

Studio della Polarizzazione della Υ ad ALICE

Livio Bianchi

Università degli Studi di Torino – INFN Torino

XCV Congresso Nazionale sella Società Italiana di Fisica Bari, 28 Settembre - 3 Ottobre 2009

Sommario

Esperimento ALICE e spettrometro per muoni

Modelli di produzione del quarkonio e polarizzazione

Polarizzazione in p-p

Polarizzazione in Pb-Pb

L'Esperimento ALICE a LHC

Misura del quarkonio nel canale muonico

- Esperimento dedicato allo studio delle collisioni tra ioni pesanti
- Obiettivo principale: studiare la transizione alla fase di QGP (deconfinamento di quark e gluoni)

Perché Studiare la Polarizzazione

р-р

Diversi modelli per il meccanismo di produzione:

- CEM: fenomenologico, non molto predittivo;
- **CSM**: non riproduce l'andamento σ vs p_T ;
- **COM (NRQCD)**: riproduce l'andamento σ vs p_T ;
- **CSM + s-channel cut**: buona descrizione sez. d'urto.

Polarizzazione: parametro per discriminare tra i modelli.

- CSM polarizzazione trasversa;
- CEM no polarizzazione;
- NRQCD polarizzazione trasversa ad alto p_T ;
- CSM + s-channel cut polarizzazione longitudinale ad alto p_T.

Pb-Pb

In urti di ioni pesanti è atteso un aumento della polarizzazione del quarkonio nel caso di formazione di QGP.

B.L. loffe and D.E. Kharzeev: Phys. Rev. C68 061902 (2003)

La Polarizzazione del Quarkonio

Studio della distribuzione angolare dei prodotti di decadimento:

$$\frac{1}{\sigma} \frac{d\sigma}{d\cos(\theta)d\phi} = 1 + \lambda \cos^2(\theta) + \mu \sin(2\theta) \cos(\phi) + \frac{\nu}{2} \sin^2(\theta) \cos(2\phi)$$

Solitamente la dipendenza dall'angolo ϕ viene trascurata:

Sistemi di riferimento

Collins-Soper (CS): L'asse z è la bisettrice tra proiettile e (meno) bersaglio nel SR a riposo del quarkonio.

Helicity (HE): L'asse z corrisponde alla direzione del quarkonio nel SR del CM della collisione.

Pol. trasversa

Pol. longitudinale

α>0

α<0

Risultati da Esperimenti Precedenti

CSM+ s-channel cut (calcolo perturbativo al NNLO): descrive in modo soddisfacente i dati di polarizzazione di PHENIX a rapidità centrali. Fallisce a forward-rapidity.

La polarizzazione è un'osservabile chiave per discriminare tra i vari modelli.

Statistiche e Background

<u>p-p@√s=14 TeV</u>

L= 3.10³⁰ cm⁻² s⁻¹ T=10⁷ s

state	$S(\times 10^3)$	$B(\times 10^{3})$	S/B	$S/\sqrt{S+B}$		
J/ψ	2807	235	12.0	1610		
ψ'	75	120	0.62	170		
Υ	27.1	2.6	10.4	157		
Υ'	6.8	2.0	3.4	73		
Υ"	4.2	1.8	2.4	55		

ALICE-INT-2006-029

Il contributo del background è piccolo per p-p, ma assolutamente non trascurabile in Pb-Pb (specialmente per urti centrali)

Due metodi diversi adottati per lo studio della polarizzazione:

- 1. Matrice d'accettanza 3D;
- 2. Monte-Carlo templates.

<u>Pb-Pb@√s=5.5A TeV</u>

L= 5.10²⁶ cm⁻² s⁻¹ T=10⁶ s

State	Centrality	S [×10 ³]	B [×10 ³]	S/B	$S/\sqrt{S+B}$
	c1	130 (22)	680	0.20	150
	c2	230 (38)	860	0.27	220
J/ψ	c3	200 (32)	410	0.48	250
	c4	95 (15)	88	1.08	220
	c5	21.7 (3.2)	6.9	3.13	130
ψ'	c1	3.7 (1.4)	300	0.01	6.7
	c2	6.5 (2.4)	385	0.02	11
	c3	5.5 (2.0)	190	0.03	13
	c4	2.6 (0.9)	42	0.06	12
	c5	0.59 (0.20)	3.4	0.17	9.3
Ŷ	c1	1.3	0.8	1.7	29
	c2	2.4	1.0	2.3	41
	c3	2.0	0.55	3.6	39
	c4	0.93	0.15	6.1	28
	c5	0.20	0.022	9.1	14
Y'	c1	0.35	0.54	0.65	12
	c2	0.62	0.67	0.92	17
	c3	0.52	0.38	1.4	17
	c4	0.24	0.11	2.2	13
	c5	0.054	0.016	3.5	6.4
Υ″	c1	0.20	0.42	0.48	8.1
	c2	0.35	0.55	0.64	12
	c3	0.30	0.30	0.99	12
	c4	0.14	0.088	1.6	9.2
	c5	0.030	0.014	2.2	4.6

ALICE PPR – Volume II

No Background: accettanza 3D

Le accettanze sulle variabili (p_τ, y, cosθ) sono correlate L'accettanza su una variabile può essere fortemente influenzata da quelle sulle altre variabili

E' necessario un approccio "3D" al problema

- Generazione di $10^6 \Upsilon$ con distribuzioni delle variabili cinematiche piatte (0GeV/c < p_T < 20GeV/c, -4 < y < -2.5, $-1 < \cos\theta < 1$);
- Ricostruzione;
- Calcolo delle accettanze tridimensionali.

Per non avere accettanze che variano su troppi ordini di grandezza è necessario scegliere regioni fiduciali

Ricostruzione $\alpha - pp@14TeV$

Υ polar. in PbPb: Metodo MC Templates

Simulazione delle 3 risonanze, sovrapposte a fondo correlato+scorrelato (5 centralità, 1-3-5 anni presa dati)

- Sample diviso in 20 bins di $\cos\vartheta$;
- Per ogni bin di cosϑ si fitta opportunamente lo spettro in massa;
- I fit permettono la valutazione del contributo di fondo (B) e di segnale+fondo (S+B) allo spettro in cosϑ;

Υ polar. in PbPb: performances

- Lo spettro di S+B viene fittato con una sovrapposizione lineare di due templates (uno con α =1 e uno con α =-1) più il contributo del fondo (B);
- I coefficienti del fit danno il valore di α .

Il metodo usato ricostruisce in modo soddisfacente il parametro di polarizzazione. L'errore statistico varia da 0.03 a 0.15

Conclusioni

- 1. Misura della polarizzazione della $\Upsilon(1S)$ ad ALICE fattibile sia in p-p che in Pb-Pb.
- 2. **p-p**: background trascurato \rightarrow metodo accettanza 3D:
 - Integrando in y e p_T : 1 anno di presa dati \rightarrow errori statistici tra 0.05 e 0.1;
 - α vs p_T: 1 anno di presa dati \rightarrow errori statistici tra 0.03 e 0.19.
- Pb-Pb: simulato spettro di massa tra 8 e 12 GeV. Background sottratto → metodo dei templates Monte-Carlo:
 - Integrando in y e p_T : 1 anno di presa dati \rightarrow errore statistico di ~0.1;
 - uno studio della dipendenza del parametro α da p_T o dalla centralità potrebbe essere fatto integrando su più anni di presa dati.
- 4. Per Υ (2S) e Υ (3S) lo studio potrebbe essere fatto in 1 anno di presa dati in p-p e in più anni di presa dati in Pb-Pb.

Backup

Polarizzazione quarkonio: risultati sperimentali Errore nel fit sulla distribuzione angolare Fit dello spettro in $\cos\theta$: minimizzazione Bias per $\alpha \rightarrow 1$ Quarkonio: modelli di produzione NRQCD Lo Spettrometro per Dimuoni Generazione in Pb-Pb @ 5.5 A TeV

Polarizzazione quarkonio: risultati sperimentali

Errore nel fit sulla distribuzione angolare

A parità di statistica l'errore sul parametro α cresce al crescere del valore di α.

Dipende da come viene calcolato l'errore attraverso il metodo dei minimi quadrati: Se $f(x) = p_0 \cdot (1 + \alpha \cdot x^2)$ allora per p_0 grandi: $\sigma \alpha \propto 1/p_0$

Fit allo spettro in cosθ : minimizzazione

Il templates-fit allo spettro in $\cos\theta$ spectrum viene fatto con MINUIT minimizzando:

$$\chi^2 = 2 \cdot \sum_i \left\{ (\boldsymbol{E}_i + \boldsymbol{\beta}_i - \boldsymbol{D}_i) - \boldsymbol{D}_i \cdot \ln\left(\frac{\boldsymbol{E}_i + \boldsymbol{\beta}_i}{\boldsymbol{D}_i}\right) + (\boldsymbol{\beta}_i - \boldsymbol{S}_i) - \boldsymbol{S}_i \cdot \ln\left(\frac{\boldsymbol{\beta}_i}{\boldsymbol{S}_i}\right) \right\}$$

dove:

- $\beta_{i} = \frac{1}{4} \left[-(2E_{i} D_{i} S_{i}) + \sqrt{(2E_{i} D_{i} S_{i})^{2} + 8S_{i}E_{i}} \right]$
- D_i : Signal + Bkg events S_i : Bkg events
- E_i : expected number of Signal events
- β_i : expected number of Bkg events

La formula è corretta quando gli errori su S+B e su B sono entrambi poissoniani. Supponiamo dunque che l'errore su B sia poissoniano: non completamente vero perchè B non è ottenuto attraverso un conteggio di eventi.

T. Devlin, Correlations from Systematic Corrections to Poisson-Distributed Data in Log-Likelihood Functions, CDF public note CDF/DOC/JET/PUBLIC/3126 (1995)

Bias per $\alpha \rightarrow 1$

In bin di cosθ periferici capita di sottostimare il contributo del background:

<u>Bin di cosθ centrali</u>: la forma del background è un esponenziale -> il contributo è stimato correttamente

Capita solo per α grandi perchè in questi casi la forma dello spettro in cosθ dipende fortemente dal comportamento nei bin periferici.

Bin di cosθ periferici: la forma del background non è esponenziale -> il contributo è sottostimato ↓ Forma dello spettro più larga ↓ α è maggiore

Quarkonio: modelli di produzione

L'associazione in stato legato di $q\overline{q}$ prodotti da gluoni avviene a valori di α_s per i quali una trattazione perturbativa è ancora possibile:

$$\alpha_{\rm S} \ ({\rm m_{\rm C}}) \approx 0.25 \qquad \alpha_{\rm S} \ ({\rm m_{\rm b}}) \approx 0.18$$

Ma la dinamica dello stato legato è non perturbativa (v/c<<1)

Vari possibili meccanismi di produzione:

- CSM: due g si fondono e si forma una coppia $q\overline{q}$ $\mathbf{1}_{c}$ $\mathbf{3}_{s}$
- CEM: la σ(H) è una frazione (universale) F_H della σ per produzione di una coppia qq
 con massa inv. sotto la soglia MM, dove M è il mesone a più bassa massa contenente
 q. La coppia diventa 1_c interagendo con il campo di colore indotto dalla collisione;
- **COM**: la coppia $q\overline{q}$ viene prodotta in $\mathbf{1}_{c} \circ \mathbf{8}_{c}$ che diventa $\mathbf{1}_{c}$ con emissione di g soft

NRQCD

Il color-octet model può essere riformulato in termini di una teoria di campo efficace, la Non-Relativistic-QCD (si fattorizzano le parti perturbativa e non):

Sommatoria su tutti i numeri quantici possibili associabili alla coppia q q-bar

Coefficienti perturbativi: sezione d'urto partonica per la creazione di una coppia q q-bar + PDF.

• q q-bar in singoletto o ottetto di colore

• singoletto o tripletto di spin

• con o senza mom.angolare orbitale

Coefficienti non perturbativi:

- creano q q-bar nel vuoto;
- proiettano in uno stato che asintoticamente tende ad H+X;

•Annichila q q-bar.

Analoghi alle parton fragmentation functions.

Si determinano sperimentalmente ma sono universali

Lo spettrometro per dimuoni

Generazione in Pb-Pb @ 5.5 A TeV

Segnale: $\Upsilon(1S)$, $\Upsilon(2S) \in \Upsilon(3S)$ generate attraverso parametrizzazione e ricostruite con full-simulation. Cinque gradi di polarizzazione: -1, -0.5, 0, 0.5, 1. Background Correlato : generato con Pythia* e ricostruito con fast-simulation Background scorrelato: generato attraverso parametrizzazione e ricostruito con fast-simulation

> Sono state considerate statistiche per 1, 3 e 5 anni di presa dati (L= 5·10²⁶ cm⁻² s⁻¹)

