Moti collettivi (flow) in collisioni di ioni pesanti

Distribuzioni di p_T

 Le distribuzioni in impulso trasverso (p_T) delle particelle prodotte nella collisione permettono di estrarre importanti informazioni sul sistema creato nella collisione


```
A basso p<sub>⊤</sub> (<≈ 1 GeV/c ):
```

- I meccanismi di produzione delle particelle sono soft
- ⇒ Le distribuzioni dN/p_Tdp_T hanno un andamento
- esponenziale decrescente alla Boltzmann praticamente indipendente dall'energia √s
- Ad alto p_T (>>1 GeV/c):
 - I meccanismi di produzione delle particelle sono hard
 - ✓ Le distribuzioni dN/p_Tdp_T si distaccano dall'andamento esponenziale e seguono una "legge di potenza"

p_T e m_T

• Dalla definizione di massa trasversa si ha:

$$\frac{dm_T}{dp_T} = \frac{d}{dp_T}\sqrt{m^2 + p_T^2} = \frac{p_T}{\sqrt{m^2 + p_T^2}} = \frac{p_T}{m_T} \implies m_T dm_T = p_T dp_T$$

• E quindi:

$$\frac{dN}{m_T dm_T} = \frac{dN}{p_T dp_T}$$

• Gli spettri in $p_{\rm T}$ vengono comunemente espressi in termini di massa trasversa

⇒ m_T è l'energia della particella nel piano trasverso

o di m_T -m

 \Rightarrow che è l'enegia cinetica nel piano trasverso (E_T^{KIN})

m_T scaling in pp

 Le distribuzioni in massa trasversa (dN/m_Tdm_T) per particelle di basso momento hanno un andamento di tipo esponenziale

$$\frac{dN}{m_T dm_T} \propto e^{-\frac{m_T}{T_{slope}}} \implies \frac{dN}{dm_T} \propto m_T e^{-\frac{m_T}{T_{slope}}}$$

• Lo spettro $dN/m_T dm_T$ in collisioni pp è identico per tutti gli adroni (m_T scaling)

➡Il coefficiente T_{slope} assume il valore d ≈167 MeV per tutte le particelle

• Interpretazione: gli spettri sono spettri termici alla Boltzmann e T_{slope} rappresenta la temperatura a cui avviene l'emissione delle particelle, cioè la temperatura del sistema al momento del thermal freeze-out (T_{fo})

Spettri in m_T e E_T^{KIN}

- La massa trasversa $m_{\rm T}$ non può assumere valori minori della massa m
 della particella
- L'energia cinetica trasversa $m_{\rm T}\text{-}m$ invece parte da zero

Spettri in p_T e in m_T

Valor medio di m_T

Spettri in p_T al variare di T_{slope}

 Al crescere di T_{slope}:
 ⇒ diminuisce la pendenza dello spettro in p_T
 ⇒ Lo spettro diventa più "hard"
 ⇒ Aumenta il valor medio di m_T e di p_T

0

0.2

0.4

2

1.6 1.8

p₋ (GeV/c)

1.2 1.4

1

0.6 0.8

Rottura dell'm_T scaling in AA (1)

Rottura dell'm_T scaling in AA (2)

- Il valor medio di p_T aumenta con la massa della particella
 ⇒Conseguenza dell'aumento di T_{slope} con la massa della particella
 Pon coni particella (n) sumenta con la controlità
- Per ogni particella p_T aumenta con la centralità

Rottura dell'm_T scaling in AA (3)

- T_{slope} dipende linearmente dalla massa della particella
- Interpretazione: c'è un moto collettivo di tutte le particelle sovrapposto al moto di agitazione termica nel piano trasverso con velocità v_⊥ per cui:

$$T_{slope} = T_{fo} + \frac{1}{2}mv_{\perp}^2$$

 Questa espansione collettiva nel piano trasverso viene chiamata radial flow

Flow in collisioni di ioni pesanti

- Flow = moto collettivo delle particelle sovrapposto al moto di agitazione termica
 - Il moto collettivo è dovuto alle alte pressioni che si generano quando si comprime e si riscalda la materia nucleare
 - La velocità di flusso di un elemento di volume del sistema è data dalla somma delle velocità delle particelle contenute in esso
 - Il flusso collettivo è una correlazione tra la velocità v di un elemento di volume e la sua posizione nello spazio-tempo

Radial Flow all'SPS

- Il radial flow rompe l' "m_⊤ scaling" a bassi p_⊤
- Un fit agli spettri di particelle identificate permette di separare la componente termica dal moto collettivo
- In collisioni centrali alla massima energia dell'SPS (√s=17 GeV):

$$\Rightarrow T_{fo} \approx 120 \text{ MeV}$$
$$\Rightarrow \beta_{\perp} = 0.50$$
13

Radial Flow a RHIC

- Il radial flow rompe l' "m_T scaling" a bassi p_T
- Un fit agli spettri di particelle identificate permette di separare la componente termica dal moto collettivo
- In collisioni AuAu centrali alla massima energia di RHIC (√s=200 GeV): ⇔ T_{fo} ≈ 110 ± 23 MeV
 - $\Rightarrow \beta_{\perp} = 0.7 \pm 0.2$ 14

Evoluzione dinamica del sistema

• I fit agli spettri in p_T indicano che:

- Ia fireball creata in una collisione di ioni attraversa il freezeout termico a una temperatura di 110-130 MeV
- Nell'istante del freeze-out si trova in uno stato di rapida espansione radiale collettiva, con una velocità dell'ordine di 0.5-0.7 volte la velocità della luce
- ATTENZIONE: i valori di T_{fo} e b_{\perp} sono i risultati di un fit agli spettri e non è a priori garantito che i loro valori abbiano senso dal punto di vista fisico
 - ⇒Per capire se i valori di temperatura di freeze-out e di velocità di flusso radiale hanno un significato fisico, bisogna verificare che siano riprodotti da modelli teorici basati sull'evoluzione dinamica del sistema →FLUIDODINAMICA

Fluidodinamica

Fluidodinamica

- Come la termodinamica, la fluidodinamica cerca di spiegare un sistema usando variabili macroscopiche (temperatura, pressione ...) legate a variabili microscopiche
- Parametri microscopici del fluido:

 \Rightarrow Libero cammino medio tra due collisioni (λ) \Rightarrow Velocità media di agitazione termica delle particelle (v_{THERM})

• Parametri macroscopici del fluido:

⇒Dimensione del sistema (L)

- ⇒Velocità del fluido (v_{FLUID})
- ⇒Pressione (p)
- ⇒Densità del fluido (ρ)
- \Rightarrow Velocità del suono nel fluido: c_s = $\sqrt{dp/d\rho}$
- \Rightarrow Viscosità: η~ λv_{THERM}

Caratteristiche del fluido (1)

• Numero di Knudsen

 $Kn = \frac{\lambda}{L}$ Libero cammino medio Dimensioni del sistema

⇒ Kn > 1 : Le particelle del fluido sono non interagenti
 ✓ "Free-streaming" – "Ballistic limit" → GAS PERFETTO
 ⇒ Kn << 1 : Le particelle del fluido sono fortemente interagenti
 ✓ Liquido

- Il numero di Knudsen è legato al raggiungimento dell'equilibrio termodinamico
 - Un sistema fortemente interagente, cioè con libero cammino medio λ piccolo rispetto alle dimensioni L del sistema (e quindi Kn<<1) raggiunge l'equilibrio termodinamico più velocemente</p>

Caratteristiche del fluido (2)

• Numero di Mach

 $Ma = \frac{v_{FLUID}}{c_S}$ Velocità del fluido Velocità del suono nel fluido

⇒Ma < 1 : Regime subsonico

⇒Ma > 1 : Regime supersonico

• Il numero di Mach è legato alla compressibilità del fluido

⇒Un fluido incompressibile ($\Delta \rho / \rho \approx 0$) e stazionario (per cui vale l'equazione di Bernoulli) ha un numero di Mach Ma ≈ 0 :

$$\frac{\Delta\rho}{\rho} = \frac{1}{\rho} \frac{d\rho}{dp} \Delta p = \frac{1}{\rho} \frac{1}{c_s^2} \frac{1}{2} \rho v^2 \propto Ma^2$$

Caratteristiche del fluido (3)

• Numero di Reynolds

Re >> 1 : Fluido ideale (non viscoso)
Re <≈ 1 : Fluido viscoso</p>

• Per la viscosità η vale la relazione $\eta \propto \rho \lambda c_S$ da cui si ricava

$$Re = \frac{\rho L v_{FLUID}}{\rho \lambda c_S} = \frac{Ma}{Kn}$$

⇒Nel caso di un fluido compressibile (Ma>≈1): il fatto che il fluido sia termalizzato (Kn<1) significa che è ideale (Re>>1)
 ⇒La viscosità rappresenta un allontanamento dall'equilibrio 20

Fluidodinamica in collisioni di ioni

- Dopo la collisione si crea un gas denso di particelle
- Il fluido si espande, la densità diminuisce e quindi aumenta il libero cammino medio λ e aumenta la dimensione del sistema
- A un certo istante τ_{fo} il libero cammino medio λ diventa dello stesso ordine di grandezza della dimensione del sistema
 - \Rightarrow Kn> \approx 1 \rightarrow non si può più assumere il liquido ideale
 - Questo istante viene chiamato Freeze-out termico (o cinetico) ed è caratterizzato dalla temperatura di freeze-out T_{fo}

Equazioni della fluidodinamica

- Le equazioni della fluidodinamica sono le leggi di conservazione dell'energia e della quantità di moto
- Nel caso di collisioni di ioni andranno scritte per il caso di un fluido
 - In moto non stazionario (cioè la velocità in un punto non è costante nel tempo)
 - Compressibile (la velocità del fluido >> della velocità del suono nel fluido)
 - ⇒Relativistico (la velocità collettiva è dell'ordine di 0.5c)

⇒Ideale, cioè non viscoso

✓ Quest'ultima assunzione serve ad avere equazioni risolvibili

• Un fluido di questo tipo è descritto dalle equazioni di Eulero e dalla legge di conservazione della massa che ricaveremo nel caso non relativistico

Equazione di continuità

• Conservazione della massa

La variazione nel tempo dt della massa del fluido all'interno di un volume V è:

$$\frac{dm}{dt} = \iiint \frac{d\rho}{dt} dV$$

Se non ci sono pozzi o sorgenti, questa deve essere uguale al flusso di massa che entra/esce dalla superficie esterna del volume V

$$\Phi_{\scriptscriptstyle M} = - \iint \rho \vec{v} d\vec{S} = - \iiint \nabla \cdot (\rho \vec{v}) dV$$

dove il segno - è dovuto al fatto che d**S** è diretto verso l'esterno e quindi se la velocità **v** è diretta verso l'esterno (flusso uscente) la massa nel volume V diminuisce (dm/dt negativo)

⇒Quindi:

$$\frac{d\rho}{dt} + \nabla \cdot (\rho \vec{v}) = 0$$

Equazioni del moto di Eulero (1)

• Forza di pressione esercitata su un elemento di fluido $\Delta V = \Delta x \Delta y \Delta z$:

$$F_{x} = p_{x0}\Delta y\Delta z - (p_{x0} + \frac{dp}{dx}\Delta x)\Delta y\Delta z = -\frac{dp}{dx}\Delta V$$

$$F_{y} = p_{y0}\Delta x\Delta z - (p_{y0} + \frac{dp}{dy}\Delta y)\Delta x\Delta z = -\frac{dp}{dy}\Delta V$$

$$F_{z} = p_{z0}\Delta x\Delta y - (p_{z0} + \frac{dp}{dz}\Delta z)\Delta x\Delta y = -\frac{dp}{dz}\Delta V$$

• La forza di pressione per unità di volume sarà quindi:

$$f_p = -\nabla p$$

Equazioni del moto di Eulero (2)

 Se le uniche altre forze cha agiscono sul fluido sono quelle gravitazionali, si può scrivere la legge di Newton F=ma come:

$$-\nabla p + \rho g = \rho \frac{D\vec{v}}{Dt}$$
Forza di pressione
Forza di gravità
Derivata della velocità
rispetto al tempo

dove D/Dt rappresenta la derivata totale della velocità (che dipende da t, x, y e z rispetto al tempo e vale:

$$\frac{D\vec{v}}{Dt} = \frac{\partial\vec{v}}{\partial t} + \frac{\partial\vec{v}}{\partial x}\frac{dx}{dt} + \frac{\partial\vec{v}}{\partial y}\frac{dy}{dt} + \frac{\partial\vec{v}}{\partial z}\frac{dz}{dt} =$$
$$= \frac{\partial\vec{v}}{\partial t} + v_x\frac{\partial\vec{v}}{\partial x} + v_y\frac{\partial\vec{v}}{\partial y} + v_z\frac{\partial\vec{v}}{\partial z} =$$
$$= \frac{\partial\vec{v}}{\partial t} + (\vec{v}\cdot\nabla)\vec{v}$$

Equazioni del moto di Eulero (3)

• Le equazioni di Eulero sono quindi:

$$\frac{\partial \vec{v}}{\partial t} + (\vec{v} \cdot \nabla)\vec{v} = -\frac{1}{\rho}\nabla p + g$$

Sono 3 equazioni non lineari alle derivate parziali che rappresentano la conservazione del momento

$$\frac{\partial v_x}{\partial t} + v_x \frac{\partial v_x}{\partial x} + v_y \frac{\partial v_x}{\partial y} + v_z \frac{\partial v_x}{\partial z} = -\frac{1}{\rho} \frac{\partial p}{\partial x} + g_x$$
$$\frac{\partial v_y}{\partial t} + v_x \frac{\partial v_y}{\partial x} + v_y \frac{\partial v_y}{\partial y} + v_z \frac{\partial v_y}{\partial z} = -\frac{1}{\rho} \frac{\partial p}{\partial y} + g_y$$
$$\frac{\partial v_z}{\partial t} + v_x \frac{\partial v_z}{\partial x} + v_y \frac{\partial v_z}{\partial y} + v_z \frac{\partial v_z}{\partial z} = -\frac{1}{\rho} \frac{\partial p}{\partial z} + g_z$$

- In caso di fluido stazionario e incompressibile le equazioni di Eulero si riducono a quella di Bernoulli
- In caso di fluido viscoso le equazioni sono quelle (più complicate) di Navier-Stokes

Fluidodinamica relativistica

 In caso di fluido in moto con velocità relativistiche, le equazioni di conservazione del momento e dell'energia si scrivono in forma tensoriale come:

• A queste si aggiunge una equazione di continuità che rappresenta la conservazione del numero barionico:

$$\partial_{\mu}j^{\mu}_{B} = 0$$
 $j^{\mu} = n_{B}u^{\mu}$

• Sono quindi 5 equazioni differenziali alle derivate parziali con 6 incognite (e, p $n_{\rm B}$ e le 3 componenti della velocità)

Equazione di stato

- Per chiudere il sistema delle 5 equazioni di conservazione di energia, impulso e numero barionico serve un'ulteriore relazione
- Si deve quindi usare un'equazione di stato per la materia nucleare che metta in relazione la pressione e la densità di energia del sistema

- Transizione di fase del prim'ordine
 Per T<T_c:
 - equazione di stato di un gas di adroni non interagenti

 \Rightarrow velocità del suono: $c_5^2 = dp/d\epsilon \approx 0.15$

• Per T>T_c:

equazione di stato di un gas di quark e gluoni non interagenti a massa nulla con bag-pressure B (ε=3p+4B)

 \Rightarrow velocità del suono: $c_s^2 = dp/d\epsilon = 1/3$

Condizioni iniziali

- Nelle prime fasi dell'evoluzione della fireball il sistema non è in equilibrio, quindi non si può applicare la fluidodinamica
- Bisogna quindi iniziare l'evoluzione fluidodinamica a un tempo τ_{equ} a partire dallo stato del sistema (= distribuzioni spaziali di energia e entropia) al tempo τ_{equ}
- La modellizzazione delle condizioni iniziali può essere fatta con:
 - Codici Monte Calro che descrivono le cascate partoniche (UrQMD, AMPT)
 - Ricavare la densità di energia e di entropia dalle densità di partecipanti e collisioni calcolate con il modello di Glauber

Freeze-out termico

- L'evoluzione idrodinamica termina quando il ibero cammino medio delle particelle diventa dell'ordine delle dimensioni del sistema e quindi il sistema non è in grado di mantenersi in equilibrio termidinamico
- Il termine dell'evoluzione idrodinamica viene normalmente descritto secondo le prescrizioni di Cooper-Frye
 - Si postula una transizione immediata di tutte le particelle all'interno di un elemento di fluido da una situazione di equilibrio termico (libero cammino medio = zero) a una di espansione libera (libero cammino medio →∞)
 - La densità di energia al momento del freeze-out è uno dei parametri dei modelli idrodinamici che viene ottimmizzato per riprodurre i dati sperimentali

- I parametri liberi della fluidodinamica sono fissati per riprodurre gli spettri in $p_{\rm T}$ di pioni e antiprotoni per collisioni centrali
- Una volta che i parametri sono stati fissati per pioni e protoni in collisioni centrali, le distribuzioni in p_T alle altre centralità e per gli ₃₁ altri adroni sono calcolati senza inserire altri parametri.

Fluidodinamica e radial flow (2)

	SPS	RHIC 1	RHIC 2
$\sqrt{s_{\rm NN}}$ (GeV)	17	130	200
$s_{ m eq}~({ m fm}^{-3})$	43	95	110
$T_{\rm eq}$ (MeV)	257	340	360
$ au_{ m eq}~({ m fm}/c)$	0.8	0.6	0.6

- I parametri inseriti nell'evoluzione fluidodinamica dipendono dall'energia della collisione
- Ad esempio per collisioni AuAu a $\sqrt{s=130 \text{ GeV}}$ $\Rightarrow \tau_{equ} = 0.6 \text{ fm/c} \Rightarrow T_{equ} = 340 \text{ MeV} \Rightarrow \varepsilon_{equ} = 25 \text{ GeV/fm}^3$ $\Rightarrow s_{equ} = 95 \text{ fm}^{-3}$ $\Rightarrow \varepsilon_{fo} = 0.075 \text{ GeV/fm}^3 \Rightarrow T_{fo} = 130 \text{ MeV}$
- Il tempo per equilibrare il sistema diminuisce al crescere di \sqrt{s}

Altri tipi di moto collettivo

Anisotropic transverse flow

- Correlazione tra le velocità delle particelle prodotte e il parametro di impatto
- In collisioni con b≠0 (non centrali) si crea una fireball con un'anisotropia geometrica

⇒La regione di overlap ha una forma ellissoidale

- Dal punto di vista macroscopico:
 - I gradienti di pressione (e quindi le forze che spingono le particelle) nel piano trasverso sono anisotropi (= dipendenti da φ)

 ✓ Il gradiente di pressione è maggiore nel piano x,z (lungo il parametro di impatto) che lungo y

 \clubsuit La velocità del fluido dipende da ϕ

La distribuzione azimutale delle particelle rivelate sarà anisotropg₄

Anisotropic transverse flow

- Correlazione tra le velocità delle particelle prodotte e il parametro di impatto
- In collisioni con b≠0 (non centrali) si crea una fireball con un'anisotropia geometrica

⇒La regione di overlap ha una forma ellissoidale

• Dal punto di vista microscopico:

Le interazioni tra le particelle prodotte (se sufficientemente forti) possono convertire questa anisotropia geometrica iniziale in un'anisotropia nella distribuzione dei momenti delle particelle che può essere misurata

Piano della reazione

- L'anisotropic transverse flow è quindi una correlazione della direzione (= momento) delle particelle prodotte dal parametro di impatto della collisione
 - Il piano definito dal parametro di impatto e dalla direzione del fascio si chiama piano della reazione
 - \rightleftharpoons L'angolo azimutale del vettore parametro di impatto nel piano trasverso si indica con $\Psi_{\rm RP}$

Anisotropic transverse flow

- Si parte dalle distribuzioni azimutali delle particelle rispetto al piano della reazione (q- Ψ_{RP})
- Si usa uno sviluppo in serie di Fourier :

$$\frac{dN}{d(\varphi - \Psi_{RP})} = \frac{N_0}{2\pi} (1 + 2v_1 \cos(\varphi - \Psi_{RP}) + 2v_2 \cos(2(\varphi - \Psi_{RP})) + \dots)$$

- ⇒I termini con i seni non sono presenti perché la distribuzione di particelle deve essere simmetrica (pari) rispetto a $\Psi_{\rm RP}$
- ⇒I coefficienti delle varie armoniche (v₁, v₂,...) descrivono le differenze rispetto a una distribuzione isotropa
- Dalle proprietà delle serie di Fourier si ricava che:

$$v_n = \left\langle \cos\left[n\left(\varphi - \Psi_{RP}\right)\right]\right\rangle$$

Coefficiente v₁: **Directed flow**

 $\frac{dN}{d(\varphi - \Psi_{RP})} = \frac{N_0}{2\pi} \left(1 + 2v_1 \cos(\varphi - \Psi_{RP}) + 2v_2 \cos(2(\varphi - \Psi_{RP})) + \dots\right)$

Directed flow

$$v_1 = \left\langle \cos(\varphi - \Psi_{RP}) \right\rangle$$

 Se v₁≠0 c'è una differenza tra il numero di particelle dirette parallelamente (0°) e anti-parallelamente (180°) al parametro di impatto
 Il directed flow rappresenta quindi una direzione preferenziale di emissione delle particelle

 $\frac{dN}{d(\varphi - \Psi_{RP})} = \frac{N_0}{2\pi} (1 + 2v_1 \cos(\varphi - \Psi_{RP}) + 2v_2 \cos(2(\varphi - \Psi_{RP})) + \dots)$

$$Elliptic flow$$
$$v_{2} = \left\langle \cos\left[2\left(\varphi - \Psi_{RP}\right)\right]\right\rangle$$

- Se v₂≠0 c'è una differenza tra il numero di particelle dirette parallele (0° e 180°) e perpendicolari (90° e 270°) al parametro di impatto
 - E' l'effetto che ci si aspetta dalla differenza tra i gradienti di pressione paralleli e ortogonali al parametro di impatto 40

Armoniche superiori

$$\frac{dN}{d(\varphi - \Psi_{RP})} = \frac{N_0}{2\pi} \left(1 + 2v_1 \cos(\varphi - \Psi_{RP}) + 2v_2 \cos(2(\varphi - \Psi_{RP})) + \dots \right)$$

- Terza armonica: v₃
 - Per collisioni di nuclei uguali deve essere v₃ = 0 (e così tutte le altre armoniche dispari) per ragioni di simmetria rispetto a y

- Quarta armonica: v₄
 - Per grandi valori di v₂ deve essere
 \$\ne\$ 0 per riprodurre la geometria
 della regione di overlap.

 \Rightarrow In caso di fluido ideale v₄=0.5 v₂²

Tipi di flow in collisioni nucleari

- Radial flow = flusso isotropo (i.e. indipendente dall'angolo azimutale ϕ) nel piano trasverso
 - Dovuto alla differenza di pressione tra l'interno e l'esterno della fireball
 - ⇒Unico tipo di moto collettivo per b=0
 - \Rightarrow Osservabili sperimentali: $p_T (m_T)$ spectra

- Anisotropic transverse flow = dipendenza della velocità di flusso dall'angolo azimutale φ, tipica di collisioni con b≠0
 - Dovuti ai gradienti di pressione che si generano in seguito all'anisotropia geometrica della fireball
 - Osservabili sperimentali: distribuzioni azimutali delle particelle rispetto al piano di reazione, coefficienti di Fourier v₁, v₂,

Importanza dell'elliptic flow

Elliptic flow - caratteristiche (1)

- L'anisotropia geometrica che è all'origine dell'elliptic flow si attenua con l'evoluzione del sistema
 - Anche in caso di espansione libera (sistema non interagente) l'eccentricità della fireball diminuisce con l'aumentare della dimensione del sistema
- I gradienti di pressione che sono all'origine dell'elliptic flow sono più forti nei primi istanti dopo la collisione
- L'elliptic flow è quindi particolarmente sensibile all'equazione di stato (i.e. velocità del suono) del sistema nei primi istanti della collisione

Elliptic flow - caratteristiche (1)

- L'anisotropia geometrica (ϵ_X = deformazione ellittica della fireball) diminuisce con il tempo
- L'anisotropia dei momenti (ε_P , che è quella che si misura):
 - \Rightarrow Si sviluppa velocemente nei primi istanti della collisione (τ < 2-3 fm/c), quando il sistema è nello stato di QGP

✓ Effetto dell'equazione di stato del QGP che ha alta velocità del suono c_S ("hard equation of state")

⇒ Rimane costante durante la transizione di fase (2 < τ < 5 fm/c) che nell'equazione di stato usata nei modelli fluidodinamici è del prim'ordine ✓ Effetto del "softening" dell'equazione di stato durante la transizione di fase ($c_s = 0$) ⇒ Aumenta ancora leggermente nella fase di gas adronico (τ < 5 fm/c) ✓ In questa fase la velocità del suono è più bassa ($c_s^2 \approx 0.15$)

Elliptic flow: risultati sperimentali

v₂ vs. centralità a RHIC (1)

L'elliptic flow che si osserva dipende da:

- Eccentricità della regione di overlap
 ⇒Diminuisce al crescere della centralità
- Quantità di interazioni subite dalle particelle

Aumenta al crescere della densità di particelle (e quindi della centralità)

v₂ vs. centralità a RHIC (2)

- I valori di v₂ misurati sono ben descritti dalla fluidodinamica ideale (i.e. viscosità = 0) per collisioni centrali e semicentrali usando i parametri estratti dagli spettri in p_T
- I modelli (e.g. RQMD) basati su una cascata adronica non riproducono l'elliptic flow osservato, che quindi sembra provenire da una fase partonica (= deconfinata)

v₂ vs. centralità a RHIC (3)

- (Una delle possibili) interpretazioni:
 - ⇒In collisioni semi-centrali si ha una termalizzazione rapida (\u03c0_{equ}≈0.6-1 fm/c) e il sistema creato è un fluido ideale
 - Per collisioni più periferiche (fireball più piccola e meno interagente) la termalizzazione è incompleta e/o più lenta
- Ma cosa succederebbe con una diversa (più realisitica) equazione di stato e un fluido viscoso?

- A basso p_T la fluidodinamica ideale riproduce i dati
- Ad alto p_T i dati si discostano dall'andamento previsto
 - ⇒ Spiegazione naturale: le particelle ad alto p_T sfuggono velocemente dalla fireball senza subire abbastanza re-scattering e termalizzare, quindi la fluidodinamica non è applicabile

v₂ vs. p_T per particelle identificate

• La fluidodinamica è in grado di riprodurre anche la dipendenza di v_2 dalla massa della particella a basso p_T

Pioni vs. protoni

- I pioni (leggeri) sono più sensibili a $T_{fo} e \beta \perp$
- I protoni (e gli adroni pesanti) sono più sensibili all'equazione di stato del fluido
 - I dati favoriscono chiaramente un'equazione di stato con una fase partonica, una adronica e una transizione di fase

Scenario senza termalizzazione

• Dipendenza dell'elliptic flow osservato dal numero medio di collisioni Nsubito da ciascuna particella

$$\mathcal{N} \propto \frac{L}{\lambda} = Kn^{-1}$$
 $\mathcal{N} \propto \text{ particle density} \propto \frac{1}{S} \frac{dN}{dy}$

- In assenza di re-scattering (gas perfetto) non si sviluppa elliptic flow
- Al crescere del numero ${\cal N}$ di re-scattering cresce v_2

 \Rightarrow Low-density-limit (v₂/eccentricità \propto Kn⁻¹)

Dopo un numero \mathcal{N}_0 di collisioni il sistema termalizza e da questo momento ulteriori collisioni non fanno più aumentare v₂ \Rightarrow Limite idrodinamico (v₂/eccentricità $\propto c_5^2$)

v₂ a diversi valori di √s (1)

- La termalizzazione più lenta a AGS e SPS non consente di raggiungere il limite idrodinamico
- Il limite idrodinamico viene raggiunto alla massima energia di RHIC

 L'andamento in funzione di Kn⁻¹ è lineare, come previsto nello scenario non termalizzato ("Low-density-limit")
 ⇒Non c'è evidenza di saturazione di v₂ al crescere del numero di rescatering

Conclusioni dopo RHIC

• Nelle collisioni AuAu a RHIC con √s=130-200 GeV si è osservato:

⇒Un forte elliptic flow

L'evoluzione idrodinamica di un fluido ideale riproduce i valori osservati e la la dipendenza dalla massa delle particelle dell'elliptic flow adoperando un'equazione di stato con una transizione di fase dal QGP a un gas di adroni

- L'elliptic flow è uno dei "pezzi di puzzle" usati per affermare che in collisioni AuAu a RHIC si forma uno "Strongly interacting QGP" (sQGP)
 - \Rightarrow La fireball raggiunge rapidamente l'equilibrio termico ($\tau_{equ} \approx 0.6-1 \text{ fm/c}$)

 $\checkmark E$ quindi al momento della termalizzazione ha una temperatura superiore a T_c

✓ C'è una fase partonica termalizzata

⇒Si osserva un comprtamento da liquido perfetto

✓ libero cammino medio << dimensioni del sistema E viscosità=0

- Ma:
 - \Rightarrow Ci sono anche indizi che fanno pensare a una termalizzazione incompleta
 - Ci sono incertezze teoriche sugli input dati all'evoluzione idrodinamica, ad es. la viscosità, l'equazione di stato e il meccanismo di freeze-out del sistema.