing transformation $\nu_{L}=U \boldsymbol{n}_{L}$ which defines the flavor neutrino fields:

$$
\begin{aligned}
j_{Z, L}^{\rho} & =2 g_{L}^{\nu} \overline{\nu_{L}} U \gamma^{\rho} U^{\dagger} \nu_{L}+2 g_{L}^{\ell} \overline{\ell_{L}} \gamma^{\rho} \boldsymbol{\ell}_{L}+2 g_{R}^{\ell} \overline{\ell_{R}} \gamma^{\rho} \ell_{R} \\
& =2 g_{L}^{\nu} \overline{\boldsymbol{\nu}_{L}} \gamma^{\rho} \nu_{L}+2 g_{L}^{\ell} \overline{\ell_{L}} \gamma^{\rho} \boldsymbol{\ell}_{L}+2 g_{R}^{\ell} \overline{\ell_{R}} \gamma^{\rho} \boldsymbol{\ell}_{R}
\end{aligned}
$$

- Mixing has no effect in neutral-current weak interactions.

[^2]
Lepton Numbers Violating Processes

Dirac mass term allows L_{e}, L_{μ}, L_{τ} violating processes
Example: $\mu^{ \pm} \rightarrow e^{ \pm}+\gamma, \quad \mu^{ \pm} \rightarrow e^{ \pm}+e^{+}+e^{-}$

$$
\mu^{-} \rightarrow e^{-}+\gamma
$$

$\sum_{k} U_{\mu k}^{*} U_{e k}=0 \Longrightarrow$ GIM suppression: $\quad A \propto \sum_{k} U_{\mu k}^{*} U_{e k} f\left(m_{k}\right)$

$$
\begin{aligned}
\mathscr{L}_{1}^{(\mathrm{CC})} & =-\frac{g}{2 \sqrt{2}} W^{\alpha}\left[\overline{\nu_{e}} \gamma_{\alpha}\left(1-\gamma_{5}\right) e+\overline{\nu_{\mu}} \gamma_{\alpha}\left(1-\gamma_{5}\right) \mu+\ldots\right] \\
& =-\frac{g}{2 \sqrt{2}} W^{\alpha} \sum_{k}\left[\overline{\nu_{k}} U_{e k}^{*} \gamma_{\alpha}\left(1-\gamma_{5}\right) e+\overline{\nu_{k}} U_{\mu k}^{*} \gamma_{\alpha}\left(1-\gamma_{5}\right) \mu+\ldots\right]
\end{aligned}
$$

$$
A \propto \sum_{k} \overline{u_{e}} U_{e k} \gamma_{\alpha}\left(1-\gamma_{5}\right) \frac{\not p+m_{k}}{p^{2}-m_{k}^{2}} U_{\mu k}^{*} \gamma_{\beta}\left(1-\gamma_{5}\right) u_{\mu}
$$

$$
\begin{aligned}
\mathscr{L}_{1}^{(\mathrm{CC})} & =-\frac{g}{2 \sqrt{2}} W^{\alpha}\left[\overline{\nu_{e}} \gamma_{\alpha}\left(1-\gamma_{5}\right) e+\overline{\nu_{\mu}} \gamma_{\alpha}\left(1-\gamma_{5}\right) \mu+\ldots\right] \\
& =-\frac{g}{2 \sqrt{2}} W^{\alpha} \sum_{k}\left[\overline{\nu_{k}} U_{e k}^{*} \gamma_{\alpha}\left(1-\gamma_{5}\right) e+\overline{\nu_{k}} U_{\mu k}^{*} \gamma_{\alpha}\left(1-\gamma_{5}\right) \mu+\ldots\right]
\end{aligned}
$$

$$
A \propto \sum_{k} \overline{u_{e}} U_{e k} \gamma_{\alpha}\left(1-\gamma_{5}\right) \frac{p+m_{k}}{p^{2}-m_{k}^{2}}\left(1+\gamma_{5}\right) \gamma_{\beta} U_{\mu k}^{*} u_{\mu}
$$

$$
\begin{gathered}
\frac{1}{p^{2}-m_{k}^{2}}=p^{-2}\left(1-\frac{m_{k}^{2}}{p^{2}}\right)^{-1} \simeq p^{-2}\left(1+\frac{m_{k}^{2}}{p^{2}}\right) \\
A \propto \sum_{k} U_{e k} U_{\mu k}^{*}\left(1+\frac{m_{k}^{2}}{p^{2}}\right)=\sum_{k} U_{e k} U_{\mu k}^{*} \frac{m_{k}^{2}}{p^{2}} \rightarrow \sum_{k} U_{e k} U_{\mu k}^{*} \frac{m_{k}^{2}}{m_{W}^{2}} \\
\Gamma=\frac{G_{F}^{2} m_{\mu}^{5}}{192 \pi^{3}} \underbrace{\frac{3 \alpha}{32 \pi}\left|\sum_{k} U_{e k} U_{\mu k}^{*} \frac{m_{k}^{2}}{m_{W}^{2}}\right|^{2}}_{\text {BR }} \\
\text { [Petcov, SJNP 25 (1977) 340; Bilenky, Petcov, Pontecorvo, PLB 67 (1977) 309] } \\
\text { [Lee, Shrock, PRD 16 (1977) 1444] }
\end{gathered}
$$

Suppression factor: $\quad \frac{m_{k}}{m_{W}} \lesssim 10^{-11} \quad$ for $\quad m_{k} \lesssim 1 \mathrm{eV}$
$(\mathrm{BR})_{\text {the }} \lesssim 10^{-47} \quad(\mathrm{BR})_{\exp } \lesssim 10^{-11}$

Majorana Neutrino Masses and Mixing

- Dirac Neutrino Masses and Mixing
- Majorana Neutrino Masses and Mixing
- Two-Component Theory of a Massless Neutrino
- Majorana Equation
- CP Symmetry
- Effective Majorana Mass
- Mixing of Three Majorana Neutrinos
- Dirac-Majorana Mass Term
- Sterile Neutrinos

Two-Component Theory of a Massless Neutrino

[Landau, NP 3 (1957) 127; Lee, Yang, PR 105 (1957) 1671; Salam, NC 5 (1957) 299]

- Dirac Equation: $\quad\left(i \gamma^{\mu} \partial_{\mu}-m\right) \psi=0$
- Chiral decomposition of a Fermion Field: $\quad \psi=\psi_{L}+\psi_{R}$
- Equations for the Chiral components are coupled by mass:

$$
\begin{aligned}
& i \gamma^{\mu} \partial_{\mu} \psi_{L}=m \psi_{R} \\
& i \gamma^{\mu} \partial_{\mu} \psi_{R}=m \psi_{L}
\end{aligned}
$$

- They are decoupled for a massless fermion: Weyl Equations (1929)

$$
\begin{aligned}
& i \gamma^{\mu} \partial_{\mu} \psi_{L}=0 \\
& i \gamma^{\mu} \partial_{\mu} \psi_{R}=0
\end{aligned}
$$

- A massless fermion can be described by a single chiral field ψ_{L} or ψ_{R} (Weyl Spinor), which has only two independent components (half the number of degrees of freedom of a Dirac field, which has four independent components).

[^3]- Chiral representation of γ matrices:

$$
\begin{array}{r}
\gamma^{0}=\left(\begin{array}{cc}
0 & -\mathbb{1} \\
-\mathbb{1} & 0
\end{array}\right) \quad \vec{\gamma}=\left(\begin{array}{cc}
0 & \vec{\sigma} \\
-\vec{\sigma} & 0
\end{array}\right) \quad \gamma^{5}=\left(\begin{array}{cc}
\mathbb{1} & 0 \\
0 & -\mathbb{1}
\end{array}\right) \\
P_{L}=\frac{1-\gamma^{5}}{2}=\left(\begin{array}{ll}
0 & 0 \\
0 & \mathbb{1}
\end{array}\right) \quad P_{R}=\frac{1+\gamma^{5}}{2}=\left(\begin{array}{ll}
\mathbb{1} & 0 \\
0 & 0
\end{array}\right) \\
\text { Four-components Dirac spinor: } \quad \psi=\binom{\chi_{R}}{\chi_{L}}=\left(\begin{array}{c}
\chi_{R 1} \\
\chi_{R 2} \\
\chi_{L 1} \\
\chi_{L 2}
\end{array}\right)
\end{array}
$$

- The Weyl spinors ψ_{L} and ψ_{R} have only two components:

$$
\psi_{L}=P_{L} \psi=\binom{0}{\chi_{L}} \equiv\left(\begin{array}{c}
0 \\
0 \\
\chi_{L 1} \\
\chi_{L 2}
\end{array}\right) \quad \psi_{R}=P_{R} \psi=\binom{\chi_{R}}{0} \equiv\left(\begin{array}{c}
\chi_{R 1} \\
\chi_{R 2} \\
0 \\
0
\end{array}\right)
$$

- The possibility to describe a physical particle with a Weyl spinor was rejected by Pauli in 1933 because it leads to parity violation:

$$
\psi_{L} \stackrel{\mathrm{P}}{\rightleftharpoons}\left(\psi_{L}\right)^{\mathrm{P}}=\left(\psi^{\mathrm{P}}\right)_{R}
$$

- Parity is the symmetry of space inversion (mirror transformation)

- Parity was considered to be an exact symmetry of nature
- 1956: Lee and Yang understand that Parity can be violated in Weak Interactions (1957 Physics Nobel Prize)
- 1957: Wu et al. discover Parity violation in β-decay of ${ }^{60} \mathrm{Co}$

The experiment of Wu et al.

$$
{ }^{60} \mathrm{Co} \rightarrow{ }^{60} \mathrm{Ni}+e^{-}+\bar{\nu}_{e}
$$

- If parity were conserved the decays A and B schould be observed with the same frequency.
- Instead, Wu et al measured the asymmetry

$$
\frac{A-B}{A+B}>0.7
$$

- Therefore, parity is violated in weak interactions.
- Parity: $x^{\mu}=\left(x^{0}, \vec{x}\right) \xrightarrow{P} x_{P}^{\mu}=\left(x^{0},-\vec{x}\right)=x_{\mu}$
- The transformation of a fermion field $\psi(x)$ under parity is determined from the invariance of the theory under parity.
- Dirac Lagrangian:

$$
\begin{gathered}
\mathscr{L}_{\mathrm{D}}(x)=\bar{\psi}(x)(i \not \partial-m) \psi(x)=\bar{\psi}(x)\left(i \gamma^{0} \partial_{0}+i \gamma^{k} \partial_{k}-m\right) \psi(x) \\
\downarrow \mathrm{P} \\
\bar{\psi}^{\mathrm{P}}\left(x_{\mathrm{P}}\right)\left(i \gamma^{0} \partial_{0}-i \gamma^{k} \partial_{k}-m\right) \psi^{\mathrm{P}}\left(x_{\mathrm{P}}\right)
\end{gathered}
$$

- It is equal to $\mathscr{L}_{\mathrm{D}}\left(x_{\mathrm{P}}\right)$ if

$$
\psi^{\mathrm{P}}\left(x_{\mathrm{P}}\right)=\xi_{\mathrm{P}} \gamma^{0} \psi(x)
$$

- Invariance is obtained from the action because $\left|\frac{\partial x_{\mathrm{p}}}{\partial x}\right|=1$:

$$
I_{\mathrm{D}}=\int \mathrm{d}^{4} x \mathscr{L}_{\mathrm{D}}(x)=\int \mathrm{d}^{4} x_{\mathrm{P}} \mathscr{L}_{\mathrm{D}}\left(x_{\mathrm{P}}\right)
$$

- $\psi(x) \xrightarrow{\mathrm{P}} \psi^{\mathrm{P}}\left(x_{\mathrm{P}}\right)=\xi_{\mathrm{P}} \gamma^{0} \psi(x)$
- $\psi_{L}(x) \xrightarrow{\mathrm{P}}\left(\psi_{L}\right)^{\mathrm{P}}\left(x_{\mathrm{P}}\right)=\xi_{\mathrm{P}} \gamma^{0} \psi_{L}(x)$
- $P_{L}\left(\psi_{L}\right)^{\mathrm{P}}=\xi_{\mathrm{P}} \frac{1-\gamma^{5}}{2} \gamma^{0} \psi_{L}=\xi_{\mathrm{P}} \gamma^{0} \frac{1+\gamma^{5}}{2} \psi_{L}=0$
$-P_{R}\left(\psi_{L}\right)^{\mathrm{P}}=\xi_{\mathrm{P}} \frac{1+\gamma^{5}}{2} \gamma^{0} \psi_{L}=\xi_{\mathrm{P}} \gamma^{0} \frac{1-\gamma^{5}}{2} \psi_{L}=\left(\psi_{L}\right)^{\mathrm{P}}$
- Therefore $\left(\psi_{L}\right)^{\mathrm{P}}$ is right-handed: $\psi_{L} \stackrel{\mathrm{P}}{\rightleftharpoons}\left(\psi_{L}\right)^{\mathrm{P}}=\left(\psi^{\mathrm{P}}\right)_{R}$
- Explicit swap of left and right components in the chiral representation:

$$
\left(\psi_{L}\right)^{\mathrm{P}}=\xi_{\mathrm{P}} \gamma^{0} \psi_{L}=\xi_{\mathrm{P}}\left(\begin{array}{cc}
0 & -\mathbb{1} \\
-\mathbb{1} & 0
\end{array}\right)\binom{0}{\chi_{L}}=-\xi_{\mathrm{P}}\binom{\chi_{L}}{0}
$$

- The discovery of parity violation in 1956-57 invalidated Pauli's reasoning, opening the possibility to describe massless particles with Weyl spinor fields \Longrightarrow Two-component Theory of a Massless Neutrino (1957)
- 1958: Goldhaber, Grodzins and Sunyar measure the neutrino helicity with the electron capture process

$$
\begin{aligned}
e^{-}+{ }^{152} \mathrm{Eu} \rightarrow & { }^{152} \mathrm{Sm}^{*}+\nu_{e} \\
& \stackrel{152}{ } \mathrm{Sm}^{*} \rightarrow{ }^{152} \mathrm{Sm}+\gamma
\end{aligned}
$$

The neutrino helicity is the same as the measurable helicity of the photon when it is emitted in the same direction of the ${ }^{152} \mathrm{Sm}$ * recoil.

$h_{\gamma}=-0.91 \pm 0.19 \Longrightarrow$ NEUTRINOS ARE LEFT-HANDED: ν_{L}
[Goldhaber, Grodzins and Sunyar, PR 109 (1958) 1015]

$V-A$ Weak Interactions

[Feynman, Gell-Mann, PR 109 (1958) 193; Sudarshan, Marshak, PR 109 (1958) 1860; Sakurai, NC 7 (1958) 649]

- The Fermi Hamiltonian (1934) $\quad H_{\beta}=g\left(\bar{p} \gamma^{\alpha} n\right)\left(\bar{e} \gamma^{\alpha} \nu\right)+$ H.c. explained only nuclear decays with $\Delta J=0$.
- 1936: Gamow and Teller extension to describe observed nuclear decays with $|\Delta J|=1$:
[PR 49 (1936) 895]

$$
\begin{gathered}
H_{\beta}=\sum_{j=1}^{5}\left[g_{j}\left(\bar{p} \Omega^{j} n\right)\left(\bar{e} \Omega_{j} \nu_{e}\right)+g_{j}^{\prime}\left(\bar{p} \Omega^{j} n\right)\left(\bar{e} \Omega_{j} \gamma_{5} \nu_{e}\right)\right]+\text { H.c. } \\
\quad \text { with } \Omega^{1}=1, \Omega^{2}=\gamma^{\alpha}, \Omega^{3}=\sigma^{\alpha \beta}, \Omega^{4}=\gamma^{\alpha} \gamma^{5}, \Omega^{5}=\gamma^{5}
\end{gathered}
$$

- 1958: Using simplicity arguments, Feynman and Gell-Mann, Sudarshan and Marshak, Sakurai propose the universal theory of parity-violating $V-A$ Weak Interactions:

$$
\begin{aligned}
& H_{\mathrm{W}}=\frac{G_{F}}{\sqrt{2}}\left\{\left[\bar{p} \gamma^{\alpha}\left(1-\gamma^{5}\right) n\right]\left[\bar{e} \gamma^{\alpha}\left(1-\gamma^{5}\right) \nu\right]\right. \\
&\left.+\left[\bar{\nu} \gamma^{\alpha}\left(1-\gamma^{5}\right) \mu\right]\left[\bar{e} \gamma^{\alpha}\left(1-\gamma^{5}\right) \nu\right]\right\}+ \text { H.c. }
\end{aligned}
$$

in agreement with $\nu_{L}=\frac{1-\gamma^{5}}{2} \nu$

Quantization

$$
\begin{gathered}
\nu(x)=\int \frac{d^{3} p}{(2 \pi)^{3} 2 E} \sum_{h= \pm 1}\left[a^{(h)}(p) u^{(h)}(p) e^{-i p \cdot x}+b^{(h)^{\dagger}}(p) v^{(h)}(p) e^{i p \cdot x}\right] \\
p^{0}=E=\sqrt{\vec{p}^{2}+m^{2}} \quad \begin{array}{r}
(p p-m) u^{(h)}(p)=0 \\
(\not p+m) v^{(h)}(p)=0
\end{array} \\
\begin{array}{r}
\frac{\vec{p} \cdot \vec{\Sigma}}{|\vec{p}|} u^{(h)}(p)=h u^{(h)}(p)
\end{array} \\
\quad \frac{\vec{p} \cdot \vec{\Sigma}}{|\vec{p}|} v^{(h)}(p)=-h v^{(h)}(p)
\end{gathered} \begin{array}{r}
\left\{a^{(h)}(p), a^{\left(h^{\prime}\right) \dagger}\left(p^{\prime}\right)\right\}=\left\{b^{(h)}(p), b^{\left(h^{\prime}\right) \dagger}\left(p^{\prime}\right)\right\}=(2 \pi)^{3} 2 E \delta^{3}\left(\vec{p}-\vec{p}^{\prime}\right) \delta_{h h^{\prime}} \\
\left\{a^{(h)}(p), a^{\left(h^{\prime}\right)}\left(p^{\prime}\right)\right\}=\left\{a^{(h) \dagger}(p), a^{\left(h^{\prime}\right) \dagger}\left(p^{\prime}\right)\right\}=0 \\
\left\{b^{(h)}(p), b^{\left(h^{\prime}\right)}\left(p^{\prime}\right)\right\}=\left\{b^{(h) \dagger}(p), b^{\left(h^{\prime}\right) \dagger}\left(p^{\prime}\right)\right\}=0 \\
\left\{a^{(h)}(p), b^{\left(h^{\prime}\right)}\left(p^{\prime}\right)\right\}=\left\{a^{(h) \dagger}(p), b^{\left(h^{\prime}\right) \dagger}\left(p^{\prime}\right)\right\}=0 \\
\left\{a^{(h)}(p), b^{\left(h^{\prime}\right) \dagger}\left(p^{\prime}\right)\right\}=\left\{a^{(h) \dagger}(p), b^{\left(h^{\prime}\right)}\left(p^{\prime}\right)\right\}=0
\end{array}
$$

Left-handed neutrino:

$$
\left|\nu_{L}(p)\right\rangle=|\nu(p, h=-1)\rangle=a^{(-) \dagger}(p)|0\rangle
$$

Right-handed neutrino:

$$
\left|\nu_{R}(p)\right\rangle=|\nu(p, h=+1)\rangle=a^{(+) \dagger}(p)|0\rangle
$$

Left-handed antineutrino:

$$
\left|\bar{\nu}_{L}(p)\right\rangle=|\bar{\nu}(p, h=-1)\rangle=b^{(-) \dagger}(p)|0\rangle
$$

Right-handed antineutrino: $\quad\left|\bar{\nu}_{R}(p)\right\rangle=|\bar{\nu}(p, h=+1)\rangle=b^{(+) \dagger}(p)|0\rangle$

Helicity and Chirality

$$
\begin{gathered}
\nu_{L}(x)=\int \frac{d^{3} p}{(2 \pi)^{3} 2 E} \sum_{h= \pm 1}\left[a^{(h)}(p) u_{L}^{(h)}(p) e^{-i p \cdot x}+b^{(h)^{\dagger}}(p) v_{L}^{(h)}(p) e^{i p \cdot x}\right] \\
u^{(h) \dagger}(p) u^{(h)}(p)=2 E \quad u^{(h) \dagger}(p) \gamma^{5} u^{(h)}(p)=2 h|\vec{p}| \\
v^{(h) \dagger}(p) v^{(h)}(p)=2 E \quad v^{(h) \dagger}(p) \gamma^{5} v^{(h)}(p)=-2 h|\vec{p}| \\
u_{L}^{(h) \dagger}(p) u_{L}^{(h)}(p)=u^{(h) \dagger}(p)\left(\frac{1-\gamma^{5}}{2}\right) u^{(h)}(p)=E-h|\vec{p}| \\
u_{L}^{(-) \dagger}(p) u_{L}^{(-)}(p)=E+|\vec{p}| \simeq 2 E-\frac{m^{2}}{2 E} \quad \text { left-handed neutrinos }
\end{gathered}
$$

$$
u_{L}^{(+) \dagger}(p) u_{L}^{(+)}(p)=E-|\vec{p}| \simeq \frac{m^{2}}{2 E} \quad \text { suppressed right-handed neutrinos }
$$

$$
v_{L}^{(h) \dagger}(p) v_{L}^{(h)}(p)=v^{(h) \dagger}(p)\left(\frac{1-\gamma^{5}}{2}\right) v^{(h)}(p)=E+h|\vec{p}|
$$

$$
v_{L}^{(-) \dagger}(p) v_{L}^{(-)}(p)=E-|\vec{p}| \simeq \frac{m^{2}}{2 E} \quad \text { right-handed antineutrinos }
$$

$$
v_{L}^{(+) \dagger}(p) v_{L}^{(+)}(p)=E+|\vec{p}| \simeq 2 E-\frac{m^{2}}{2 E} \quad \text { suppressed left-handed antineutrino }
$$

Massless Left-Handed Neutrino Field

$\nu_{L}(x)=\int \frac{d^{3} p}{(2 \pi)^{3} 2 E}\left[a^{(-)}(p) u_{L}^{(-)}(p) e^{-i p \cdot x}+b^{(+)^{\dagger}}(p) v_{L}^{(+)}(p) e^{i p \cdot x}\right]$

Left-handed neutrino:

$$
\left|\nu_{L}(p)\right\rangle=|\nu(p, h=-1)\rangle=a^{(-) \dagger}(p)|0\rangle
$$

Right-handed antineutrino: $\quad\left|\bar{\nu}_{R}(p)\right\rangle=|\bar{\nu}(p, h=+1)\rangle=b^{(+) \dagger}(p)|0\rangle$

Standard Model

- Glashow (1961), Weinberg (1967) and Salam (1968) formulate the Standard Model of ElectroWeak Interactions (1979 Physics Nobel Prize) assuming that neutrinos are massless and left-handed
- Universal $V-A$ Weak Interactions
- Quantum Field Theory: $\nu_{L} \Rightarrow|\nu(h=-1)\rangle$ and $\quad|\bar{\nu}(h=+1)\rangle$
- Parity is violated: $\quad|\nu(h=-1)\rangle \xrightarrow{P} \quad|\nu(h=1)\rangle$

- Particle-Antiparticle symmetry (Charge Conjugation) is violated:

$$
|\nu(h=-1)\rangle \quad C \quad I \bar{\nu}(h=\leq 1)\rangle
$$

Majorana Equation

- Can a two-component spinor describe a massive fermion?
Yes! (E. Majorana, 1937)
- Trick: ν_{R} and ν_{L} are not independent:

$$
\nu_{R}=\nu_{L}^{c}=\mathcal{C}{\overline{\nu_{L}}}^{T}
$$

charge-conjugation matrix: $\quad \mathcal{C} \gamma_{\mu}^{T} \mathcal{C}^{-1}=-\gamma_{\mu}$

- The relation between ν_{R} and ν_{L} must satisfy two requirements:
- It must have the correct chirality.

This is satisfied, because ν_{L}^{c} is right-handed: $\quad P_{R} \nu_{L}^{c}=\nu_{L}^{c} \quad P_{L} \nu_{L}^{c}=0$

- It must be compatible with the chiral Dirac equations

$$
\begin{aligned}
& i \gamma^{\mu} \partial_{\mu} \nu_{L}=m \nu_{R} \\
& i \gamma^{\mu} \partial_{\mu} \nu_{R}=m \nu_{L}
\end{aligned}
$$

Check:

$$
\begin{aligned}
i \gamma^{\mu} \partial_{\mu} \nu_{R} & =i \gamma^{\mu} \partial_{\mu} \mathcal{C}{\overline{\nu_{L}}}^{\top}=i \mathcal{C C} \mathcal{C}^{-1} \gamma^{\mu} \mathcal{C} \partial_{\mu} \overline{\bar{L}}^{T}=-i \mathcal{C}\left(\gamma^{\mu}\right)^{T} \partial_{\mu}{\overline{\nu_{L}}}^{T} \\
& =-i \mathcal{C}\left(\partial_{\mu} \overline{\nu_{L}} \gamma^{\mu}\right)^{T}=m \mathcal{C}{\overline{\nu_{R}}}^{T}=m \nu_{L} \quad \text { OK }
\end{aligned}
$$

- Other relations between ψ_{R} and ψ_{L} do not satisfy the two requirements.
- For example $\psi_{R}=\psi_{L}^{\mathrm{P}}=\gamma^{0} \psi_{L}$ satisfies the chirality requirements, because $\psi_{L} \stackrel{\mathrm{P}}{\rightleftharpoons} \psi_{R}$, but $i \gamma^{\mu} \partial_{\mu} \psi_{R}=i \gamma^{\mu} \partial_{\mu} \gamma^{0} \psi_{L}=i \gamma^{0}\left(\gamma^{\mu}\right)^{\dagger} \partial_{\mu} \psi_{L} \neq i \gamma^{0} \gamma^{\mu} \partial_{\mu} \psi_{L}=m \gamma^{0} \psi_{R}=m \psi_{L}$
- There are several relations which satisfy only the chirality requirements, for example $\quad \psi_{R}=\gamma^{\mu} \psi_{L} \quad$ for $\quad \mu=0,1,2,3$
- There is only one adequate relation $\left(\psi_{R}=\mathcal{C}{\overline{\psi_{L}}}^{T}\right)$ that can be derived from the chiral Dirac equations: consider $i \gamma^{\mu} \partial_{\mu} \psi_{R}=m \psi_{L}$

$$
\begin{aligned}
\text { Hermitian conj. } \times \gamma^{0} & \Longrightarrow-i \partial_{\mu} \psi_{R}^{\dagger}\left(\gamma^{\mu}\right)^{\dagger} \gamma^{0}=m \overline{\psi_{L}} \\
\gamma^{0}\left(\gamma^{\mu}\right)^{\dagger} \gamma^{0}=\gamma^{\mu} & \Longrightarrow-i \partial_{\mu} \overline{\psi_{R}} \gamma^{\mu}=m \bar{\psi}_{L} \\
\mathcal{C} \times \text { transpose } & \Longrightarrow-i \mathcal{C}\left(\gamma^{\mu}\right)^{T} \partial_{\mu}{\overline{\psi_{R}}}^{T}=m \overline{\mathcal{C}}_{\psi_{L}}{ }^{T} \\
\mathcal{C}\left(\gamma^{\mu}\right)^{T} \mathcal{C}^{-1}=-\gamma^{\mu} & \Longrightarrow i \gamma^{\mu} \partial_{\mu}{\overline{\mathcal{C}} \bar{\psi}_{R}}=m \mathcal{C}{\overline{\psi_{L}}}
\end{aligned}
$$

Identical to $i \gamma^{\mu} \partial_{\mu} \psi_{L}=m \psi_{R}$ for $\psi_{R}=\mathcal{C}{\overline{\psi_{L}}}^{\top} \leftrightarrows \psi_{L}=\mathcal{C}{\overline{\psi_{R}}}{ }^{\top}$ (Majorana)
$>i \gamma^{\mu} \partial_{\mu} \nu_{L}=m \nu_{R} \quad \rightarrow \quad i \gamma^{\mu} \partial_{\mu} \nu_{L}=m \nu_{L}^{c} \quad$ Majorana equation

- Majorana field: $\quad \nu=\nu_{L}+\nu_{R}=\nu_{L}+\nu_{L}^{c}$

$$
\nu=\nu^{c} \quad \text { Majorana condition }
$$

- $\nu=\nu^{c}$ implies the equality of particle and antiparticle
- Only neutral fermions can be Majorana particles
- For a Majorana field, the electromagnetic current vanishes identically:

$$
\bar{\nu} \gamma^{\mu} \nu=\overline{\nu^{c}} \gamma^{\mu} \nu^{c}=-\nu^{T} \mathcal{C}^{\dagger} \gamma^{\mu} \mathcal{C} \bar{\nu}^{T}=\bar{\nu} \mathcal{C} \gamma^{\mu T} \mathcal{C}^{\dagger} \nu=-\bar{\nu} \gamma^{\mu} \nu=0
$$

- Only two independent components: in the chiral representation

$$
\nu=\binom{i \sigma^{2} \chi_{L}^{*}}{\chi_{L}}=\left(\begin{array}{c}
\chi_{L 2}^{*} \\
-\chi_{L 1}^{*} \\
\chi_{L 1} \\
\chi_{L 2}
\end{array}\right)
$$

Majorana Lagrangian

$$
\begin{gathered}
\text { Dirac Lagrangian } \\
\mathscr{L}^{\mathrm{D}}=\overline{\nu_{2}}(i \not \partial-m) \nu \\
=\overline{\nu_{L}} i \not \partial \nu_{L}+\overline{\nu_{R}} i \not \partial \nu_{R}-m\left(\overline{\nu_{R}} \nu_{L}+\overline{\nu_{L}} \nu_{R}\right) \\
\nu_{R} \rightarrow \nu_{L}^{c}=\mathcal{C}{\overline{\nu_{L}}}^{T} \\
\frac{1}{2} \mathscr{L}^{\mathrm{D}} \rightarrow \overline{\nu_{L}} i \not \partial \nu_{L}-\frac{m}{2}\left(-\nu_{L}^{T} \mathcal{C}^{\dagger} \nu_{L}+\overline{\nu_{L}} \mathcal{C}{\overline{\nu_{L}}}^{T}\right) \\
\text { Majorana Lagrangian } \\
\mathscr{L}^{\mathrm{M}}=\overline{\nu_{L}} i \not \partial \nu_{L}-\frac{m}{2}\left(-\nu_{L}^{T} \mathcal{C}^{\dagger} \nu_{L}+\overline{\nu_{L}} \mathcal{C}{\overline{\nu_{L}}}^{T}\right) \\
=\overline{\nu_{L}} i \not \partial \nu_{L}-\frac{m}{2}\left(\overline{\nu_{L}^{c}} \nu_{L}+\overline{\nu_{L}} \nu_{L}^{c}\right)
\end{gathered}
$$

- Majorana Lagrangian: $\mathscr{L}^{\mathrm{M}}=\left.\frac{1}{2} \bar{\nu}(i \not \partial-m) \nu\right|_{\nu=\nu^{c}}$
- Quantized Dirac Neutrino Field:

$$
\nu(x)=\int \frac{d^{3} p}{(2 \pi)^{3} 2 E} \sum_{h= \pm 1}\left[a^{(h)}(p) u^{(h)}(p) e^{-i p \cdot x}+b^{(h)^{\dagger}}(p) v^{(h)}(p) e^{i p \cdot x}\right]
$$

- Quantized Majorana Neutrino Field: $\quad b^{(h)}(p)=a^{(h)}(p)$

$$
\nu(x)=\int \frac{d^{3} p}{(2 \pi)^{3} 2 E} \sum_{h= \pm 1}\left[a^{(h)}(p) u^{(h)}(p) e^{-i p \cdot x}+a^{(h) \dagger}(p) v^{(h)}(p) e^{i p \cdot x}\right]
$$

- A Majorana field has half the degrees of freedom of a Dirac field

Total Lepton Number

$$
\begin{gathered}
L \neq+1 \quad \nu=\nu^{c} \longrightarrow L \neq-1 \\
\nu_{L} \Longrightarrow L=+1 \quad \nu_{L}^{c} \Longrightarrow L=-1 \\
\mathscr{L}^{\mathrm{M}}=\overline{\nu_{L}} i \not \partial \nu_{L}-\frac{m}{2}\left(\overline{\nu_{L}^{c}} \nu_{L}+\overline{\nu_{L}} \nu_{L}^{c}\right)
\end{gathered}
$$

Total Lepton Number is not conserved: $\Delta L= \pm 2$
Best process to find violation of Total Lepton Number:
Neutrinoless Double- β Decay

$$
\begin{array}{ll}
\mathcal{N}(A, Z) \rightarrow \mathcal{N}(A, Z+2)+2 e^{-}+2 \bar{K}_{e} & \left(\beta \beta_{0 \nu}^{-}\right) \\
\mathcal{N}(A, Z) \rightarrow \mathcal{N}(A, Z-2)+2 e^{+}+2 \not_{<} & \left(\beta \beta_{0 \nu}^{+}\right)
\end{array}
$$

CP Symmetry

- Under a CP transformation

$$
\begin{aligned}
& \nu_{L}(x) \xrightarrow{\mathrm{CP}} \xi_{\nu}^{\mathrm{CP}} \gamma^{0} \nu_{L}^{c}\left(x_{\mathrm{P}}\right) \\
& \nu_{L}^{c}(x) \xrightarrow{\mathrm{CP}}-\xi_{\nu}^{\mathrm{CP}}{ }^{*} \gamma^{0} \nu_{L}\left(x_{\mathrm{P}}\right) \\
& \overline{\nu_{L}}(x) \xrightarrow{\mathrm{CP}} \xi_{\nu}^{\mathrm{CP}} \overline{\nu_{L}^{c}}\left(x_{\mathrm{P}}\right) \gamma^{0} \\
& \overline{\nu_{L}^{c}}(x) \xrightarrow{\mathrm{CP}}-\xi_{\nu}^{\mathrm{CP}} \overline{\nu_{L}}\left(x_{\mathrm{P}}\right) \gamma^{0}
\end{aligned}
$$

with $\left|\xi_{\nu}^{\mathrm{CP}}\right|^{2}=1, x^{\mu}=\left(x^{0}, \vec{x}\right)$, and $x_{P}^{\mu}=\left(x^{0},-\vec{x}\right)$

- The theory is CP-symmetric if there are values of the phase $\xi_{\nu}^{C P}$ such that the Lagrangian transforms as

$$
\mathscr{L}(x) \xrightarrow{\mathrm{CP}} \mathscr{L}\left(x_{\mathrm{P}}\right)
$$

in order to keep invariant the action $I=\int \mathrm{d}^{4} x \mathscr{L}(x)$

- The Majorana Mass Term

$$
\mathscr{L}_{\text {mass }}^{\mathrm{M}}(x)=-\frac{1}{2} m\left[\overline{\nu_{L}^{c}}(x) \nu_{L}(x)+\overline{\nu_{L}}(x) \nu_{L}^{c}(x)\right]
$$

transforms as

$$
\begin{aligned}
\mathscr{L}_{\text {mass }}^{\mathrm{M}}(x) \xrightarrow{\mathrm{CP}}-\frac{1}{2} m & {\left[-\left(\xi_{\nu}^{\mathrm{CP}}\right)^{2} \overline{\nu_{L}}\left(x_{\mathrm{P}}\right) \nu_{L}^{c}\left(x_{\mathrm{P}}\right)\right.} \\
& \left.-\left(\xi_{\nu}^{\mathrm{CP}}\right)^{2} \overline{\nu_{L}^{c}}\left(x_{\mathrm{P}}\right) \nu_{L}\left(x_{\mathrm{P}}\right)\right]
\end{aligned}
$$

$-\mathscr{L}_{\text {mass }}^{\mathrm{M}}(x) \xrightarrow{\mathrm{CP}} \mathscr{L}_{\text {mass }}^{\mathrm{M}}\left(x_{\mathrm{P}}\right) \quad$ for $\quad \xi_{\nu}^{\mathrm{CP}}= \pm i$

- The one-generation Majorana theory is CP-symmetric
- The Majorana case is different from the Dirac case, in which the CP phase ξ_{ν}^{CP} is arbitrary

No Majorana Neutrino Mass in the SM

- Majorana Mass Term $\propto\left[\nu_{L}^{T} \mathcal{C}^{\dagger} \nu_{L}-\overline{\nu_{L} \mathcal{C}} \bar{\nu}^{\top}\right]$ involves only the neutrino left-handed chiral field ν_{L}, which is present in the SM
- Eigenvalues of the weak isospin I, of its third component I_{3}, of the hypercharge Y and of the charge Q of the lepton and Higgs multiplets:

	I	I_{3}	Y	$Q=I_{3}+\frac{Y}{2}$	
lepton doublet $\quad L_{L}=\binom{\nu_{L}}{\ell_{L}}$	$1 / 2$	$1 / 2$ $-1 / 2$	-1	0 -1	
lepton singlet $\quad \ell_{R}$	0	0	-2	-1	
Higgs doublet $\Phi(x)=\binom{\phi_{+}(x)}{\phi_{0}(x)}$	$1 / 2$	$1 / 2$	+1	1 $-1 / 2$	0

- $\nu_{L}^{T} \mathcal{C}^{\dagger} \nu_{L}$ has $I_{3}=1$ and $Y=-2 \Longrightarrow$ needed $Y=2$ Higgs triplet $(I=1$, $I_{3}=-1$)
- Compare with Dirac Mass Term $\propto \overline{\nu_{R}} \nu_{L}$ with $I_{3}=1 / 2$ and $Y=-1$ balanced by $\phi_{0} \rightarrow v$ with $I_{3}=-1 / 2$ and $Y=+1$

Confusing Majorana Antineutrino Terminology

- A Majorana neutrino is the same as a Majorana antineutrino
- Neutrino interactions are described by the CC and NC Lagrangians

$$
\begin{aligned}
& \mathscr{L}_{1, \mathrm{~L}}^{\mathrm{CC}}=-\frac{g}{\sqrt{2}}\left(\overline{\nu_{L}} \gamma^{\mu} \ell_{L} W_{\mu}+\overline{\ell_{L}} \gamma^{\mu} \nu_{L} W_{\mu}^{\dagger}\right) \\
& \mathscr{L}_{1, \nu}^{\mathrm{NC}}=-\frac{g}{2 \cos \vartheta_{\mathrm{W}}} \overline{\nu_{L}} \gamma^{\mu} \nu_{L} Z_{\mu}
\end{aligned}
$$

- Dirac: $\nu_{L}\left\{\begin{array}{l}\text { destroys left-handed neutrinos } \\ \text { creates right-handed antineutrinos }\end{array}\right.$
- Majorana: $\nu_{L}\left\{\begin{array}{l}\text { destroys left-handed neutrinos } \\ \text { creates right-handed neutrinos }\end{array}\right.$
- Common implicit definitions:

$$
\begin{aligned}
& \text { left-handed Majorana neutrino } \equiv \text { neutrino } \\
& \text { right-handed Majorana neutrino } \equiv \text { antineutrino }
\end{aligned}
$$

Effective Majorana Mass

- Dimensional analysis: Fermion Field $\sim[E]^{3 / 2} \quad$ Boson Field $\sim[E]$
- Dimensionless action: $\quad I=\int \mathrm{d}^{4} \times \mathscr{L}(x) \Longrightarrow \mathscr{L}(x) \sim[E]^{4}$
- Kinetic terms: $\bar{\psi} i \not \partial \psi \sim[E]^{4}, \quad\left(\partial_{\mu} \phi\right)^{\dagger} \partial^{\mu} \phi \sim[E]^{4}$
- Mass terms: $\quad m \bar{\psi} \psi \sim[E]^{4}, \quad m^{2} \phi^{\dagger} \phi \sim[E]^{4}$
- CC weak interaction: $g \overline{\nu_{L}} \gamma^{\rho} \ell_{L} W_{\rho} \sim[E]^{4}$
- Yukawa couplings: y $\overline{L_{L}} \phi \ell_{R} \sim[E]^{4}$
- Product of fields \mathscr{O}_{d} with energy dimension $d \equiv \operatorname{dim}-d$ operator
$-\mathscr{L}_{\left(\mathscr{O}_{d}\right)}=C_{\left(\mathscr{O}_{d}\right)} \mathscr{O}_{d} \quad \Longrightarrow \quad C_{\left(\mathscr{O}_{d}\right)} \sim[E]^{4-d}$
- $\mathscr{O}_{d>4}$ are not renormalizable
- SM Lagrangian includes all $\mathscr{O}_{d \leq 4}$ invariant under $\mathrm{SU}(2)_{L} \times \mathrm{U}(1)_{Y}$
- SM cannot be considered as the final theory of everything
- SM is an effective low-energy theory
- It is likely that SM is the low-energy product of the symmetry breaking of a high-energy unified theory
- It is plausible that at low-energy there are effective non-renormalizable $\mathscr{O}_{d>4}$ [S. Weinberg, Phys. Rev. Lett. 43 (1979) 1566]
- All \mathscr{O}_{d} must respect $\mathrm{SU}(2)_{L} \times \mathrm{U}(1)_{Y}$, because they are generated by the high-energy theory which must include the gauge symmetries of the SM in order to be effectively reduced to the SM at low energies
- $\mathscr{O}_{d>4}$ is suppressed by a coefficient \mathcal{M}^{4-d}, where \mathcal{M} is a heavy mass characteristic of the symmetry breaking scale of the high-energy unified theory:

$$
\mathscr{L}=\mathscr{L}_{\mathrm{SM}}+\frac{g_{5}}{\mathcal{M}} \mathscr{O}_{5}+\frac{g_{6}}{\mathcal{M}^{2}} \mathscr{O}_{6}+\ldots
$$

- Analogy with Fermi effective low-energy theory of weak interactions:

$$
\begin{gathered}
\mathscr{L}_{\text {eff }}^{(\mathrm{CC})} \propto G_{F}\left(\overline{\nu_{e L}} \gamma^{\rho} e_{L}\right)\left(\overline{e_{L}} \gamma_{\rho} \nu_{e L}\right)+\ldots \\
\mathscr{O}_{6} \rightarrow\left(\overline{\nu_{e L}} \gamma^{\rho} e_{L}\right)\left(\overline{e_{L}} \gamma_{\rho} \nu_{e L}\right)+\ldots \quad \frac{g_{6}}{\mathcal{M}^{2}} \rightarrow \frac{G_{F}}{\sqrt{2}}=\frac{g^{2}}{8 m_{W}^{2}} \\
G_{\mu \nu}^{(W)}(p)=i \frac{-g_{\mu \nu}+\frac{p_{\mu} p_{\nu}}{m_{W}^{2}}}{p^{2}-m_{W}^{2}} \xrightarrow{p^{2} \ll m_{W}^{2}} i \frac{g_{\mu \nu}}{m_{W}^{2}}
\end{gathered}
$$

[^4]- \mathcal{M}^{4-d} is a strong suppression factor which limits the observability of the low-energy effects of the new physics beyond the SM
- The difficulty to observe the effects of the effective low-energy non-renormalizable operators increase rapidly with their dimensionality
$\bullet_{5} \Longrightarrow$ Majorana neutrino masses (Lepton number violation)
${ }^{-} \mathscr{O}_{6} \Longrightarrow$ Baryon number violation (proton decay)
- Majorana neutrino masses provide the most accessible low-energy window on new physics beyond the SM.
- Indeed, the existence of neutrino masses is the first and so far the only well established phenomenon beyond the SM.
- There is only one dim-5 operator that can be constructed from the dim-2.5 $\mathrm{SU}(2)_{L} \times \mathrm{U}(1)_{Y}$ singlet with SM fields in the Lepton-Higgs Yukawa Lagrangian

$$
\begin{array}{ccccccc}
\mathscr{L}_{H, L}=-y^{\ell} & \overline{L_{L}} \Phi \ell_{R}-y^{\nu} & \overline{L_{L}} \widetilde{\Phi} \nu_{R}+\text { H.c. } \\
Y: & +1+1 & -2 & +1-1 & 0
\end{array}
$$

- The dim-2.5 $\mathrm{SU}(2)_{L} \times \mathrm{U}(1)_{Y}$ singlet: $\quad \overline{L_{L}} \widetilde{\Phi}=\overline{L_{L}} i \sigma_{2} \Phi^{*}$
- It must be multiplied by a spinor as ν_{R} to form a Lorentz scalar.
- As in the Majorana theory, ν_{R} can be replaced by

$$
L_{L}^{c}=\mathcal{C}{\overline{L_{L}}}^{T}=\mathcal{C}\left({\overline{\bar{\nu}_{L}}}^{T}{\overline{\ell_{L}}}^{T}\right) \quad \text { with } \quad Y=+1
$$

- To form a $\operatorname{SU}(2)_{L} \times \mathrm{U}(1)_{Y}$ singlet we need to multiply it by

$$
\widetilde{\Phi}^{T}=-i \Phi^{\dagger} \sigma_{2}=\frac{1}{\sqrt{2}}(v+H(x) \quad 0) \quad \text { with } \quad Y=-1
$$

- The only dim-5 operator:

$$
\begin{gathered}
\mathscr{O}_{5}=\left(\begin{array}{cc}
\overline{L_{L}} & \widetilde{\Phi}
\end{array}\right)\left(\begin{array}{cc}
\widetilde{\Phi}^{T} & L_{L}^{c}
\end{array}\right)+\text { H.c. } \\
Y: \\
+1
\end{gathered}-1 \quad-1+1
$$

- $\mathrm{SU}(2)_{L}$ transformation:

$$
\begin{aligned}
& L_{L} \rightarrow U L_{L} \quad \Phi \rightarrow U \Phi \quad \widetilde{\Phi} \rightarrow U \widetilde{\Phi} \quad L_{L}^{c} \rightarrow U^{*} L_{L}^{c} \\
& L_{L}^{c}=\mathcal{C} \bar{L}_{L}^{T}=\mathcal{C}\left(L_{L}^{\dagger} \gamma^{0}\right)^{T} \rightarrow \mathcal{C}\left(L_{L}^{\dagger} U^{\dagger} \gamma^{0}\right)^{T}=\mathcal{C}\left(L_{L}^{\dagger} \gamma^{0} U^{\dagger}\right)^{T} \\
&=\mathcal{C} U^{*}\left(L_{L}^{\dagger} \gamma^{0}\right)^{T}=U^{*} L_{L}^{c}
\end{aligned}
$$

- $S U(2)_{L}$ invariance:

$$
\begin{aligned}
\mathscr{O}_{5} & =\left(\overline{L_{L}} \widetilde{\Phi}\right)\left(\widetilde{\Phi}^{T} L_{L}^{c}\right)+\text { H.c. } \\
& =\left(\overline{L_{L}} U^{\dagger} U \widetilde{\Phi}\right)\left(\widetilde{\Phi}^{T} U^{T} U^{*} L_{L}^{c}\right)+\text { H.c. } \\
& =\left(\overline{L_{L}} \widetilde{\Phi}\right)\left(\widetilde{\Phi}^{T} L_{L}^{c}\right)+\text { H.c. }
\end{aligned}
$$

because

$$
U^{T} U^{*}=\left(U^{\dagger} U\right)^{T}=\mathbb{1}
$$

- The only $\operatorname{SU}(2)_{L} \times U(1)_{Y}$ invariant dim-5 Lagrangian term that can be constructed with SM fields:

$$
\mathscr{L}_{5}=-\frac{g_{5}}{\mathcal{M}}\left[\left(\overline{L_{L}} \widetilde{\Phi}\right)\left(\widetilde{\Phi}^{T} L_{L}^{c}\right)+\left(\overline{L_{L}^{c}} \widetilde{\Phi}^{*}\right)\left(\widetilde{\Phi}^{\dagger} L_{L}\right)\right]
$$

- Electroweak Symmetry Breaking:

$$
\widetilde{\Phi}=i \sigma_{2} \Phi^{*} \quad \xrightarrow[\text { Breaking }]{\text { EW Symmetry }} \frac{1}{\sqrt{2}}\binom{v+H(x)}{0}
$$

$-\mathscr{L}_{5} \xrightarrow[\text { Breaking }]{\text { EW Symmetry }} \mathscr{L}_{\text {mass }}^{\mathrm{M}}=-\frac{1}{2} \frac{g_{5} v^{2}}{\mathcal{M}}\left(\overline{\nu_{L}} \nu_{L}^{c}+\overline{\nu_{L}^{c}} \nu_{L}\right)$

- Majorana neutrino mass: $\quad m=\frac{g_{5} v^{2}}{\mathcal{M}}$
- General Seesaw Mechanism:

$$
m \propto \frac{v^{2}}{\mathcal{M}}=v \frac{v}{\mathcal{M}}
$$

natural explanation of the strong suppression of neutrino masses with respect to the electroweak scale

- Example: $\quad \mathcal{M} \sim 10^{15} \mathrm{GeV} \quad$ (GUT scale)

$$
v \sim 10^{2} \mathrm{GeV} \Longrightarrow \frac{v}{\mathcal{M}} \sim 10^{-13} \Longrightarrow m \sim 10^{-2} \mathrm{eV}
$$

Mixing of Three Majorana Neutrinos

$-\nu_{L}^{\prime} \equiv\left(\begin{array}{l}\nu_{e L}^{\prime} \\ \nu_{\mu L}^{\prime} \\ \nu_{\tau L}^{\prime}\end{array}\right)$

$$
\begin{aligned}
\mathscr{L}_{\text {mass }}^{\mathrm{M}} & =\frac{1}{2} \boldsymbol{\nu}_{L}^{\prime T} \mathcal{C}^{\dagger} M^{L} \boldsymbol{\nu}_{L}^{\prime}+\text { H.c. } \\
& =\frac{1}{2} \sum_{\alpha, \beta=e, \mu, \tau} \nu_{\alpha L}^{\prime T} \mathcal{C}^{\dagger} M_{\alpha \beta}^{L} \nu_{\beta L}^{\prime}+\text { H.c. }
\end{aligned}
$$

- In general, the matrix M^{L} is a complex symmetric matrix

$$
\begin{aligned}
\sum_{\alpha, \beta} \nu_{\alpha L}^{\prime T} \mathcal{C}^{\dagger} M_{\alpha \beta}^{L} \nu_{\beta L}^{\prime} & =\sum_{\alpha, \beta}\left(\nu_{\alpha L}^{\prime T} \mathcal{C}^{\dagger} M_{\alpha \beta}^{L} \nu_{\beta L}^{\prime}\right)^{T} \\
& =-\sum_{\alpha, \beta} \nu_{\beta L}^{\prime T} M_{\alpha \beta}^{L}\left(\mathcal{C}^{\dagger}\right)^{T} \nu_{\alpha L}^{\prime}=\sum_{\alpha, \beta} \nu_{\beta L}^{\prime T} \mathcal{C}^{\dagger} M_{\alpha \beta}^{L} \nu_{\alpha L}^{\prime} \\
& =\sum_{\alpha, \beta} \nu_{\alpha L}^{\prime T} \mathcal{C}^{\dagger} M_{\beta \alpha}^{L} \nu_{\beta L}^{\prime} \\
M_{\alpha \beta}^{L} & =M_{\beta \alpha}^{L} \Longleftrightarrow M^{L}=M^{L T}
\end{aligned}
$$

$-\mathscr{L}_{\text {mass }}^{\mathrm{M}}=\frac{1}{2} \nu_{L}^{\prime T} \mathcal{C}^{\dagger} M^{L} \nu_{L}^{\prime}+$ H.c.
$>\boldsymbol{\nu}_{L}^{\prime}=V_{L}^{\nu} \boldsymbol{n}_{L} \quad \Longrightarrow \quad \mathscr{L}_{\text {mass }}^{\mathrm{M}}=\frac{1}{2} \nu_{L}^{\prime T}\left(V_{L}^{\nu}\right)^{T} \mathcal{C}^{\dagger} M^{L} V_{L}^{\nu} \boldsymbol{\nu}_{L}^{\prime}+$ H.c.

- $\left(V_{L}^{\nu}\right)^{T} M^{L} V_{L}^{\nu}=M, \quad M_{k j}=m_{k} \delta_{k j} \quad(k, j=1,2,3)$
- Left-handed chiral fields with definite mass: $\boldsymbol{n}_{L}=V_{L}^{\nu^{\dagger}} \boldsymbol{\nu}_{L}^{\prime}=\left(\begin{array}{l}\nu_{1 L} \\ \nu_{2 L} \\ \nu_{3 L}\end{array}\right)$

$$
\begin{aligned}
\mathscr{L}_{\text {mass }}^{\mathrm{M}} & =\frac{1}{2}\left(\boldsymbol{n}_{L}^{T} \mathcal{C}^{\dagger} M \boldsymbol{n}_{L}-\overline{\boldsymbol{n}_{L}} M \mathcal{C} \boldsymbol{n}_{L}^{T}\right) \\
& =\frac{1}{2} \sum_{k=1}^{3} m_{k}\left(\nu_{k L}^{T} \mathcal{C}^{\dagger} \nu_{k L}-\overline{\nu_{k L}} \mathcal{C} \nu_{k L}^{T}\right)
\end{aligned}
$$

- Majorana fields of massive neutrinos: $\nu_{k}=\nu_{k L}+\nu_{k L}^{c}$

$$
\nu_{k}^{c}=\nu_{k}
$$

$\boldsymbol{n}=\left(\begin{array}{l}\nu_{1} \\ \nu_{2} \\ \nu_{3}\end{array}\right) \Longrightarrow \mathscr{L}^{\mathrm{M}}=\left.\frac{1}{2} \sum_{k=1}^{3} \overline{\nu_{k}}\left(i \not \partial-m_{k}\right) \nu_{k}\right|_{\nu_{k}=\nu_{k}^{c}}$

Mixing Matrix

- Leptonic Weak Charged Current:

$$
j_{W, L}^{\rho \dagger}=2 \overline{\ell_{L}} \gamma^{\rho} U \boldsymbol{n}_{L} \quad \text { with } \quad U=V_{L}^{\ell \dagger} V_{L}^{\nu}
$$

- As in the Dirac case, we define the left-handed flavor neutrino fields as

$$
\nu_{L}=U \boldsymbol{n}_{L}=V_{L}^{\ell \dagger} \boldsymbol{\nu}_{L}^{\prime}=\left(\begin{array}{c}
\nu_{e L} \\
\nu_{\mu L} \\
\nu_{\tau L}
\end{array}\right)
$$

- In this way, as in the Dirac case, the Leptonic Weak Charged Current has the SM form

$$
j_{W, \mathrm{~L}}^{\rho \dagger}=2 \overline{\ell_{L}} \gamma^{\rho} \nu_{L}=2 \sum_{\alpha=e, \mu, \tau} \overline{\ell_{\alpha L}} \gamma^{\rho} \nu_{\alpha L}
$$

- Important difference with respect to Dirac case:

Two additional CP-violating phases: Majorana phases

- Majorana Mass Term $\mathscr{L}^{\mathrm{M}}=\frac{1}{2} \sum_{k=1}^{3} m_{k} \nu_{k L}^{T} \mathcal{C}^{\dagger} \nu_{k L}+$ H.c. is not invariant under the global $\mathrm{U}(1)$ gauge transformations

$$
\nu_{k L} \rightarrow e^{i \varphi_{k}} \nu_{k L} \quad(k=1,2,3)
$$

- For eliminating some of the 6 phases of the unitary mixing matrix we can use only the global phase transformations (3 arbitrary phases)

$$
\ell_{\alpha} \rightarrow e^{i \varphi_{\alpha}} \ell_{\alpha} \quad(\alpha=e, \mu, \tau)
$$

Weak Charged Current: $j_{W, L}^{\rho \dagger}=2 \sum_{\alpha=e, \mu, \tau} \sum_{k=1}^{3} \overline{\ell_{\alpha L}} \gamma^{\rho} U_{\alpha k} \nu_{k L}$

- Performing the transformation $\ell_{\alpha} \rightarrow e^{i \varphi_{\alpha}} \ell_{\alpha}$ we obtain

$$
\begin{gathered}
j_{W, L}^{\rho \dagger}=2 \sum_{\alpha=e, \mu, \tau} \sum_{k=1}^{3} \overline{\ell_{\alpha} L} e^{-i \varphi_{\alpha}} \gamma^{\rho} U_{\alpha k} \nu_{k L} \\
j_{W, L}^{\rho \dagger}=2 \underbrace{e^{-i \varphi_{e}}}_{1} \sum_{\alpha=e, \mu, \tau} \sum_{k=1}^{3} \overline{\ell_{\alpha} L} \underbrace{e^{-i\left(\varphi_{\alpha}-\varphi_{e}\right)}}_{2} \gamma^{\rho} U_{\alpha k} \nu_{k L}
\end{gathered}
$$

- We can eliminate 3 phases of the mixing matrix: one overall phase and two phases which can be factorized on the left.
- In the Dirac case we could eliminate also two phases which can be factorized on the right.
- In the Majorana case there are two additional physical Majorana phases which can be factorized on the right of the mixing matrix:

$$
U=U^{\mathrm{D}} D^{\mathrm{M}} \quad D^{\mathrm{M}}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & e^{i \lambda_{2}} & 0 \\
0 & 0 & e^{i \lambda_{3}}
\end{array}\right)
$$

- U^{D} is a Dirac mixing matrix, with one Dirac phase
- Standard parameterization:

$$
U=\left(\begin{array}{ccc}
c_{12} c_{13} & s_{12} c_{13} & s_{13} e^{-i \delta_{13}} \\
-s_{12} c_{23}-c_{12} s_{23} s_{13} e^{i \delta_{13}} & c_{12} c_{23}-s_{12} s_{23} s_{13} e^{i \delta_{13}} & s_{23} c_{13} \\
s_{12} s_{23}-c_{12} c_{23} s_{13} e^{i \delta_{13}} & -c_{12} s_{23}-s_{12} c_{23} s_{13} e^{i \delta_{13}} & c_{23} c_{13}
\end{array}\right)\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & e^{i \lambda_{2}} & 0 \\
0 & 0 & e^{i \lambda_{3}}
\end{array}\right)
$$

- $D^{\mathrm{M}}=\operatorname{diag}\left(e^{i \lambda_{1}}, e^{i \lambda_{2}}, e^{i \lambda_{3}}\right)$, but only two Majorana phases are physical
- All measurable quantities depend only on the differences of the Majorana phases because $e^{i\left(\lambda_{k}-\lambda_{j}\right)}$ remains constant under the allowed phase transformation

$$
\ell_{\alpha} \rightarrow e^{i \varphi} \ell_{\alpha} \Longrightarrow e^{i \lambda_{k}} \rightarrow e^{i\left(\lambda_{k}-\varphi\right)}
$$

- Our convention: $\lambda_{1}=0 \Longrightarrow D^{\mathrm{M}}=\operatorname{diag}\left(1, e^{i \lambda_{2}}, e^{i \lambda_{3}}\right)$
- CP is conserved if all the elements of each column of the mixing matrix are either real or purely imaginary:

$$
\delta_{13}=0 \text { or } \pi \quad \text { and } \quad \lambda_{k}=0 \text { or } \pi / 2 \text { or } \pi \text { or } 3 \pi / 2
$$

Dirac-Majorana Mass Term

- Dirac Neutrino Masses and Mixing
- Majorana Neutrino Masses and Mixing
- Dirac-Majorana Mass Term
- One Generation Dirac-Majorana Mass Term
- Type-I Seesaw Mechanism
- Three-Generation Mixing

One Generation Dirac-Majorana Mass Term

If ν_{R} exists, the most general mass term is the

$$
\begin{gathered}
\text { Dirac-Majorana Mass Term } \\
\mathscr{L}_{\text {mass }}^{\mathrm{D}+\mathrm{M}}=\mathscr{L}_{\text {mass }}^{\mathrm{D}}+\mathscr{L}_{\text {mass }}^{L}+\mathscr{L}_{\text {mass }}^{R} \\
\mathscr{L}_{\text {mass }}^{\mathrm{D}}=-m_{\mathrm{D}} \overline{\nu_{R}} \nu_{L}+\text { H.c. } \quad \\
\quad \text { Standard Dirac Mass Term } \\
\mathscr{L}_{\text {mass }}^{L}=\frac{1}{2} m_{L} \nu_{L}^{T} \mathcal{C}^{\dagger} \nu_{L}+\text { H.c. } \quad \begin{array}{l}
\nu_{L} \text { Majorana Mass Term } \\
\text { Forbidden in the SM }
\end{array} \\
\mathscr{L}_{\text {mass }}^{R}=\frac{1}{2} m_{R} \nu_{R}^{T} \mathcal{C}^{\dagger} \nu_{R}+\text { H.c. } \quad \begin{array}{l}
\nu_{R} \text { Majorana Mass Term } \\
\text { Allowed in the SM }
\end{array}
\end{gathered}
$$

- Column matrix of left-handed chiral fields: $N_{L}=\binom{\nu_{L}}{\nu_{R}^{c}}=\binom{\nu_{L}}{\mathcal{C} \frac{\nu_{R}}{\nu_{R}}}$

$$
\mathscr{L}_{\text {mass }}^{\mathrm{D}+\mathrm{M}}=\frac{1}{2} N_{L}^{T} \mathcal{C}^{\dagger} M N_{L}+\text { H.c. } \quad M=\left(\begin{array}{ll}
m_{L} & m_{\mathrm{D}} \\
m_{\mathrm{D}} & m_{R}
\end{array}\right)
$$

- The Dirac-Majorana Mass Term has the structure of a Majorana Mass Term for two chiral neutrino fields coupled by the Dirac mass

Diagonalization: $n_{L}=U^{\dagger} N_{L}=\binom{\nu_{1 L}}{\nu_{2 L}}$

$$
U^{T} M U=\left(\begin{array}{cc}
m_{1} & 0 \\
0 & m_{2}
\end{array}\right) \quad \text { Real } m_{k} \geq 0
$$

- $\mathscr{L}_{\text {mass }}^{\mathrm{D}+\mathrm{M}}=\frac{1}{2} \sum_{k=1,2} m_{k} \nu_{k L}^{T} \mathcal{C}^{\dagger} \nu_{k L}+$ H.c. $=-\frac{1}{2} \sum_{k=1,2} m_{k} \overline{\nu_{k}} \nu_{k}$

$$
\nu_{k}=\nu_{k L}+\nu_{k L}^{c}
$$

- Massive neutrinos are Majorana!

$$
\nu_{k}=\nu_{k}^{c}
$$

Real Mass Matrix

- CP is conserved if the mass matrix is real: $M=M^{*}$
- $M=\left(\begin{array}{cc}m_{L} & m_{\mathrm{D}} \\ m_{\mathrm{D}} & m_{R}\end{array}\right)$ we consider real and positive m_{R} and m_{D} and real m_{L}
- A real symmetric mass matrix can be diagonalized with $U=\mathcal{O} \rho$

$$
\mathcal{O}=\left(\begin{array}{cc}
\cos \vartheta & \sin \vartheta \\
-\sin \vartheta & \cos \vartheta
\end{array}\right) \quad \rho=\left(\begin{array}{cc}
\rho_{1} & 0 \\
0 & \rho_{2}
\end{array}\right) \quad \rho_{k}^{2}= \pm 1
$$

- $\mathcal{O}^{\top} M \mathcal{O}=\left(\begin{array}{cc}m_{1}^{\prime} & 0 \\ 0 & m_{2}^{\prime}\end{array}\right)$

$$
\tan 2 \vartheta=\frac{2 m_{\mathrm{D}}}{m_{R}-m_{L}}
$$

$$
m_{2,1}^{\prime}=\frac{1}{2}\left[m_{L}+m_{R} \pm \sqrt{\left(m_{L}-m_{R}\right)^{2}+4 m_{\mathrm{D}}^{2}}\right]
$$

m_{1}^{\prime} is negative if $m_{L} m_{R}<m_{D}^{2}$

$$
U^{T} M U=\rho^{T} \mathcal{O}^{T} M \mathcal{O} \rho=\left(\begin{array}{cc}
\rho_{1}^{2} m_{1}^{\prime} & 0 \\
0 & \rho_{2}^{2} m_{2}^{\prime}
\end{array}\right) \Longrightarrow m_{k}=\rho_{k}^{2} m_{k}^{\prime}
$$

m_{2}^{\prime} is always positive:

$$
m_{2}=m_{2}^{\prime}=\frac{1}{2}\left[m_{L}+m_{R}+\sqrt{\left(m_{L}-m_{R}\right)^{2}+4 m_{\mathrm{D}}^{2}}\right]
$$

- If $m_{L} m_{R} \geq m_{\mathrm{D}}^{2}$, then $m_{1}^{\prime} \geq 0$ and $\rho_{1}^{2}=1$

$$
\begin{gathered}
m_{1}=\frac{1}{2}\left[m_{L}+m_{R}-\sqrt{\left(m_{L}-m_{R}\right)^{2}+4 m_{\mathrm{D}}^{2}}\right] \\
\rho_{1}=1 \text { and } \rho_{2}=1 \Longrightarrow U=\left(\begin{array}{cc}
\cos \vartheta & \sin \vartheta \\
-\sin \vartheta & \cos \vartheta
\end{array}\right)
\end{gathered}
$$

- If $m_{L} m_{R}<m_{\mathrm{D}}^{2}$, then $m_{1}^{\prime}<0$ and $\rho_{1}^{2}=-1$

$$
\begin{gathered}
m_{1}=\frac{1}{2}\left[\sqrt{\left(m_{L}-m_{R}\right)^{2}+4 m_{\mathrm{D}}^{2}}-\left(m_{L}+m_{R}\right)\right] \\
\rho_{1}=i \text { and } \rho_{2}=1 \Longrightarrow U=\left(\begin{array}{cc}
i \cos \vartheta & \sin \vartheta \\
-i \sin \vartheta & \cos \vartheta
\end{array}\right)
\end{gathered}
$$

- If Δm^{2} is small, there are oscillations between active ν_{a} generated by ν_{L} and sterile ν_{s} generated by ν_{R}^{c} :

$$
\begin{gathered}
P_{\nu_{\mathrm{a}} \rightarrow \nu_{s}}(L, E)=\sin ^{2} 2 \vartheta \sin ^{2}\left(\frac{\Delta m^{2} L}{4 E}\right) \\
\Delta m^{2}= \\
m_{2}^{2}-m_{1}^{2}=\left(m_{L}+m_{R}\right) \sqrt{\left(m_{L}-m_{R}\right)^{2}+4 m_{\mathrm{D}}^{2}}
\end{gathered}
$$

- It can be shown that the CP parity of ν_{k} is $\xi_{k}^{\mathrm{CP}}=i \rho_{k}^{2}$:

$$
\nu_{k}(x) \xrightarrow{\mathrm{CP}} \xi_{k}^{\mathrm{CP}} \gamma^{0}{\overline{\nu_{k}}}^{T}\left(x_{\mathrm{P}}\right) \quad \xi_{1}^{\mathrm{CP}}=i \rho_{1}^{2} \quad \xi_{2}^{\mathrm{CP}}=i
$$

- Special cases:
- $m_{L}=m_{R} \quad \Longrightarrow \quad$ Maximal Mixing
- $m_{L}=m_{R}=0 \quad \Longrightarrow \quad$ Dirac Limit
- $\left|m_{L}\right|, m_{R} \ll m_{\mathrm{D}} \quad \Longrightarrow \quad$ Pseudo-Dirac Neutrinos
- $m_{L}=0 \quad m_{D} \ll m_{R} \quad \Longrightarrow$ Seesaw Mechanism

Maximal Mixing

$$
\begin{aligned}
& m_{L}=m_{R} \\
& \tan 2 \vartheta=\frac{2 m_{\mathrm{D}}}{m_{R}-m_{L}} \quad \Longrightarrow \quad \vartheta=\pi / 4 \\
& m_{2,1}^{\prime}=m_{L} \pm m_{\mathrm{D}} \\
& \left\{\begin{array}{lll}
\rho_{1}^{2}=+1, & m_{1}=m_{L}-m_{\mathrm{D}} & \text { if } \quad m_{L} \geq m_{\mathrm{D}} \\
\rho_{1}^{2}=-1, & m_{1}=m_{\mathrm{D}}-m_{L} & \text { if } \quad m_{L}<m_{\mathrm{D}}
\end{array}\right. \\
& m_{2}=m_{L}+m_{\mathrm{D}} \\
& \underline{m_{L}<m_{\mathrm{D}}} \\
& \left\{\begin{array}{l}
\nu_{1 L}=\frac{-i}{\sqrt{2}}\left(\nu_{L}-\nu_{R}^{c}\right) \\
\nu_{2 L}=\frac{1}{\sqrt{2}}\left(\nu_{L}+\nu_{R}^{c}\right)
\end{array}\right. \\
& \left\{\begin{array}{l}
\nu_{1}=\nu_{1 L}+\nu_{1 L}^{c}=\frac{-i}{\sqrt{2}}\left[\left(\nu_{L}+\nu_{R}\right)-\left(\nu_{L}^{c}+\nu_{R}^{c}\right)\right] \\
\nu_{2}=\nu_{2 L}+\nu_{2 L}^{c}=\frac{1}{\sqrt{2}}\left[\left(\nu_{L}+\nu_{R}\right)+\left(\nu_{L}^{c}+\nu_{R}^{c}\right)\right]
\end{array}\right.
\end{aligned}
$$

Dirac Limit

$m_{L}=m_{R}=0$
$>m_{2,1}^{\prime}= \pm m_{\mathrm{D}} \Longrightarrow\left\{\begin{array}{ll}\rho_{1}^{2}=-1 & m_{1}=m_{\mathrm{D}} \\ \rho_{2}^{2}=+1 & m_{2}=m_{\mathrm{D}}\end{array} \quad \xi_{1}^{\mathrm{CP}}=-i\right.$

- The two Majorana fields ν_{1} and ν_{2} can be combined to give one Dirac field:

$$
\nu=\frac{1}{\sqrt{2}}\left(i \nu_{1}+\nu_{2}\right)=\nu_{L}+\nu_{R}
$$

- A Dirac field ν can always be split in two Majorana fields:

$$
\begin{aligned}
\nu & =\frac{1}{2}\left[\left(\nu-\nu^{c}\right)+\left(\nu+\nu^{c}\right)\right] \\
& =\frac{i}{\sqrt{2}}\left(-i \frac{\nu-\nu^{c}}{\sqrt{2}}\right)+\frac{1}{\sqrt{2}}\left(\frac{\nu+\nu^{c}}{\sqrt{2}}\right)=\frac{1}{\sqrt{2}}\left(i \nu_{1}+\nu_{2}\right)
\end{aligned}
$$

- A Dirac field is equivalent to two Majorana fields with the same mass and opposite CP parities

Pseudo-Dirac Neutrinos

$$
\left|m_{L}\right|, m_{R} \ll m_{\mathrm{D}}
$$

$>m_{2,1}^{\prime} \simeq \frac{m_{L}+m_{R}}{2} \pm m_{\mathrm{D}}$
$>m_{1}^{\prime}<0 \Longrightarrow \rho_{1}^{2}=-1 \Longrightarrow m_{2,1} \simeq m_{\mathrm{D}} \pm \frac{m_{L}+m_{R}}{2}$

- The two massive Majorana neutrinos are almost degenerate in mass and have opposite CP parities $\left(\xi_{1}^{C P}=-i, \quad \xi_{2}^{C P}=i\right)$
- The best way to reveal pseudo-Dirac neutrinos are active-sterile neutrino oscillations due to the small squared-mass difference

$$
\Delta m^{2} \simeq m_{\mathrm{D}}\left(m_{L}+m_{R}\right)
$$

- The oscillations occur with practically maximal mixing:

$$
\tan 2 \vartheta=\frac{2 m_{\mathrm{D}}}{m_{R}-m_{L}} \gg 1 \quad \Longrightarrow \quad \vartheta \simeq \pi / 4
$$

Type-I Seesaw Mechanism

[Minkowski, PLB 67 (1977) 42; Yanagida (1979); Gell-Mann, Ramond, Slansky (1979); Mohapatra, Senjanovic, PRL 44 (1980) 912]

$$
m_{L}=0 \quad m_{\mathrm{D}} \ll m_{R}
$$

- $\mathscr{L}_{\text {mass }}^{L}$ is forbidden in the $\mathrm{SM} \Longrightarrow m_{L}=0$
- $m_{\mathrm{D}} \lesssim v \sim 100 \mathrm{GeV}$ is generated by SM Higgs Mechanism (protected by SM symmetries)
- m_{R} is not protected by SM symmetries $\Longrightarrow m_{R} \sim \mathcal{M}_{\text {GUT }} \gg v$

$$
\left.\begin{array}{l}
m_{1}^{\prime} \simeq-\frac{m_{\mathrm{D}}^{2}}{m_{R}} \\
m_{2}^{\prime} \simeq m_{R}
\end{array}\right\} \Longrightarrow \begin{cases}\rho_{1}^{2}=-1, & m_{1} \simeq \frac{m_{\mathrm{D}}^{2}}{m_{R}} \\
\rho_{2}^{2}=+1, & m_{2} \simeq m_{R}\end{cases}
$$

- Natural explanation of smallness of neutrino masses
- Mixing angle is very small: $\tan 2 \vartheta=2 \frac{m_{\mathrm{D}}}{m_{R}} \ll 1$
- ν_{1} is composed mainly of active $\nu_{L}: \nu_{1 L} \simeq-i \nu_{L}$
- ν_{2} is composed mainly of sterile $\nu_{R}: \nu_{2 L} \simeq \nu_{R}^{c}$

[^5]
Connection with Effective Lagrangian Approach

- Dirac-Majorana neutrino mass term with $m_{L}=0$:

$$
\mathscr{L}^{\mathrm{D}+\mathrm{M}}=-m_{\mathrm{D}}\left(\overline{\nu_{R}} \nu_{L}+\overline{\nu_{L}} \nu_{R}\right)+\frac{1}{2} m_{R}\left(\nu_{R}^{T} \mathcal{C}^{\dagger} \nu_{R}+\nu_{R}^{\dagger} \mathcal{C} \nu_{R}^{*}\right)
$$

- Above the electroweak symmetry-breaking scale:

$$
\mathscr{L}^{\mathrm{D}+\mathrm{M}}=-y^{\nu}\left(\overline{\nu_{R}} \widetilde{\Phi}^{\dagger} L_{L}+\overline{L_{L}} \widetilde{\Phi} \nu_{R}\right)+\frac{1}{2} m_{R}\left(\nu_{R}^{T} \mathcal{C}^{\dagger} \nu_{R}+\nu_{R}^{\dagger} \mathcal{C} \nu_{R}^{*}\right)
$$

- If $m_{R} \gg v \Longrightarrow \nu_{R}$ is static \Longrightarrow kinetic term in equation of motion can be neglected:

$$
\begin{gathered}
0 \simeq \frac{\partial \mathscr{L}^{\mathrm{D}+\mathrm{M}}}{\partial \nu_{R}}=m_{R} \nu_{R}^{T} \mathcal{C}^{\dagger}-y^{\nu} \overline{L_{L}} \widetilde{\Phi} \\
\nu_{R} \simeq-\frac{y^{\nu}}{m_{R}} \widetilde{\Phi}^{T} \mathcal{C}{\overline{L_{L}}}^{T} \\
\mathscr{L}^{\mathrm{D}+\mathrm{M}} \rightarrow \mathscr{L}_{5}^{\mathrm{D}+\mathrm{M}} \simeq-\frac{1}{2} \frac{\left(y^{\nu}\right)^{2}}{m_{R}}\left(L_{L}^{T} \sigma_{2} \Phi\right) \mathcal{C}^{\dagger}\left(\Phi^{T} \sigma_{2} L_{L}\right)+\text { H.c. }
\end{gathered}
$$

$$
\begin{gathered}
\mathscr{L}_{5}=\frac{g}{\mathcal{M}}\left(L_{L}^{T} \sigma_{2} \Phi\right) \mathcal{C}^{\dagger}\left(\Phi^{T} \sigma_{2} L_{L}\right)+\text { H.c. } \\
\mathscr{L}_{5}^{\mathrm{D}+\mathrm{M}} \simeq-\frac{1}{2} \frac{\left(y^{\nu}\right)^{2}}{m_{R}}\left(L_{L}^{T} \sigma_{2} \Phi\right) \mathcal{C}^{\dagger}\left(\Phi^{T} \sigma_{2} L_{L}\right)+\text { H.c. } \\
g=-\frac{\left(y^{\nu}\right)^{2}}{2} \quad \mathcal{M}=m_{R}
\end{gathered}
$$

- See-saw mechanism is a particular case of the effective Lagrangian approach.
- See-saw mechanism is obtained when dimension-five operator is generated only by the presence of ν_{R} with $m_{R} \sim \mathcal{M}$.
- In general, other terms can contribute to \mathscr{L}_{5}.

Three Seesaw Types

- Since combining the two doublets L_{L} and Φ one can form singlets and triplets, there are three types of Seesaw types that can be generated at the tree level.
- Type-I Seesaw: intermediate fermion singlets ν_{R}

- Type-II Seesaw: coupling with boson triplets Δ

- Type-III Seesaw: intermediate fermion triplets Σ

Generalized Seesaw Mechanism

- General effective Dirac-Majorana mass matrix:

$$
M=\left(\begin{array}{ll}
m_{L} & m_{\mathrm{D}} \\
m_{\mathrm{D}} & m_{R}
\end{array}\right)
$$

- m_{L} generated by dim-5 operator:

$$
m_{L} \ll m_{\mathrm{D}} \ll m_{R}
$$

Eigenvalues:

$$
\begin{gathered}
\left|\begin{array}{cc}
m_{L}-\mu & m_{\mathrm{D}} \\
m_{\mathrm{D}} & m_{R}-\mu
\end{array}\right|=0 \\
\mu^{2}-\left(m_{\mathrm{L}}+m_{R}\right) \mu+m_{L} m_{R}-m_{\mathrm{D}}^{2}=0 \\
\mu=\frac{1}{2}\left[m_{R} \pm \sqrt{m_{R}^{2}-4\left(m_{L} m_{R}-m_{\mathrm{D}}^{2}\right)}\right]
\end{gathered}
$$

$$
\begin{aligned}
\mu= & \frac{1}{2}\left[m_{R} \pm \sqrt{m_{R}^{2}-4\left(m_{L} m_{R}-m_{\mathrm{D}}^{2}\right)}\right] \\
= & \frac{1}{2}\left[m_{R} \pm m_{R}\left(1-4 \frac{m_{L} m_{R}-m_{\mathrm{D}}^{2}}{m_{R}^{2}}\right)^{1 / 2}\right] \\
\simeq & \frac{1}{2}\left[m_{R} \pm m_{R}\left(1-2 \frac{m_{L} m_{R}-m_{\mathrm{D}}^{2}}{m_{R}^{2}}\right)\right] \\
& +\quad \rightarrow \quad m_{\text {heavy }} \simeq m_{R} \\
& -\quad \rightarrow \quad m_{\text {light }} \simeq\left|m_{L}-\frac{m_{\mathrm{D}}^{2}}{m_{R}}\right|
\end{aligned}
$$

Dominant type I seesaw: $m_{L} \ll \frac{m_{\mathrm{D}}^{2}}{m_{R}} \Longrightarrow m_{\text {light }} \simeq \frac{m_{\mathrm{D}}^{2}}{m_{R}}$

Dominant type II or III seesaw: $\quad m_{L} \gg \frac{m_{\mathrm{D}}^{2}}{m_{R}} \Longrightarrow m_{\text {light }} \simeq m_{L}$

Right-Handed Neutrino Mass Term

$$
\mathcal{L}_{R}^{\mathrm{M}}=-\frac{1}{2} m\left(\overline{\nu_{R}^{c}} \nu_{R}+\overline{\nu_{R}} \nu_{R}^{c}\right)
$$

- \mathcal{L}_{R}^{M} respects the $\mathrm{SU}(2)_{L} \times \mathrm{U}(1)_{Y} \mathrm{SM}$ symmetry
- $\mathcal{L}_{R}^{\mathrm{M}}$ breaks Lepton number conservation

Three possibilities:
(\downarrow Lepton number can be explicitly broken

- Lepton number is spontaneously broken locally, with a massive vector boson coupled to the lepton number current
- Lepton number is spontaneously broken globally and a massless Goldstone boson appears in the theory (Majoron)

Singlet Majoron Model

[Chikashige, Mohapatra, Peccei, Phys. Lett. B98 (1981) 265, Phys. Rev. Lett. 45 (1980) 1926]

$$
\begin{aligned}
& \mathcal{L}_{\Phi}=-y_{d}\left(\overline{L_{L}} \Phi \nu_{R}+\overline{\nu_{R}} \Phi^{\dagger} L_{L}\right) \stackrel{\langle\Phi|=0}{\longrightarrow}-m_{\mathrm{D}}\left(\overline{\nu_{L}} \nu_{R}+\overline{\nu_{R}} \nu_{L}\right) \\
& \mathcal{L}_{\eta}=-y_{s}\left(\eta \overline{\nu_{R}^{c}} \nu_{R}+\eta^{\dagger} \overline{\nu_{R}} \nu_{R}^{c}\right) \stackrel{\langle\eta\rangle \neq 0}{\longrightarrow}-\frac{1}{2} m_{R}\left(\overline{\nu_{R}^{c}} \nu_{R}+\overline{\nu_{R}} \nu_{R}^{c}\right) \\
& \eta=2^{-1 / 2}(\langle\eta\rangle+\rho+i \chi) \quad \mathcal{L}_{\text {mass }}=-\frac{1}{2}\left(\overline{\nu_{L}^{c}} \overline{\nu_{R}}\right)\left(\begin{array}{cc}
0 & m_{\mathrm{D}} \\
m_{\mathrm{D}} & m_{R}
\end{array}\right)\binom{\nu_{L}}{\nu_{R}^{c}}+\text { H.c. } \\
& m_{R}
\end{aligned}>m_{\mathrm{D}} \Longrightarrow \text { Type-I Seesaw: } m_{1} \simeq \frac{m_{\mathrm{D}}^{2}}{m_{R}} .
$$

$$
\rho=\text { massive scalar, } \chi=\text { Majoron (massless pseudoscalar Goldstone boson) }
$$

The Majoron is weakly coupled to the light neutrino

$$
\mathcal{L}_{\chi-\nu}=\frac{i y_{s}}{\sqrt{2}} \chi\left[\overline{\overline{\nu_{2}}} \gamma^{5} \nu_{2}-\frac{m_{\mathrm{D}}}{m_{R}}\left(\overline{\overline{\nu_{2}}} \gamma^{5} \nu_{1}+\overline{\nu_{1}} \gamma^{5} \nu_{2}\right)+\left(\frac{m_{\mathrm{D}}}{m_{R}}\right)^{2} \overline{\nu_{1}} \gamma^{5} \nu_{1}\right]
$$

Three-Generation Mixing

$$
\begin{gathered}
\mathscr{L}_{\text {mass }}^{\mathrm{D}+\mathrm{M}}=\mathscr{L}_{\text {mass }}^{\mathrm{D}}+\mathscr{L}_{\text {mass }}^{L}+\mathscr{L}_{\text {mass }}^{R} \\
\mathscr{L}_{\text {mass }}^{\mathrm{D}}=-\sum_{s=1}^{N_{s}} \sum_{\alpha=e, \mu, \tau} \overline{\nu_{s R}^{\prime}} M_{s \alpha}^{\mathrm{D}} \nu_{\alpha L}^{\prime}+\mathrm{H} . \mathrm{c} . \\
\mathscr{L}_{\text {mass }}^{L}=\frac{1}{2} \sum_{\alpha, \beta=e, \mu, \tau} \nu_{\alpha L}^{\prime T} \mathcal{C}^{\dagger} M_{\alpha \beta}^{L} \nu_{\beta L}^{\prime}+\text { H.c. } \\
\mathscr{L}_{\text {mass }}^{R}=\frac{1}{2} \sum_{s, s^{\prime}=1}^{N_{s}} \nu_{s R}^{\prime T} \mathcal{C}^{\dagger} M_{s s^{\prime}}^{R} \nu_{s^{\prime} R}^{\prime}+\text { H.c. } \\
\mathbf{N}_{L}^{\prime} \equiv\binom{\nu_{L}^{\prime}}{\nu_{R}^{\prime C}} \quad \nu_{L}^{\prime} \equiv\left(\begin{array}{c}
\nu_{e L}^{\prime} \\
\nu_{\mu L}^{\prime} \\
\nu_{\tau L}^{\prime}
\end{array}\right) \quad \boldsymbol{\nu}_{R}^{\prime C} \equiv\left(\begin{array}{c}
\nu_{1 R}^{\prime C} \\
\vdots \\
\nu_{N_{s} R}^{\prime C}
\end{array}\right) \\
\mathscr{L}_{\text {mass }}^{\mathrm{D}+\mathrm{M}}=\frac{1}{2} \boldsymbol{N}_{L}^{\prime T} \mathcal{C}^{\dagger} M^{\mathrm{D}+\mathrm{M}} \boldsymbol{N}_{L}^{\prime}+\mathrm{H} . \mathrm{c} . \quad M^{\mathrm{D}+\mathrm{M}}=\left(\begin{array}{cc}
M^{L} & M^{\mathrm{D}} \\
M^{\mathrm{D}} & M^{R}
\end{array}\right)
\end{gathered}
$$

- Diagonalization of the Dirac-Majorana Mass Term \Longrightarrow massive Majorana neutrinos
- See-Saw Mechanism \Longrightarrow right-handed neutrinos have large Majorana masses and are decoupled from the low-energy phenomenology.
- If all right-handed neutrinos have large Majorana masses, at low energy we have an effective mixing of three Majorana neutrinos.
- It is possible that not all right-handed neutrinos have large Majorana masses: some right-handed neutrinos may correspond to low-energy Majorana particles which belong to new physics beyond the Standard Model.
- Light anti- ν_{R} are called sterile neutrinos

$$
\nu_{R}^{c} \rightarrow \nu_{S L} \quad \text { (left-handed) }
$$

Sterile Neutrinos

- Dirac Neutrino Masses and Mixing
- Majorana Neutrino Masses and Mixing
- Dirac-Majorana Mass Term
- Sterile Neutrinos
- Number of Flavor and Massive Neutrinos?
- Sterile Neutrinos
- Fundamental Fields in QFT

Number of Flavor and Massive Neutrinos?

[LEP, Phys. Rept. 427 (2006) 257, arXiv:hep-ex/0509008]

$$
\Gamma_{Z}=\sum_{\ell=e, \mu, \tau} \Gamma_{Z \rightarrow \ell \bar{\ell}}+\sum_{q \neq t} \Gamma_{Z \rightarrow q \bar{q}}+\Gamma_{\text {inv }} \quad \Gamma_{\text {inv }}=N_{\nu} \Gamma_{Z \rightarrow \nu \bar{\nu}}
$$

Improved cross section: $N_{\nu}=2.9975 \pm 0.0074$

$$
e^{+} e^{-} \rightarrow Z \xrightarrow{\text { invisible }} \sum_{a=\text { active }} \nu_{a} \bar{\nu}_{a} \Longrightarrow \nu_{e} \nu_{\mu} \nu_{\tau}
$$

3 light active flavor neutrinos

mixing $\Rightarrow \nu_{\alpha L}=\sum_{k=1}^{N} U_{\alpha k} \nu_{k L} \quad \alpha=e, \mu, \tau \quad$ no upper limit!
Mass Basis: $\quad \begin{array}{llllll}\nu_{1} & \nu_{2} & \nu_{3} & \nu_{4} & \nu_{5} & \cdots\end{array}$
Flavor Basis: $\quad \nu_{e} \quad \nu_{\mu} \quad \nu_{\tau} \quad \nu_{s_{1}} \quad \nu_{s_{2}} \cdots$
ACTIVE STERILE

$$
\nu_{\alpha L}=\sum_{k=1}^{N} U_{\alpha k} \nu_{k L} \quad \alpha=e, \mu, \tau, s_{1}, s_{2}, \ldots
$$

Sterile Neutrinos

- Sterile means no standard model interactions
[Pontecorvo, Sov. Phys. JETP 26 (1968) 984]
- Obviously no electromagnetic interactions as normal active neutrinos
- Thus sterile means no standard weak interactions
- But sterile neutrinos are not absolutely sterile:
- Gravitational Interactions
- New non-standard interactions of the physics beyond the Standard Model which generates the masses of sterile neutrinos
- Active neutrinos $\left(\nu_{e}, \nu_{\mu}, \nu_{\tau}\right)$ can oscillate into sterile neutrinos $\left(\nu_{s}\right)$
- Observables:
- Disappearance of active neutrinos
- Indirect evidence through combined fit of data
- Powerful window on new physics beyond the Standard Model
C. Giunti - Neutrino Physics - I - Torino PhD Course - Torino - 30 Nov - 4 Dec 2020 - 109/118

No GIM with Sterile Neutrinos

[Lee, Shrock, PRD 16 (1977) 1444; Schechter, Valle PRD 22 (1980) 2227]

- Neutrino Neutral-Current Weak Interaction Lagrangian:

$$
\mathscr{L}_{1}^{(\mathrm{NC})}=-\frac{g}{2 \cos \vartheta_{\mathrm{W}}} Z_{\rho} \overline{\boldsymbol{\nu}_{L}^{\prime}} \gamma^{\rho} \boldsymbol{\nu}_{L}^{\prime}
$$

- The transformation to active flavor neutrino fields is independent of the existence of sterile neutrinos: $\nu_{L}^{\prime}=V_{L}^{\ell} \nu_{L}$

$$
\mathscr{L}_{\mathrm{I}}^{(\mathrm{NC})}=-\frac{g}{2 \cos \vartheta_{\mathrm{W}}} Z_{\rho} \overline{\boldsymbol{\nu}_{L}} \gamma^{\rho} \nu_{L}=-\frac{g}{2 \cos \vartheta_{\mathrm{W}}} Z_{\rho} \sum_{\alpha=e, \mu, \tau} \overline{\nu_{\alpha L}} \gamma^{\rho} \nu_{\alpha L}
$$

- Mixing with sterile neutrinos: $\quad \nu_{\alpha L}=\sum_{k=1}^{3+N_{s}} U_{\alpha k} \nu_{k L}$
- No GIM: $\mathscr{L}_{1}^{(\mathrm{NC})}=-\frac{g}{2 \cos \vartheta_{\mathrm{W}}} Z_{\rho} \sum_{j=1}^{3+N_{s}} \sum_{k=1}^{3+N_{s}} \overline{\nu_{j L}} \gamma^{\rho} \nu_{k L} \sum_{\alpha=e, \mu, \tau} U_{\alpha j}^{*} U_{\alpha k}$

$$
\sum_{\alpha=e, \mu, \tau, s_{1}, \ldots} U_{\alpha j}^{*} U_{\alpha k}=\delta_{j k} \quad \text { but } \quad \sum_{\alpha=e, \mu, \tau} U_{\alpha j}^{*} U_{\alpha k} \neq \delta_{j k}
$$

Effect on Invisible Width of Z Boson?

- Amplitude of $Z \rightarrow \nu_{j} \bar{\nu}_{k}$ decay:

$$
\begin{aligned}
& A\left(Z \rightarrow \nu_{j} \bar{\nu}_{k}\right)=\left\langle\nu_{j} \bar{\nu}_{k}\right|-\int d^{4} x \mathscr{L}_{1}^{(\mathrm{NC})}(x)|Z\rangle \\
& =\frac{g}{2 \cos \vartheta_{\mathrm{W}}}\left\langle\nu_{j} \bar{\nu}_{k}\right| \int d^{4} x \overline{\nu_{j L}}(x) \gamma^{\rho} \nu_{k L}(x) Z_{\rho}(x)|Z\rangle \sum_{\alpha=e, \mu, \tau} U_{\alpha j}^{*} U_{\alpha k}
\end{aligned}
$$

- If $m_{k} \ll m_{Z} / 2$ for all k 's, the neutrino masses are negligible in all the matrix elements and we can approximate

$$
\frac{g}{2 \cos \vartheta_{\mathrm{W}}}\left\langle\nu_{j} \bar{\nu}_{k}\right| \int d^{4} x \overline{\nu_{j L}}(x) \gamma^{\rho} \nu_{k L}(x) Z_{\rho}(x)|Z\rangle \simeq A_{\mathrm{SM}}\left(Z \rightarrow \nu_{\ell} \bar{\nu}_{\ell}\right)
$$

- $A_{\mathrm{SM}}\left(Z \rightarrow \nu_{\ell} \bar{\nu}_{\ell}\right)$ is the Standard Model amplitude of Z decay into a massless neutrino-antineutrino pair of any flavor $\ell=e, \mu, \tau$
- $A\left(Z \rightarrow \nu_{j} \bar{\nu}_{k}\right) \simeq A_{\mathrm{SM}}\left(Z \rightarrow \nu_{\ell} \bar{\nu}_{\ell}\right) \sum_{\alpha=e, \mu, \tau} U_{\alpha j}^{*} U_{\alpha k}$
- $P(Z \rightarrow \nu \bar{\nu})=\sum_{j=1}^{3+N_{s}} \sum_{k=1}^{3+N_{s}}\left|A\left(Z \rightarrow \nu_{j} \bar{\nu}_{k}\right)\right|^{2}$
$P(Z \rightarrow \nu \bar{\nu}) \simeq P_{\mathrm{SM}}\left(Z \rightarrow \nu_{\ell} \bar{\nu}_{\ell}\right) \sum_{j=1}^{3+N_{s}} \sum_{k=1}^{3+N_{s}}\left|\sum_{\alpha=e, \mu, \tau} U_{\alpha j}^{*} U_{\alpha k}\right|^{2}$
- Effective number of neutrinos in Z decay:

$$
\begin{aligned}
& N_{\nu}^{(Z)}=\sum_{j=1}^{3+N_{s}} \sum_{k=1}^{3+N_{s}}\left|\sum_{\alpha=e, \mu, \tau} U_{\alpha j}^{*} U_{\alpha k}\right|^{2} \\
& \text { ity relation } \sum_{k=1}^{3+N_{s}} U_{\alpha k} U_{\beta k}^{*}=\delta_{\alpha \beta} \quad \text { we obtain }
\end{aligned}
$$

$$
\begin{aligned}
N_{\nu}^{(Z)} & =\sum_{j=1}^{3+N_{s}} \sum_{k=1}^{3+N_{s}} \sum_{\alpha=e, \mu, \tau} U_{\alpha j}^{*} U_{\alpha k} \sum_{\beta=e, \mu, \tau} U_{\beta j} U_{\beta k}^{*} \\
& =\sum_{\alpha=e, \mu, \tau} \sum_{\beta=e, \mu, \tau} \underbrace{\sum_{j=1}^{3+N_{s}} U_{\alpha j}^{*} U_{\beta j}}_{\delta_{\alpha \beta}} \underbrace{\sum_{k=1}^{3} U_{\alpha k} U_{\beta k}^{*}}_{\delta_{\alpha \beta}^{3+N_{s}}}=\sum_{\alpha=e, \mu, \tau} 1=3
\end{aligned}
$$

$N_{\nu}^{(Z)}=3$ independently of the number of light sterile neutrinos!

Effect of Heavy Sterile Neutrinos

[Jarlskog, PLB 241 (1990) 579; Bilenky, Grimus, Neufeld, PLB 252 (1990) 119]
$N_{\nu}^{(Z)}=\sum_{j=1}^{3+N_{s}} \sum_{k=1}^{3+N_{s}}\left|\sum_{\alpha=e, \mu, \tau} U_{\alpha j}^{*} U_{\alpha k}\right|^{2} R_{j k} \quad$ with
$R_{j k}=\left(1-\frac{m_{j}^{2}+m_{k}^{2}}{2 m_{Z}^{2}}-\frac{\left(m_{j}^{2}-m_{k}^{2}\right)^{2}}{2 m_{Z}^{4}}\right) \frac{\lambda\left(m_{Z}^{2}, m_{j}^{2}, m_{k}^{2}\right)}{m_{Z}^{2}} \theta\left(m_{Z}-m_{j}-m_{k}\right)$

$$
\lambda(x, y, z)=x^{2}+y^{2}+z^{2}-2 x y-2 y z-2 z x
$$

$>R_{j k} \leq 1 \quad \Longrightarrow \quad N_{\nu}^{(Z)} \leq 3$

Fundamental Fields in QFT

- Each elementary particle is described by a field which is an irreducible representation of the Poincaré group (Lorentz group + space-time translations).
- In this way
- Under Poincaré transformation an elementary particle remains itself.
- Lagrangian is constructed with invariant products of elementary fields.
- Spinorial structure of a particle is determined by its representation under the restricted Lorentz group of proper and orthochronous Lorentz transformation (no space or time inversions).
- Restricted Lorentz group is isomorphic to $\mathrm{SU}(2) \times \mathrm{SU}(2)$.
- Classification of fundamental representations:

$$
\begin{aligned}
(0,0) & \text { scalar } \varphi \\
(1 / 2,0) & \text { left-handed Weyl spinor } \chi_{L} \text { (Majorana if massive) } \\
(0,1 / 2) & \text { right-handed Weyl spinor } \chi_{R} \text { (Majorana if massive) }
\end{aligned}
$$

- All representations are constructed combining the two fundamental Weyl spinor representations.

$$
\begin{aligned}
(1 / 2,1 / 2) & \text { four-vector } v^{\mu} \text { (irreducible) } \\
(1 / 2,0)+(0,1 / 2) & \text { four-component Dirac spinor } \psi \text { (reducible) }
\end{aligned}
$$

- Two-component Weyl (Majorana if massive) spinor is more fundamental than four-component Dirac spinor.
- Two-component left-handed Weyl (Majorana if massive) spinor:

$$
\chi_{L}=\binom{\chi_{L 1}}{\chi_{L 2}}
$$

- Two-component right-handed Weyl (Majorana if massive) spinor:

$$
\chi_{R}=\binom{\chi_{R 1}}{\chi_{R 2}}
$$

Four-component Dirac spinor: $\quad \psi=\binom{\chi_{R}}{\chi_{L}}=\left(\begin{array}{c}\chi_{R 1} \\ \chi_{R 2} \\ \chi_{L 1} \\ \chi_{L 2}\end{array}\right)$

- Lorentz transformation: $\quad v^{\mu} \rightarrow v^{\prime \mu}=\Lambda_{\nu}^{\mu} v^{\nu}$

$$
g_{\mu \nu} \Lambda^{\mu}{ }_{\rho} \Lambda^{\nu}{ }_{\sigma}=g_{\rho \sigma} \quad g_{\mu \nu}=\operatorname{diag}(1,-1,-1,-1)
$$

- Restricted Lorentz transformation: $\quad \Lambda^{\mu}{ }_{\nu}=\left[e^{\omega}\right]^{\mu}{ }_{\nu} \quad \omega_{\mu \nu}=-\omega_{\nu \mu}$

$$
\omega_{\mu \nu}=\left(\begin{array}{cccc}
0 & v_{1} & v_{2} & v_{3} \\
-v_{1} & 0 & \theta_{3} & -\theta_{2} \\
-v_{2} & -\theta_{3} & 0 & \theta_{1} \\
-v_{3} & \theta_{2} & -\theta_{1} & 0
\end{array}\right)
$$

- 6 parameters:
- 3 for rotations: $\vec{\theta}=\left(\theta_{1}, \theta_{2}, \theta_{3}\right)$
- 3 for boosts: $\vec{v}=\left(v_{1}, v_{2}, v_{3}\right)$

$$
\begin{array}{ll}
\chi_{L} \rightarrow \chi_{L}^{\prime}=\Lambda_{L} \chi_{L} & \Lambda_{L}=e^{i(\vec{\theta}-i \vec{v}) \cdot \vec{\sigma} / 2} \\
\chi_{R} \rightarrow \chi_{R}^{\prime}=\Lambda_{R} \chi_{R} & \Lambda_{R}=e^{i(\vec{\theta}+i \vec{v}) \cdot \vec{\sigma} / 2}
\end{array}
$$

- Four-component form of two-component left-handed Weyl (Majorana if massive) spinor:

$$
\psi_{L}=\binom{0}{\chi_{L}}=\left(\begin{array}{c}
0 \\
0 \\
\chi_{L 1} \\
\chi_{L 2}
\end{array}\right)
$$

- Majorana mass term:

$$
\mathscr{L}_{\text {mass }}^{L}=\frac{1}{2} m_{\text {four-component form }} \psi_{L}^{T} \mathcal{C}^{\dagger} \psi_{L}+\text { H.c. }=-\frac{1}{2} m_{L} \chi_{L}^{T} i \sigma^{2} \chi_{L}+\text { H.c.component form }
$$

$$
(1 / 2,0) \times(1 / 2,0)=\underset{\text { symmetric }}{(1,0)}+\underset{\text { antisymmetric }}{(0,0)} \quad \sigma^{2} \text { is antisymmetric! }
$$

- Anticommutativity of spinors is necessary, otherwise

$$
\chi_{L}^{T} i \sigma^{2} \chi_{L}=\left(\chi_{L}^{T} i \sigma^{2} \chi_{L}\right)^{T}=-\chi_{L}^{T} i \sigma^{2} \chi_{L}=0
$$

[^0]: C. Giunti - Neutrino Physics - I - Torino PhD Course - Torino - 30 Nov - 4 Dec $2020-31 / 118$

[^1]: C. Giunti - Neutrino Physics - I - Torino PhD Course - Torino - 30 Nov - 4 Dec $2020-40 / 118$

[^2]: C. Giunti - Neutrino Physics - I - Torino PhD Course - Torino - 30 Nov - 4 Dec $2020-42 / 118$

[^3]: C. Giunti - Neutrino Physics - I - Torino PhD Course - Torino - 30 Nov - 4 Dec $2020-48 / 118$

[^4]: C. Giunti - Neutrino Physics - I - Torino PhD Course - Torino - 30 Nov - 4 Dec $2020-74 / 118$

[^5]: C. Giunti - Neutrino Physics - I - Torino PhD Course - Torino - 30 Nov - 4 Dec 2020 - 96/118

