

Introduzione

- Docenti: Massimo Masera, Francesco Prino, Enrico Scomparin
- Argomenti:
 - Introduzione, bag model, termodinamica e transizioni di fase, QCD su reticolo
 - Dinamica delle collisioni nucleari, variabili cinematiche
 - Geometria delle collisioni nucleari: modello di Glauber, caratterizzazione dell'evento, molteplicità di particelle cariche,...
 - Densità di energia in regime di Bjorken, "evoluzione" spazio-temporale della collisione ncleo-nucleo: osservabili "hard" e "soft"
 - Osservabili:
 - "hard": J/Ψ , jets, heavy flavours
 - "soft": chiral symmetry, chemical composition, thermal models, spettri e flow

Introduzione

• Materiale del corso: disponibile su web all'URL: <u>http://www.to.infn.it/~masera</u>

Orario

Giorno	Orario	Aula
Venerdì 25/9	16-18	А
Lunedì 28/9	16-18	Verde
Giovedì 8/10	16-18	А
Lunedì 12/10	16-18	Verde

- Lunedì 16 \rightarrow 18 in Aula Verde:
 - $-\ 28/9 \ | \ 12/10 \ | \ 19/10 \ | \ 26/10 \ | \ 2/11 \ | \ 9/11$
- Giovedì e venerdì $16 \rightarrow 18$ in Aula A
 - $-\ 25/9 \ | \ 8/10 \ | \ 22/10 \ | \ 23/10 \ | \ 19/11 \ | \ 20/11$
- In realtà ci servono altri "slot"
 - Verificare compatibilità con altri corsi

- L'esistenza di particelle costituenti i nucleoni e più in generale gli adroni è stata ipotizzata per due tipi di motivi:
 - "<u>Statici</u>": spiegare l'esistenza di decine di particelle diverse → masse, numeri quantici, vite medie
 - "dinamici": spiegare risultati quali il Bjorken scaling nel deep inelastic scattering → la diffusione inelastica di una sonda elettromagnetica su un nucleone è assimilabile ad una collisione con un costituente elementare (partone) sostanzialmente libero di muoversi all'interno del nucleone
- La teoria che spiega l'interazione dei quark attraverso la carica di colore è stata formulata in seguito al successo della QED ed ha preso il nome di cromodinamica quantistica (QCD)

- Gli adroni sono singoletti di colore → non esistono cariche di colore libere → i quark sono confinati
- Esistono 3 stati di carica di colore (R,B,G) introdotti per spiegare la <u>composizione</u> dei barioni con 3 quark e dei mesoni con un quark ed un antiquark
- L'<u>interazione</u> di colore soddisfa ad una simmetria SU(3)
- L'interazione è mediata da 8 bosoni vettoriali (spin 1) privi di massa, anch'esse dotate di carica di colore, dette gluoni → a differenza di quanto avviene per i fotoni, i gluoni interagiscono tra loro

5

CONTINUA

La struttura degli adroni

Lo stesso vale per gli adroni a vita media breve..... Barioni (es. particella Λ) Mesoni (es. pione o mesone π)

PROPERTIES OF THE INTERACTIONS								
Interaction Property		Gravitational	Weak	Electromagnetic	Strong			
		Gravitational	(Electr	(Electroweak)		Residual		
Acts on: Mass –		Mass – Energy	Flavor	Electric Charge	Color Charge	See Residual Strong Interaction Note		
Particles experiencing:		All	Quarks, Leptons	Electrically charged	Quarks, Gluons	Hadrons		
Particles mediating:		Graviton (not yet observed)	W+ W- Z ⁰	γ	Gluons	Mesons		
Strength relative to electromag $\begin{cases} 10^{-18} \text{ m} \\ \text{for two u quarks at:} \\ 3 \times 10^{-17} \text{ m} \end{cases}$		10 ⁻⁴¹	0.8	1	25	Not applicable		
		10 ⁻⁴¹	10 ⁻⁴	1	60	to quarks		
for two protons in nucleus		10 ⁻³⁶	10 ⁻⁷	1	Not applicable to hadrons	20		
Ouarks spin = $1/2$								
	Appro	X. Electric						
Flavor	Mas	s charge						
	GeV/							
Ասո	0.003	3 2/3						
u up	0.000							
d down	0.006	5 –1/3						
C charm	1.3	3 2/3						
S strange	0.1	l –1/3						
t ton	170	2/2						
c top	17:	2/5						
b bottom	4.3	3 –1/3	Nucleare delle A	Alte Energie		9		

QCD / 1

Anche nel caso della QCD si ha polarizzazione del vuoto.

Differenza: i gluoni sono colorati e possono interagire tra loro. Come conseguenza, una carica rossa è circondata prevalentemente da cariche rosse. Una sonda penetrante, entra in una regione a carica rossa e la quantità di carica misurata decresce all'avvicinarsi della sonda → antiscreening

e delle Alte Energie

QCD / 2

QCD / 3

Un modo alternativo per esprimenre la costante di accoppiamento, utile per lo studio della struttura adronica è il seguente:

$$\begin{split} &\alpha_{s}\left(\left|q^{2}\right|\right) = \frac{12\pi}{\left(33 - 2n_{flavor}\right)\ln\left(\left|q^{2}\right|/\Lambda^{2}\right)} \quad , \quad \left|q^{2}\right| \gg \Lambda^{2} \\ &\ln\Lambda^{2} = \ln\mu^{2} - \frac{12\pi}{\left(33 - 2n_{flavor}\right)\alpha_{s}\left(\mu^{2}\right)} \rightarrow \Lambda^{2} = \mu^{2}e^{-\frac{12\pi}{\left(33 - 2n_{flavor}\right)\alpha_{s}\left(\mu^{2}\right)}} \end{split}$$

Il parametro Λ non deriva dalla lagrangiana di QCD: rappresenta il limite di applicazione dell'approccio perturbativo. Per momenti pari a Λ , il termine di accoppiamento α_s diverge. Sperimentalmente $\Lambda \approx 200 \text{ MeV}$

Confinamento

Il flusso di colore è ristretto in un tubo che unisce la coppia quark antiquark

Il potenziale che lega un quark e un antiquark in un mesone è $V(r) = -\frac{A(r)}{r} + Kr$

Al crescere di r diventa energeticamente favorevole materializzare una coppia quark antiquark e formare un nuovo mesone

Come procediamo?

- Abbiamo visto che l'interazione tra i quark è descritta dalla QCD
- Un approccio perturbativo in QCD è possibile per alti momenti trasferiti
 processi hard
- Per studiare il fenomeno del confinamento l'approccio perturbativo non è applicabile → modelli QCD inspired, QCD non perturbativa
 - Modelli a sacca
 - QCD su reticolo
- Domanda: la materia adronica ordinaria è confinata, ma che cosa succede in condizioni estreme? Ad esempio nell'Universo primordiale, nel core delle stelle a neutroni, in collisioni tra nuclei ad alta energia? Che cosa hanno in comune questi fenomeni?

- La porzione di Universo che oggi vediamo 12-16 miliardi di anni fa era concentrata in una piccolissima regione di spazio e quindi aveva "infinita" densità di energia e temperatura
- L'Universo si è poi espanso e raffreddato da questo stato iniziale caldo e denso fino all'Universo vasto e "freddo" in cui abitiamo
 - Il Big Bang non è da intendersi come un'esplosione nel senso comune di questo termine: spazio e tempo non esistevano prima del Big Bang, il Big Bang ha "creato lo spazio"

- Durante i primi microsecondi della sua vita, la densità di energia era talmente alta che gli adroni (ad esempio i nucleoni) non potevano formarsi
 - Gli adroni sono stati legati di quark, antiquark e gluoni senza carica di colore (colour-singlet)
- I quark e i gluoni erano quindi deconfinati e l'Universo era quindi fatto di un Plasma di Quark e Gluoni (QGP)

- Quando la densità di energia è scesa sotto il valore critico
 - $\epsilon_{cr} \approx 1 \text{ GeV/fm}^3$

e la temperatura è scesa sotto il valore critico

 $-~T_{cr}{\approx}170~MeV\approx2~10^{12}~K\approx100000$ volte la temperatura al centro del Sole

i gradi di libertà legati alla carica di colore sono rimasti confinati all'interno di oggetti neutri di colore (color-singlet) di dimensioni dell'ordine di 1 fm

- Formazione degli adroni
- I quark e i gluoni sono confinati all'interno degli adroni

- Dopo 3 minuti dal Big Bang, la temperatura è scesa sotto il valore critico di ≈100 keV (10⁹ K) e quindi piccoli nuclei atomici si sono potuti formare e sopravvivere
 - Questo istante è chiamato "Nucleosintesi primordiale"
- A questo punto (dopo i "Primi 3 minuti") la composizione chimica dell'Universo primordiale è fissata (**Chemical freeze-out**)
 - Gli adroni instabili sono decaduti e le antiparticelle si sono annichilite lasciando un piccolo eccesso di protoni, neutroni e elettroni
 - La composizione chimica dell'Universo cambierà di nuovo solo dopo centinaia di milioni di anni, con la formazione delle stelle e l'inizio dei processi di fusione nucleare all'interno dei nuclei stellari

- Dopo la nucleosintesi primordiale l'Universo è ancora ionizzato e quindi opaco alla radiazione elettromagnetica
- Circa 300000 anni dopo il Big Bang, quando la temperatura è scesa a circa 3000 K, gli elettroni e i nuclei si combinano e formano gli atomi (elettricamente neutri)
- A questo punto la radiazione elettromagnetica si disaccoppia con uno spettro di corpo nero con T≈3000K (**Thermal freeze-out**)
 - A causa dell'espansione dell'universo, questa radiazione di corpo nero ha subito un redshift fino a una temperatura T=2.7 K, (cosmic microwave background)

- L'Universo primordiale è abbastanza omogeneo
- L'attrazione gravitazionale causa un accrescimento delle piccole fluttuazioni di densità presenti
- Dopo 600 milioni-1 miliardo di anni dal Big Bang si formano le prime galassie

Nucleare delle Alte Energie

Ricapitolando...

Evidenze del Big Bang (I)

- Espansione dell'Universo → legge di Hubble (v=Hr)
 - Osservazione di Hubble nel 1929 che le galassie si allontanano da noi (Red-shift)
 - La velocità di allontanamento è proporzionale alla loro distanza

Evidenze del Big Bang (II)

- Radiazione cosmica di fondo
 - Prevista dalla teoria del Big Bang (Gamow) intorno a 3 K e praticamente isotropa
 - Scoperta da Penzias e Wilson (1964)
 - Misure più accurate dell'anisotropia (che riflette le fluttuazioni di densità dell'Universo Primordiale) con i satelliti COBE (1989) e WMAP (2003)

- Abbondanza degli elementi leggeri (H, He, Li)
 - Le abbondanze di ³He, ⁴He, Li e deuterio sono calcolabili nella teoria del Big Bang e dipendono da un solo parametro (la densità barionica).
 - Il modello del Big Bang è l'unico che spiega tutti i valori misurati (ad es. la frazione intorno al 25% di ⁴He)

Osservare il QGP?

- L'opacità dell'Universo per tempi precedenti il disaccoppiamento della radiazione elettromagnetica impedisce di "vedere" ciò che è accaduto nei primi 300000 anni dopo il Big Bang
 - Universo opaco alla radiazione elettomagnetica per t<300000 anni
- In particolare, il QGP di cui era costituito tutto l'Universo nei primi microsecondi è "nascosto" dietro la "tenda" della radiazione di fondo a microonde
 - Per studiare il QGP (o una sua approssimazione) occorre quindi ri-crearlo utilizzando le collisioni di ioni grandi ad alta energia

- MIT bag model^(*) o modello a sacca contiene in modo fenomenologico il confinamento dei quark e dei gluoni negli adroni
- I quark sono trattati come particelle prive di massa in una sacca di dimensioni finite
- Il confinamento deriva dal bilanciamento tra la pressione derivante dall'energia cinetica dei quark ed una pressione esterna, introdotta ad hoc
- Ci sono diverse versioni del modello, più o meno sofisticate: noi lo utilizzeremo in modo euristico per discutere la materia nucleare in condizioni estreme

(*) A. Chodos et Al. Phys. Rev. **D**9, 3471 (1974)

Stima della pressione della sacca

- Consideriamo un volume sferico
 - di raggio R
 - Contenente N fermioni liberi e privi di massa
- L'equazione di Dirac per un fermione di massa nulla è

$$g_{\mu\nu}\gamma^{\mu}p^{\nu}\psi = 0$$

dove $g_{\mu\nu}$ è il tensore metrico

$$g_{\mu\nu} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -1 \end{pmatrix}$$

e le matrici $\gamma\,$ sono definite come

$$\gamma^0 = \begin{pmatrix} I & 0 \\ 0 & -I \end{pmatrix} \ \mathbf{e} \ \gamma^i = \begin{pmatrix} 0 & \sigma^i \\ -\sigma^i & 0 \end{pmatrix} \ \mathbf{con} \ i = 1, 2, 3$$

dove σ^i sono le matrici di Pauli

$$\sigma^{1} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \quad \sigma^{2} = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix} \quad \sigma^{3} = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

e I è la matrice identità 2×2

 $I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$

La funzione d'onda quadridimensionale del fermione può essere scritta in termini di due spinori bidimensionali ψ_- e ψ_+ :

 $\psi = \left(\begin{array}{c} \psi_+ \\ \psi \end{array}\right)$

L'equazione di Dirac può essere esplicitata come

$$\begin{pmatrix} p_0 & -\overrightarrow{\sigma} \cdot \overrightarrow{p} \\ \overrightarrow{\sigma} \cdot \overrightarrow{p} & -p_0 \end{pmatrix} \begin{pmatrix} \psi_+ \\ \psi_- \end{pmatrix} = 0$$
(1)

Dove, con $\vec{\sigma} \cdot \vec{p}$ si intende:

$$\vec{\sigma} \cdot \vec{p} = \begin{pmatrix} 0 & p_1 \\ p_1 & 0 \end{pmatrix} + \begin{pmatrix} 0 & -ip_2 \\ ip_2 & 0 \end{pmatrix} + \begin{pmatrix} p_3 & 0 \\ 0 & -p_3 \end{pmatrix} = \begin{pmatrix} p_3 & p_1 - ip_2 \\ p_1 + ip_2 & -p_3 \end{pmatrix}$$

Si noti che

$$\left(\vec{\sigma} \cdot \vec{p}\right)^2 = \begin{pmatrix} p_3 & p_1 - ip_2 \\ p_1 + ip_2 & -p_3 \end{pmatrix} \begin{pmatrix} p_3 & p_1 - ip_2 \\ p_1 + ip_2 & -p_3 \end{pmatrix} = \vec{p} \cdot \vec{p} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$
(2)

La relazione (1) può essere sviluppata come

$$\begin{cases} p_0\psi_+ - \overrightarrow{\sigma} \cdot \overrightarrow{p}\psi_- = 0\\ \overrightarrow{\sigma} \cdot \overrightarrow{p}\psi_+ - p_0\psi_- = 0 \end{cases}$$

Eliminando ψ_{-} , si ottiene un'equazione per ψ_{+} :

$$\psi_{-} = \frac{\overrightarrow{\sigma} \cdot \overrightarrow{p}}{p_{0}} \psi_{+} \qquad \Longrightarrow \qquad p_{0} \psi_{+} - \frac{\left(\overrightarrow{\sigma} \cdot \overrightarrow{p}\right)^{2}}{p_{0}} \psi_{+} = 0$$

Che, grazie alla (2), si riduce a:

$$\left(\overrightarrow{p}\cdot\overrightarrow{p}-p_0^2\right)\psi_+=0$$

La soluzione a più bassa energia è lo stato $s_{1/2}$ dato da

 $\psi_{+} = \mathcal{N}e^{-ip_{0}t}j_{0}\left(p_{0}r\right)\chi_{+}$

Dove N è una costante di normalizzazione, χ_+ lo spinore a due dimensione "up" e j₀ la funzione di Bessel sferica di ordine 0. Per l'altra componente, la soluzione è esprimibile in termini della funzione di Bessel sferica di ordine 1 e dello spinore a due dimensioni "down"

$$\psi_{-} = \mathcal{N}e^{-ip_{0}t} \overrightarrow{\sigma} \cdot \hat{r} j_{1} (p_{0}r) \chi_{-}$$

Confinamento dei quark \rightarrow densità scalare nulla $\overline{\psi}\psi = 0$ superficie della bag

$$\begin{split} \bar{\psi}\psi\Big|_{r=R} &= \psi \dagger \gamma^{0}\psi\Big|_{r=R} = \\ \left(\begin{array}{c} \mathcal{N}e^{ip_{0}t}j_{0}\left(p_{0}R\right)\chi_{+} & \mathcal{N}e^{ip_{0}t}\vec{\sigma}\cdot\hat{r}j_{1}\left(p_{0}R\right)\chi_{-} \end{array} \right) \left(\begin{array}{c} \mathcal{N}e^{-ip_{0}t}j_{0}\left(p_{0}R\right)\chi_{+} \\ \mathcal{N}e^{-ip_{0}t}\vec{\sigma}\cdot\hat{r}j_{1}\left(p_{0}R\right)\chi_{-} \end{array} \right) = 0 \\ \\ \left[j_{0}\left(p_{0}R\right) \right]^{2} &- \left[j_{1}\left(p_{0}R\right) \right]^{2} = 0 \\ \\ \begin{array}{c} \mathcal{N}e^{ip_{0}r}\vec{\sigma}\cdot\hat{r}j_{1}\left(p_{0}R\right)\chi_{-} \end{array} \right) = 0 \\ \\ \mathcal{N}e^{ip_{0}r}\vec{\sigma}\cdot\hat{r}j_{1}\left(p_{0}R\right)\chi_{-} \end{array} \right) \\ \\ \mathcal{N}e^{ip_{0}r}\vec{\sigma}\cdot\hat{r}j_{1}\left(p_{0}R\right)\chi_{-} \end{array} \right) \\ \\ \mathcal{N}e^{ip_{0}r}\vec{\sigma}\cdot\hat{r}j_{1}\left(p_{0}R\right)\chi_{-} \end{array} \right) \\ \\ \mathcal{N}e^{ip_{0}r}\vec{\sigma}\cdot\hat{r}j_{1}\left(p_{0}R\right)\chi_{-} } \\ \\ \mathcal{N}e^{ip_{0}r}\vec{\sigma}\cdot\hat{r}j_{1}\left(p_{0}R\right)\chi_{-} \\ \\ \\ \mathcal{N}e^{ip_{0}r}\vec{\sigma}\cdot\hat{r}j_{1}\left(p_{0}R\right)\chi_{-} \\ \\ \mathcal{N}e^{ip_{0}r}\vec{\sigma}\cdot\hat{r}j_{1}\left(p_{0}R\right)\chi_{-} \\ \\ \\ \mathcal{N}e^{ip_$$

Nel modello a sacca il confinamento è rappresentato fenomenologicamente da una pressione diretta dalle regioni esterne alla sacca verso l'interno.

La densità di energia del vuoto interno alla sacca è maggiore rispetto a quella che si ha all'esterno: la differenza è la pressione della sacca B

L'energia cinetica di N quark confinati nella sacca è compensata dalla pressione esterna. L'energia totale è

$$E = \frac{2.04N}{R} (\hbar c) + \frac{4\pi}{3} R^3 B$$

Il termine $\hbar c$ è dovuto al fatto che l'espressione dell'energia cinetica è stata ricavata con unità naturali

La dimensione della sacca è definita dal valore del raggio per cui a.a. 2008/9 dE/dR=0

$$\frac{dE}{dR} = -\frac{2.04N}{R^2}\hbar c + 4\pi R^2 B = 0 \implies B^{\frac{1}{4}} = \left(\frac{2.04N}{4\pi}\right)^{\frac{1}{4}} \frac{1}{R}\hbar c \quad \left[\frac{\text{MeV}}{(\hbar c)^{\frac{3}{4}}}\right]^{\frac{3}{4}}$$

Quark Gluon Plasma

- Bag model → effetto essenziale della QCD non perturbativa è quello di dare origine ad una pressione diretta verso l'interno, B
- Questa pressione è bilanciata dalla pressione esercitata dai quark
- Se, per qualche ragione, la pressione all'interno della sacca aumenta ci sarà un punto per il quale la pressione diretta verso l'esterno eccede quella diretta verso l'interno
 - Una nuova fase della materia in cui i quark ed i gluoni non sono più confinati all'interno degli adroni, ma sono liberi di muoversi su un volume maggiore, diventa possibile. Questo stato è denominato Quark Gluon Plasma
- La pressione all'interno della sacca può aumentare in due situazioni estreme, diverse tra loro:
 - Quando aumenta la temperatura → energia cinetica associata ai quark
 - Quando aumenta la densità barionica → compressione

QGP ad alta temperatura

IPOTESI DI LAVORO

- Sistema di quark e gluoni in equilibrio termico in un volume V
- Quark e gluoni non interagenti e privi di massa
- Numero barionico netto nullo → uguale numero di quark e antiquark (vedremo che a questa situazione ci si avvicina nelle collisioni nucleari *in regime di Bjorken*)
- Ci proponiamo di valutare la temperatura critica (T_c) a cui la pressione esercitata dai quark e dai gluoni eguaglia quella della sacca

La pressione di un QGP ideale (che ricaveremo tra poco) vale:

$$P = g_{tot} \frac{\pi^2}{90} T^4$$
 dove $g_{tot} = g_g + \frac{7}{8} \times (g_q + g_{\bar{q}})$ (3)

In questa relazione g_{tot} rappresenta il numero totale di gradi di libertà relativi a gluoni, quark ed antiquark. I singoli contributi a g_{tot} sono:

 $\begin{cases} g_g = 8 \times 2 = 16 \quad (8 \text{ gluoni con } 2 \text{ possibili polarizzazioni}) \\ g_q = g_{\overline{q}} = N_c N_s N_f = 3 \times 2 \times 2 \quad (\text{pari a } 3 \text{ colori, } 2 \text{ stati di spin e } 2 \text{ sapori}) \end{cases}$

$$g_{tot} = 37 \implies P = 37 \frac{\pi^2}{90}T$$

La densità di energia alla temperatura T è

$$\varepsilon = 3P = 37\frac{\pi^2}{30}T^4$$

La relazione (3) sarà dimostrate in seguito

Caveat: si sono usate unità naturali. Per fare valutazioni numeriche, occorre introdurre le opportune costanti dimensionali. Ad esempio, la densità di energia ad una temperatura T=200 MeVè:

$$\varepsilon = 37 \frac{\pi^2}{30} T^4 \frac{1}{(\hbar c)^3} = \frac{37 \cdot \pi^2}{30} \frac{0.2^4}{0.197^3} = 2.547 \text{ GeV/fm}^3$$

La temperatura critica alla quale la pressione del QGP eguaglia quella della sacca è:

$$P = 37 \frac{\pi^2}{90} T_c^4 \equiv B \implies T_c = 4 \sqrt{\frac{90B}{37\pi^2}} \underset{4\sqrt{B} = 206 \text{ MeV}}{=} 145 \text{ MeV}$$

Se la materia all'interno della sacca viene riscaldata ad una temperatura al di sopra di quella critica, la sacca non sarà più in grado di confinarla al suo interno \rightarrow Quark Gluon Plasma

