

Misura di J/ψ nello Spettrometro per Muoni in p-p

Roberta Arnaldi, Livio Bianchi, Enrico Scomparin Università degli Studi di Torino – INFN Torino

Quinto Convegno Nazionale sulla Fisica di ALICE

Trieste 12-14 September 2009

Physics motivations for J/ψ study in p-p

The ALICE Muon Spectrometer

First J/ ψ paper analysis

The polarization issue

Conclusions and Ongoings

J/ψ in pp: physics motivations (I)

10

10

10

Need to understand the production mechanism.

Several models:

- CEM: phenomenological, not so predictive;
- **CSM**: bad x-sect. Fit (ruled out in the '90s);
- COM (NRQCD): good x-sect. fit for all quarkonia;
- **CSM + s-channel cut**: describes polarization data.

 $BR(J/\psi \rightarrow \mu^{+}\mu^{-}) d\sigma(p\bar{p} \rightarrow J/\psi + X)/dp_{\pi} (nb/GeV)$

colour-octet 1S.

colour-octet ³S₁ LO colour-singlet

colour-singlet frag.

√s =1.8 TeV; |η| < 0.6

J/ψ in pp: physics motivations (II)

Muon Spectrometer: Setup

C 0 C 1 C BC NB C Front C Bad	K. Tracker-B-Front
Responder Outline Plot © Chamber □ Chamber C Chamber © DE □ DE ○ DE □ BUSPATCH □ BUSPATCH C BUSPATCH © MANU □ MANU ○ MANU © PGB □ PCB ○ PCB	Sources C none C OCC81391 C mean of One C sigma of One C occ C N C n

- Front absorber
 - Beam Shield
- Dipole magnet (∫Bdl=3Tm)
- 5 tracking stations (MWPCs with bicathode pad readout): spatial resolution below 100 μm in the bending plane, around 700 μm in the non-bending plane
 - Iron wall (muon filter)
- 2 trigger stations (4 planes of RPCs): fast response (~ 2 ns), spatial resolution ~ 1 cm

Muon Spectrometer: cosmic run

First curved cosmic muon event (tracked and triggered)

Nice view!

But we expect more than 90 couples of this tracks per hour coming from J/ψs during the first run of LHC...!*

*actually this number refers to the trigger rate.

Muon Spectrometer: performances in pp

Livio Bianchi

First Analysis

Assuming $340 \cdot 10^{-3}$ Hz J/ ψ trigger rate low p_T at L= $3 \cdot 10^{30}$ cm⁻² s⁻¹ (ALICE-INT-2006-0002), at L=2.3·10²⁹ cm⁻² s⁻¹ we expect: J/ψ trigger rate ~ 26·10⁻³ Hz

Assuming 12% running efficiency (F. Antinori - Physics Forum July 2009) we expect from 10⁴ to $4 \cdot 10^4$ J/ ψ s in the first 5 months

For 10⁴ J/ ψ s we expect 100 J/ ψ s with p_T >11 GeV \rightarrow Good for differential studies!

Which measurements can be performed with this statistics?

- J/ ψ integrated production cross section
- J/ψ differential cross section
- J/ ψ polarization (integrated over the other kinematical variables?)

Other LHC experiments

ATLAS:

- -2.5 < η < 2.5
- mass resolution ~ 50MeV
- prompt J/ ψ s separated with fit to proper time distribution
- $10^4 \text{ J/}\psi$ for 1pb⁻¹ at Vs=10TeV (high p_T trig)
- can cover the full $\cos\theta$ range reaching very high p_{T}

CMS: рт • $-2.5 < \eta < 2.5$ ATLASICMS 100 LHCb mass resolution ~ 30MeV • $2 \cdot 10^4 \text{ J/}\psi$ for 1pb⁻¹ at $\sqrt{\text{s}}=10$ TeV (high 10 p_{T} trig) LHCb: -2 0 2 Δ > 2 < η < 5.5</p> η Very vertex tracking detector (VELO) covering the competitive forward region ->very good mass resolution wrt ALICE σ(M)~ 11MeV

 $\geq 2 \cdot 10^5 \text{ J/}\psi$ for 1pb⁻¹ at $\sqrt{\text{s}}=10 \text{ TeV}$ (larger acc.)

Polarization: basic concepts

The polarization of Quarkonium is gleaned through the analysis of the angular distribution of daughter particles (e.g. $\mu^+\mu^-$) which follows the trend:

 $\frac{1}{\sigma} \frac{d\sigma}{d\cos(\theta)d\phi} = 1 + \lambda \cos^2(\theta) + \mu \sin(2\theta) \cos(\phi) + \frac{\nu}{2} \sin^2(\theta) \cos(2\phi)$

 λ = 1 Transverse polarization λ =-1 Longitudinal polarization

Reference frames:

Collins-Soper (CS): The z-axis is the bisector of the projectile and - the target in the quarkonium rest frame. Helicity (HE): The z-axis is the direction of the quarkonium in the CM frame.

J/psi polarization in pp: acceptances

High S/B: bkg. neglection

state	$S(\times 10^{3})$	$B(\times 10^{3})$	S/B	$S/\sqrt{S+B}$
$-\mathrm{J}/\psi$	2807	235	12.0	1610
ψ'	75	120	0.62	170
Υ	27.1	2.6	10.4	157
Υ'	6.8	2.0	3.4	73
Υ"	4.2	1.8	2.4	55

3-D acceptance correction: flat y, p_T , $\cos \vartheta$.

The correction has to be made in fiducial regions where the 3D acceptance do not range over too many orders of magnitude.

J/ψ polarization in pp@14TeV

Luminosity = $3 \ 10^{30} \ \text{cm}^{-2} \ \text{s}^{-1}$ time = $10^7 \ \text{s}$ J/ ψ = 2.8 10^6

The number of J/ψ is enough to perform a detailed study as a function of p_T .

Assuming 200000 reconstructed J/ ψ in p-p @ 14 TeV (all the statistics we have)

when injecting α =0 we get:

- $1 < p_T < 4 \text{ GeV/c: } \alpha = -0.02 \pm 0.02$
- $4 < p_T < 7 \text{ GeV/c: } \alpha = -0.03 \pm 0.04$
- $p_T > 7 \text{ GeV/c: } \alpha = -0.03 \pm 0.05$

The background contribution is estimated by:
Adding CORR+UNCORR bkg to the J/ψ peak;
Using the MC Templates method* to subtract it (see the Υ case)

The bias of the α parameter estimation depends on α itself (in any case not too big)

*Robert J. Cropp, A Measurement of the Polarization of J/psi Mesons Produced in High-Energy pp Collisions, 2000

Quinto Convegno Nazionale sulla Fisica di ALICE

12/20

J/psi polarization in PbPb@5.5A TeV

In this case the Bkg cannot be neglected. New method for extracting polarization

Luminosity = $5 \ 10^{26} \text{ cm}^{-2} \text{ s}^{-1}$ time = 10^6 s J/ ψ = 133000 (central events) J/ ψ = 21700 (peripheral events) Total J/ ψ = 6.8 10^5

Υ polarization in pp: performances (I)

Υ polarization in pp: performances (II)

p _T bin		$\Delta \alpha_{rec}$		Y _{rec} dopo tagli (#Y _{gen} = 27100)		Helicity - α=1	Collins-Soper - α=1		
(GeV/c)	α_{gen}	HE	CS	HE	CS				
	1	-0.21±0.25	0.00 ± 0.21	~5100		-0.2	-0.2 1 1 1 -0.4 -0.6		
0 < p _T < 3	0	-0.11 ± 0.18	-0.04 ± 0.18		~4900	-0.8 -10 2 4 6 8 10 12 14 16 18 GeV/c 	-0.8 -0.2 4 6 8 10 12 14 16 18 20 -0		
	-1	-0.02 ± 0.13	0.06 ± 0.13			Helicity - α=0	Collins-Soper - α=0		
	1	-0.05 ± 0.16	0.12 ± 0.25	~5600	~5600 ~4700	$\begin{array}{c} 0.6 \\ 0.4 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.4 \\ 0.2 \\ 0.2 \\ 0.4 \\ 0.2 \\ 0.4 \\ 0.4 \\ 0.6 \\ 0.8 \\$			
3 < p _T < 5	0	0.14 ± 0.12	0.09 ± 0.21						
	-1	0.10±0.07	0.06 ± 0.14				-0.6 -0.8 -0.8 -0.2 -0 2 4 6 8 10 12 14 16 p GeV/C		
	1	0.10 ± 0.18	-0.05 ± 0.18	~5100		Helicity - α=-1	Collins-Soper - α=-1		
5 < p _T < 8	0	-0.04 ± 0.12	0.16 ± 0.16		~5100	~5100	~4600	0.6	0.6 0.4 0.4
	-1	-0.14 ± 0.08	0.12 ± 0.10						
	1 0.02 ± 0.14 0.02 ± 0.19								
8 < p _T < 20	0	-0.02 ± 0.09	-0.25 ± 0.12	~4000	~3500	¯0 2 4 6 8 10 12 14 16 18 GeV/c P _γ GeV/c	™ 2 4 6 8 10 12 14 16 18 P ₇ GeV/c		
	-1	0.01 ± 0.04	-0.02 ± 0.08			Good agreement be	tween α_{gen} and α_{rec}		

Statistical errors: from 0.03 to 0.19

Υ polar. in PbPb: MC Template Method

•Sample divided in 20 $\cos\vartheta$ bins;

For each cos ϑ bin a mass spectrum is done and fitted;
The fits allow the evaluation of the bkg. (B) and of the signal+bkg (S+B) contributions;

•The values of B and S+B are plotted in a $\cos\vartheta$ spectrum;

Υ polarization in PbPb: performances

•The S+B cosθ spectrum is fitted with a linear superposition of two templates (one transversly polarized and one longitudinally) plus the Bkg contribution;

•The coefficients of the linear superposition give the value of α .

Polarization in PDC09 (pp @10TeV)

Id	cycle	description	software	run range	events per sub-run	events produced	status	request
91	LHC09a10	diµ trigger, w/o polarization, residual	v4-17-Rev-04 (root: v5-24-00, geant3: v1-11)	100400 to 100436	100	3420400	completed	2.106
94	LHC09a11	diµ trigger, pol. (.3/.3/0./1./0), residual	v4-17-Rev-05, (root: v5-24-00, geant3: v1-11)	101014 to 101018	100	475400	completed	4105
95	LHC09a12	diµ trigger, pol. (3/3/0./1./0.), residual	same as 94	102000 to 102005	100	270000	completed	4103
96	LHC09a13	diµ trigger, pol. (0./0./0./1./0.), residual	same as 94	103000 to 103005	100	371900	completed	4105
98	LHC09a16	diµ trigger, w/o pol, full, secret deadmaps & x- sect.	same as 94	111001 to 111005	100		not yet started	410 ⁵
99	LHC09a17	1μ trigger, full, w/o field	same as 94	112001 to 112008	100	662700	completed	6105
100	LHC09a18	min. bias, w/o pol., residual	same as 94	113001 to 1000001	400	9856800 (until 113040)	runnning	2.108

nicole.bastid @ clermont.in2p3.fr, aug 23th

In particular 3 productions with polarized quarkonia:

Simulation done using AliGenMUONCocktailpp:

-Pythia mBias

-5 resonances

-Open heavy flavors.

The polarization is given using AliDecayerPolarized. It can be set with different values to each resonance. Only the $\cos\vartheta$ spectrum can be changed (until now).

Polarization analysis from PDC09

Conclusions and Ongoings

Conclusions

The muon spectrometer of the ALICE experiment is ready to take data – cosmic runs show good performances of the entire detector.

The first J/ ψ paper could be done using statistics of 10⁴ events (less than 5 monts of data taking) allowing the study of integrated and differential (d σ /dp_T, d σ /dy) cross sections and (maybe) an integrated over p_T value of polarization.

The polarization analysis can be done both in pp and PbPb. The bkg contribution has been studied and, at least in the second case, a bkg-subtraction strategy has to be implemented.

A first look to PDC09 data gives encouraging results.

Coming next

Full analysis of PDC09 data (polarization & p_T/y spectra)

Study of $B \rightarrow J/\psi + X$ contribution to the $\cos \vartheta$ spectrum

Backup Slides

Muon spectrometer parameters (I)

Muon detection		
Polar, azimuthal angle coverage	$2\leqslant heta\leqslant$ 9, 2π	
Minimum muon momentum	4 GeV/c	
Resonance detection	J/ψ	r
Pseudo-rapidity coverage	$-4.0\leqslant\eta\leqslant-2.5$	$-4.0\leqslant\eta\leqslant-2.5$
Transverse momentum range	$0 \leqslant ho_{ m t}$	$0\leqslant ho_{ m t}$
Mass resolution	70 MeV	100 MeV
Front absorber		
Longitudinal position (from IP)	$-5030mm \leqslant z \leqslant -9$	000 <i>mm</i>
Total thickness (materials)	10 λ (carbon-concrete-	steel)
Dipole magnet		
Nominal magnetic field, field integral	0.7 T, 3 Tm	
Free gap between poles	2.972 – 3.956 m	
Overall magnet length	4.97m	
Longitudinal position (from IP)	-z = 9.87m (centre of	the dipole yoke)
Tracking chambers		
Number of stations, number of planes per station	5, 2	
Longitudinal position of stations	-z = 5357, 6860, 9830	, 12920, 14221 mm
Anodecathode gap (equal to wire pitch)	2.1 mm for st. 1; 2.5 r	nm for st. 2-5
Gas mixture	80%Ar/20%CO ₂	
Pad size st. 1 (bending plane)	4 imes 6, $4 imes$ 12, $4 imes$ 24	mm ²
Pad size st. 2 (bending plane)	5 $ imes$ 7.5, 5 $ imes$ 15, 5 $ imes$	30 <i>mm</i> ²
Pad size st. 3, 4 and 5 (bending plane)	5 $ imes$ 25, 5 $ imes$ 50, 5 $ imes$ 1	.00 <i>mm</i> ²
Max. hit density st. 15 (central PbPb $ imes$ 2)	5.0, 2.1, 0.7, 0.5, 0.6	10 ⁻² hits cm ⁻²
Spatial resolution (bending plane)	\simeq 70 μ m	

Muon spectrometer parameters (II)

Tracking electronics	
Total number of FEE channels	$1.09 imes10^{6}$
Shaping amplifier peaking time	1.2 μ s
Trigger chambers	
Number of stations, planes per station	2, 2
Longitudinal position of stations	-z = 16 120, 17 120 mm
Total number of RPCs, total active surface	72, $\sim 150 m^2$
Gas gap	single, 2 mm
Electrode material and resistivity	Bakelite $^{ extsf{TM}}$, $ ho = 24 imes 10^9$ cm
Gas mixture	$Ar/C_2H_2F_4$ /i-butane/ SF_6 ratio 49/40/7/1
Pitch of readout strips (bending plane)	10.6, 21.2, 42.5 mm (for trigger st. 1)
Max. strip occupancy bend. (non bend.) plane	3%(10%) in central Pb-Pb
Maximum hit rate on RPCs	3 (40) Hz <i>cm</i> ⁻² in Pb-Pb (Ar-Ar)
Trigger electronics	
Total number of FEE channels	$2.1 imes10^4$
Number of local trigger cards	234 + 2

Font: ALICE Physics Performance Report Vol. I, J. Phys. G: Nucl. Part. Phys. 30 (2004)

Production mechanism

JPL, J.R. Cudell, Yu.L. Kalinovsky, PLB633:301,2006

Some S

The LHCb Detector

The ATLAS Detector

Quinto Convegno Nazionale sulla Fisica di ALICE

The CMS Detector

Preparing Data Samples (I)

- Signal: Υ(1S), Υ(2S) and Υ(3S) samples generated with AliGenParam and reconstructed with full-simulation.
 Generation done with several degrees of polarization: -1, -0.5, 0, 0.5, 1.
- **Correlated Background**: generated with Pythia by Rachid Guernane* and reconstructed with fast simulation
- Uncorrelated Background: generated through parametrization and reconstructed with the fast simulation approach (see \$ALICE_ROOT/FASTSIM/uncorrBg.C)

 π and K contribution to background negligible in 8-12 GeV mass region

1, 3 and 5 years of data taking have been considered (L= 5·10²⁶ cm⁻² s⁻¹)

*ALICE-INT-2005-018 version 1.0

Preparing Data Samples (II)

The relative weights of correlated and uncorrelated bkgs have been taken from Smbat Grigoryan's work, published in PPR-Vol.2

The contribution of each type of bkg is different in the 5 centrality classes: 5 different data samples have been prepared for each polarization We did all the work integrating over the impact parameter, but in the future a study of the centrality dependence of the α parameter could be done using the same generated data

Angular distribution fit: error on α

With the same number of reconstructed events the error on α increases while α enhances.

In the Least Squares fitting method if $f(x) = p_0 \cdot (1 + \alpha \cdot x^2)$ then for p_0 large $\sigma \alpha \propto 1/p_0$

Bias on high values of $\boldsymbol{\alpha}$

In peripheral $\cos\theta$ bins we sometimes underestimate the background contribution:

<u>Central cosθ bins:</u> the Bkg shape seems to be perfectly exponential -> the contribution is well estimated

Only for high values of α because in that case the shape of the cosθ depends more directly on the behaviour of the most peripheral bins

Edges of the $\cos\theta$ distribution: the Bkg shape is not exponential -> the contribution is underestimated \checkmark The spectrum shape is wider \checkmark α is bigger

Fit of the $\cos\vartheta$ spectrum: minimization

Template fit to the $\cos\theta$ spectrum done with MINUIT minimizing the quantity:

$$\chi^2 = 2 \cdot \sum_i \left\{ (\boldsymbol{E}_i + \boldsymbol{\beta}_i - \boldsymbol{D}_i) - \boldsymbol{D}_i \cdot \ln\left(\frac{\boldsymbol{E}_i + \boldsymbol{\beta}_i}{\boldsymbol{D}_i}\right) + (\boldsymbol{\beta}_i - \boldsymbol{S}_i) - \boldsymbol{S}_i \cdot \ln\left(\frac{\boldsymbol{\beta}_i}{\boldsymbol{S}_i}\right) \right\}$$

where:

- $\beta_{i} = \frac{1}{4} \left[-(2E_{i} D_{i} S_{i}) + \sqrt{(2E_{i} D_{i} S_{i})^{2} + 8S_{i}E_{i}} \right]$
- D_i : Signal + Bkg events S_i : Bkg events
- E_i : expected number of Signal events
- β_i : expected number of Bkg events

The formula is correct when signal+background and background errors are both poissonian. We suppose background errors to be poissonian: not completely correct because not obtained from an event counting technique.

T. Devlin, Correlations from Systematic Corrections to Poisson-Distributed Data in Log-Likelihood Functions, CDF public note CDF/DOC/JET/PUBLIC/3126 (1995)

How to study polarization

The polarization of Quarkonium is gleaned through the analysis of the angular distribution of daughter particles (e.g. $\mu^+\mu^-$) which follows the trend:

- **α=1** Transverse polarization
- **α=-1** Longitudinal polarization

The angular distribution is usually analyzed in the Υ C.M. frame. Polarization angle defined as the angle between μ^+ momentum and a "polarization axis" which can be chosen in different ways.

We use the helicity (HE) reference frame, in which the z-axis is the direction of the $\Upsilon\,$ momentum in the p-p C.M. frame.