

Photos from "URBAHN" web site

Prospects of CMS Higgs boson search

Chiara Mariotti, INFN Torino

SM Higgs Prospects

Aurelio Juste

➔ Tevatron complements LHC at low mass.

Direct and Indirect m_W and m_t measurements

Knowledge of α_{EW} and $\text{sin}\theta_{\text{eff}}$

Knowledge of α_{EW} and $\text{sin}\theta_{\text{eff}}$

$$\frac{\delta M_W}{M_W} \sim 0.23 \ \delta \Delta \alpha,$$

$$\frac{\delta \sin^2 \theta}{\sin^2 \theta} \sim 1.54 \ \delta \Delta \alpha$$

And α_{em}
is the least well measured
of the fundamental constant

 α_{em} 3.1 x 10⁻⁴ 5%

M(Z) 2 x 10⁻⁵ 0.002 %

GF 8.6 x 10⁻⁶ 0.0008%

+ α_{s} 2.3 x 10⁻²

 0.232

 0.232

 0.232

 0.232

 0.232

 0.232

 0.232

 0.232

 0.232

 0.232

 0.232

 0.231

 0.231

 0.231

 0.231

 0.231

 0.231

 0.231

 0.231

 0.231

 0.231

 0.231

 0.231

 0.231

 0.231

 0.231

 0.231

 0.231

 0.231

 0.231

 0.231

 0.231

 0.231

 0.231

 0.231

 0.231

 0.231

 0.231

 0.231

 0.231

 0.231

 0.231

 0.231

 0.231

 0.231

 0.231

 0.231

 0.231

 0.231

 0.231

 0.231

 0.231

 0.231

 0.231

 0.231

 0.231

 0.231

 0.231

 0.231

 0.231

 0.231

 0.231

 0.231

 0.231

 0.231

 0.231

 0.231

 0.231

 0.231

 0.231

 0.231

 0.231

 0.231

 0.231

 0.231

 0.231

 0.231

 0.231

 0.231

 0.231

 0.231

 0.231

 0.231

 0.231

 0.231

 0.231

 0.231

 0.231

 0.231

 0.231

 0.231

 0.231

 0.231

 0.231

 0.231

 0.231

 0.231

 0.231

 0.231

 0.231

 0.231

 0.231

 0.231

 0.231

 0.231

 0.231

 0.231

 0.231

 0.231

 0.231

 0.231

 0.231

 0.231

 0.231

 0.231

 0.231

 0.231

 0.231

 0.231

 0.231

 0.231

 0.231

 0.231

 0.231

 0.231

 0.231

 0.231

 0.231

 0.231

 0.231

 0.231

 0.231

 0.231

 0.231

 0.231

 0.231

 0.231

 0.231

 0.231

 0.231

 0.231

 0.231

 0.231

 0.231

 0.231

 0.231

 0.231

 0.231

 0.231

 0.231

 0.231

 0.231

 0.231

 0.231

 0.231

 0.231

 0.231

 0.231

 0.231

 0.231

 0.231

 0.231

 0.231

 0.231

 0.231

 0.231

 0.231

 0.231

 0.231

 0.231

 0.231

 0.231

 0.231

 0.231

 0.231

 0.231

 0.231

 0.231

 0.231

 0.231

 0.231

 0.231

 0.231

 0.2

FNAL 16-Jun-09

Cinara เพลางแ

M_H [GeV]

Higgs Production Cross Sections

gg	10%	NNnLO			
VBF	5%	NLO			
WH, ZH	5%	NNLO			
ttH	15%	NLO			

107

106

10⁵

 10^{4}

 10^{3}

 10^{2}

events for 10⁵ nh⁻

The Background

SM rediscovery

- The first data will allow us to re-discover the SM:
- CMS has to see again the Z and W, the tt production and the di-boson production.
- With these known processes it can establish the baseline to future discoveries.
- Data/MC should agree on known SM processes before claiming a new discovery
- It will not be trivial at all to have a good and tuned MC
- Data driven method should be used to control the background in order not to rely on the MC

SM: W and Z at 10 TeV with 10pb⁻¹

If running at 6 TeV -> 0.6*sigma

SM: observation of di-bosons at 10 TeV

- With 100 pb⁻¹ at 10 TeV, 5σ observation of WW
 σ(WW) ~ 74 pb -> Nevt ~ 35 Nbkg ~ 6
- With 133 pb-1 at 10 TeV, 5σ observation of ZZ
 σ(ZZ) ~ 18 pb -> Nevt ~ 3 Nbkg ~ 0.02

SM: Top at 10 TeV

Higgs: Low Mass (M<130)

- The highest BR is into b-quarks
- Gamma-gamma has low BR, but is clean, provided a very good mass resolution (that CMS has!)
- WW and ZZ have lower BR but they will contribute!

H -> bb

 H->bb : it was studied in tt-associated-production but considered impossible for a discovery. Since then news ideas (yet to be studied):

HV, H->bb with pt(H) > 200 GeV

VBF H , H->bb+ γ /W for bb-coupling measurement

bH, H->bb, bbb final state (under study in CMS)

H->bb: WH, ZH Large Higgs p_T

b

- Proposed by J.M.Butterworth et al.
- WH,ZH H->bb
- M_H : 115-130 GeV
- pt>200 GeV, retain ~5% of signal
- Generator level study
- Search for wide b-jet

IntL = 30 fb⁻¹ at 14 TeV

b

mass drop

Rpb

filter

R_{hh}

VBF H, H-> bb + γ /W

- qqH + additional W, W->lv, H->bb
 - initially proposed by D. Rainwater
 - recently re-analysed by A. Ballestrero et al.
- qqH + hard γ , H->bb
 - Gabrielli et al.

S/ \sqrt{B} increases by 10 when asking a hard γ S/ \sqrt{B} ~3 with L=300 fb⁻¹

- Both the lepton from W and the hard γ make the trigger more efficient
- P_{tγ}>20 gev improves s/b because:
 - BG such as bbγjj have a large gluonic component
 - destructive interference for emitting central photons in BG
- Need full analysis by experiment before being confident that they are feasible

FNAL 16-Jun-09

Chiara Mariotti

-look for $\gamma\gamma$ in all the Higgs production mode: gg, VBF, VH, ttH -Higgs can be fermiophobic, thus could be seen with low luminosity

The challenge!

•The material budget

fraction of photons converting before ECAL

	Unconverted	Converted (Invisible)	Converted (Visible)
Barrel (ECAL TDR)	76.2 %	5.0 %	18.8 %
Barrel (present)	58.0 %	10.7 %	31.3 %
EndCap (ECAL TDR)	65.1 %	8.7 %	26.2 %
EndCap (present)	40.5 %	14.4 %	45.1 %

The performance at 14 TeV

Significance for SM Higgs M_H=130 GeV for 30 fb⁻¹

ECAL TDR	Phys TDR 2006		
count. exp	cut based	optimized	
~ 7.5	6.0	8.2	

FNAL 16-Jun-09

Chiara Mariotti

Fermiophobic Higgs

FNAL 16-Jun-09

The Higgs Mass measurement

Higgs: ZZ and WW final state

- WW and ZZ decays will cover basically the full range (production via gg and VBF)
- H->WW: higher cross section and first channel at LHC!
- H->ZZ : very clean and very good mass resolution

H->ZZ->4leptons

H->ZZ->4leptons

- Very clean final state: 4 isolated leptons of high p_T, coming from the primary vertex
- Background: QCD, V+jets, tt+jets, Zbb reducible
- EW ZZ irreducible!

H->ZZ->4leptons

Is the background really reducible?

FNAL 16-Jun-09

$H \rightarrow WW \rightarrow W_V$

- H->WW->II_{VV} : no mass peak
- The control of the background is essential! CMS developed data driven methods to control the background
- Large cross section, so first exclusion/discovery channel!
- Tevatron already covered the "easiest" region

The 2 most discriminant variables m(II), ∆φ(II)

NN output for M(H)=130 GeV M(H)=170 GeV

Signal and Background and Systematic

	HWW (160 GeV)	WW	WZ	ZZ	tW	tī	W+jets	DY
ee preselection	81	258	277	122	215	2472	150	15340
Final selection	20.1	13.7	1.7	0.0	0.0	4.3	2.0	1.0
$\mu\mu$ preselection	143	459	226	184	461	5128	177	39814
Final selection	21.0	10.0	0.1	0.0	0.3	6.0	0.1	0.6
eµ preselection	195	632	42	4	604	6008	453	471
Final selection	31.5	16.0	0.3	0.0	1.4	7.0	6.3	0.0

WW is the dominant bkgd

Source	Signal (%)	Background (%)
Luminosity	5	5
Lepton & trigger efficiencies	4	4
Muon miscalibration and misalignment	2	2
Electron miscalibration and misalignment	4	4
E ^{miss} modeling	1	2
Jet reconstruction	3	8
PDF uncertainties	5	5
tt cross-section	_	18
WW cross-section	_	22
WZ/ZZ/Wt cross-sections	_	10
DY cross-section	_	5
W+jets cross-sections (fakes)	_	100
MC statistics	5	10

Systematics estimated with data-driven methods

Significance at 1fb⁻¹, 14 TeV

- Detector mis-alignment/mis-calibration
- more conservative bkg. systematic
- Optimized selections for each mass point

If taking data at 10 TeV

VBF: A probe to Symmetry Breaking

- If the Higgs exists a resonance will be observed in the M_{VV} spectrum at $M_{H} = M_{VV}$
- Without the Higgs, the V_L's interact strongly at high energy and the V_LV_L crosssection violates the unitarity at $M_{VV} \sim 1-1.5 \text{ TeV} \rightarrow \text{deviation from SM prediction}$
- Whether H exists or not, V_LV_L should be studied in detail to verify if weak or/and strong interactions occur

WW scattering holds the key to EWSB

VBF: a peculiar signature

- Energetic jets in the forward/backward directions
- Higgs decay products between the tagging jets

 Sparse gluon radiation in the central-rapidity region, due to colorless W/Z exchange -> central jet veto

$$\eta_3^* = \eta_3 - \bar{\eta} = \eta_3 - \frac{\eta_j^{\text{tag1}} + \eta_j^{\text{tag2}}}{2}$$

born level distribution for Z + 3 jets D. Zeppenfeld et al., Phys.Rev.D54:6680-6689,1996

First, full simulation analysis of qqH, H->ττ->I+jet

Discovery in Standard Model

M _H [GeV]	115	125	135	145
Production σ [fb]	4.65×10^{3}	4.30×10^{3}	3.98×10^{3}	3.70×10^{3}
$\sigma \times BR(H \rightarrow \tau \tau \rightarrow lj)$ [fb]	157.3	112.9	82.38	45.37
$ m N_S$ at 30 fb $^{-1}$	10.5	7.8	7.9	3.6
$ m N_B$ at 30 fb $^{-1}$	3.7	2.2	1.8	1.4
Significance at 30 fb ⁻¹ ($\sigma_{\rm B}$ = 7.8%)	3.97	3.67	3.94	2.18
Significance at 60 fb ⁻¹ ($\sigma_{\rm B} = 5.9\%$)	5.67	5.26	5.64	3.19

FNAL

CMS: "early" qqH, H->ττ-> *l*+j 1 fb⁻¹, 14 TeV, 2008

VBF H, H->WW-> $|_{V}|_{V}$, $|_{V}jj$

lvjj (loose or tight jet veto) L= 30fb⁻¹

m_H

The background to VBF

The background: V+jets, VV+jets, t+jets, tt+jets But also the irreducible QED background:

High mass region

- The cross section σ(qq->qqVV) and the V polarization depend on the presence of the Higgs:
 - V_T is independent of the Higgs presence (~no coupling)
 - V_L couples to Higgs (and explodes* at high masses if the Higgs does not exist)

- If the Higgs exists, $V_L V_L$ dominates under the peak, and dies out immediately, while $V_T V_T$ remains and dominates at high mass
- If the Higgs does not exist $V_{\rm T}$ and $V_{\rm L}$ are of the same order at $M_{\rm VV}{>}1~{\rm TeV}$
- •Violation of unitarity not strongly felt at LHC because Ecm is too low and PDF's rapidily decrease

Higgs/no-Higgs ratio

- Differences are expected to appear in the High M(VV) region
- The ratio is calculated in this region, as a function of the M(VV) minimum cut
- Additional selection wrt a "VBF H" analysis maybe necessary to enhance the difference between Higgs and no-Higgs
- The following discriminant is studied:

$$\frac{\int_{M_{cut}}^{\infty} dM_{VV} \frac{d\sigma_{noHiggs}}{dM_{VV}}}{\int_{M_{cut}}^{\infty} dM_{VV} \frac{d\sigma_{m_H=500 \ GeV}}{dM_{VV}}}$$

The High $M_{\rm VV}$ mass region

- The no-Higgs case is the "extreme", but can be used as reference
- If the Higgs is not SM, but is for example composite (see Giudice et al.), i.e. there is also a strong component that breaks the symmetry, then the M(VV) cross section will lie in between the Higgs and no-Higgs case.

The Vector Boson scattering is the "ultimate" study to understand the EWSB.

Higgs SM or not?

- SM or Susy or?
- This will depend if other particles have been discovered or not (SUSY sparticle, other Higgses or strong-resonances, or KK...)
- If only one Higgs has been discovered then a measurement of the couplings can discriminate between different models

We need H->bb otherwise measurements only for >150 GeV

Self Coupling: double Higgs production

• Trilinear Higgs coupling contributes to double Higgs production HH

We finally have the 2 diagrams in Madgraph!

- Cross section x BR very small
- No sensitivity at LHC, need SLHC

Higgs boson pair production sensitivity to λ_{HHH} variations, arrows correspond to variations of λ_{HHH} from 1/2 to 3/2 of its SM value

Double Higgs production

- gg ->HH -> W+W- W+W- -> l±vjj l±vjj same sign dileptons
 - Main backgrounds:ttW, WWW
 - Investigated for 170 < MH < 200 GeV
 - total cross section and λ_{HHH} determined with ~ 25% statistical error for 6000 fb^{-1}
- Analysis done up to now is now known to be optimistic (it was carried out in 2001) no realistic pileup considered
- All 8-fermion final states should be considered
- We also want to study HH->ZZZZ -> 8I and ZZVV->4I4j
- In case of new physics (Extra Dimensions..) the cross section can be enhanced by up to 100 times and we can get hints/exclusions already after few fb⁻¹ (preliminary - under study)

Constraints for λ_{HHH}

Interesting for determining if the Higgs is SM or composite (Giudice, Grosjean et al...)

Chiara Mariotti

SM vs MSSM: indirect & direct search

Combining all the coupling measurements, assuming LHC can cover a large part to have seen only the H: of the plane. Where, in the parameter plane, can we ruled out the SM? October 200 tanβ ∂ 3 30 2 * 30 fb⁻¹ 30 2 * 300 + 2 * 100 fb⁻¹ -----2 * 300 fb⁻¹ -----20 h, H, A, H+ 20 ATLAS + CMS m_h^{max} scenario JLdt=300 fb⁻¹ Maximal mixing 5σ 10 9 2 a contour tan β 10 9 8 7 h, H, A m_h = 130 GeV h - SM like 6 8 JLdt=3000 fb 5 7 4 6 LEP 2000 5 3 h.H 125 GeV 4 n.H 2 h, H. A. H. 3 h.H 300 400 500 200 600 700 M_A (GeV) Duhrssen et al 100 200 300 400 500 600 700 800 900 1000 Logan et al m_{A} (GeV) LHC sensitivity dominated by VBF H to WW and $\tau\tau$

Searches for MSSM Higgs Bosons

M_t=172.4±1.2 GeV M_w=80.398±0.025 GeV

Cross sections for MSSM Higgs bosons production at LHC

 $X_t=6^{1/2}M_S (m_h^{max} \text{ scenario}), M_S=2\text{TeV}, m_t=178 \text{ GeV}, m_b(m_b)=4.9 \text{ GeV};$ NLO QCD corrections for all channels, but tt Φ , bb Φ ; $\mu_R=\mu_F=1/2(M_{\Phi}+2m_t)$ for tt Φ and $\frac{1}{4}(M_{\Phi}+2m_b)$ for bb Φ . NLO MRST set of PDF

Chiara Mariotti

Summary of the CMS reach in M_A -tan β

FNAL

Conclusion: the CMS Higgs potential

The theoretical effort

• For the LHC physics we need to go to NLO (QCD and EW) computation for signal and background:

LHC time: a new era

- When we finally will start, a new era will open: we will need time to be able to exploit all our power (look at CDF and D0, at all the physics they can do!
- For the moment LEP and Tevatron did precise (beautiful) measurement, but only set limits...
- Let's hope that finally LHC, going to an incredibly vast new energy domain, will stop setting limits ...

Back-up

Polarization

- •The V_L are coupled to the Higgs and their behavior gives informations on the EWSB.
- •The behavior of the V_LV_L cross section can give information on the scale at which the symmetry breaks.
- •In the No-Higgs case, at large M(VV) the TT cross section is of the same order as the LL.
- •If the Higgs exist, TT dominates at large M(VV)

PROCESS
$$ud \to udW^+W^- \to udc\bar{s}\mu\bar{\nu}_{\mu}$$

 $\begin{array}{ll} 1 < \eta(d) < 5.5 & -1 > \eta(u) > -5.5 \\ E(u,d,c,s,\mu) > 20 \ GeV & P_t(u,d,c,s,\mu) > 10 \ GeV \\ 70 < M(sc, \ \mu\nu) < 90 \end{array}$

E. Accomando *et al.* Boson-boson scattering and Higgs production at the LHC from a six fermion point of view: four jets + Iv processes at $O(\alpha^{6}_{em})$ arXiv:hep-ph/0512219v2

M(µvcs~)

Higgs/no-Higgs at parton level

- Final state qqqqµv
 a NN has been trained to discriminate
 Higgs from no Higgs at large MVV
 - good discrimination
 - certain channel more sensitive

Higgs/no-Higgs ratio in CMS

• $|\eta_V| < 2$ and $|\eta_i - \eta_V| < 2$ to enhance the difference (fast sim)

Different mass hypoteses

E. Accomando *et al.* Boson-boson scattering and Higgs production at the LHC from a six fermion point of view: four jets + Iv processes at $O(\alpha^{6}_{em})$ arXiv:hep-ph/0512219v2