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Abstract—In this work we address the task of semantic image segmentation with Deep Learning and make three main contributions

that are experimentally shown to have substantial practical merit. First, we highlight convolution with upsampled filters, or

‘atrous convolution’, as a powerful tool in dense prediction tasks. Atrous convolution allows us to explicitly control the resolution at which

feature responses are computed within Deep Convolutional Neural Networks. It also allows us to effectively enlarge the field of view of

filters to incorporate larger context without increasing the number of parameters or the amount of computation. Second, we propose

atrous spatial pyramid pooling (ASPP) to robustly segment objects at multiple scales. ASPP probes an incoming convolutional feature

layer with filters at multiple sampling rates and effective fields-of-views, thus capturing objects as well as image context at multiple

scales. Third, we improve the localization of object boundaries by combining methods from DCNNs and probabilistic graphical models.

The commonly deployed combination of max-pooling and downsampling in DCNNs achieves invariance but has a toll on localization

accuracy. We overcome this by combining the responses at the final DCNN layer with a fully connected Conditional Random Field

(CRF), which is shown both qualitatively and quantitatively to improve localization performance. Our proposed “DeepLab” system sets

the new state-of-art at the PASCALVOC-2012 semantic image segmentation task, reaching 79.7 percent mIOU in the test set, and

advances the results on three other datasets: PASCAL-Context, PASCAL-Person-Part, and Cityscapes. All of our code is made publicly

available online.

Index Terms—Convolutional neural networks, semantic segmentation, atrous convolution, conditional random fields

Ç

1 INTRODUCTION

DEEP Convolutional Neural Networks (DCNNs) [1] have
pushed the performance of computer vision systems to

soaring heights on a broad array of high-level problems,
including image classification [2], [3], [4], [5], [6] and object
detection [7], [8], [9], [10], [11], [12], where DCNNs trained
in an end-to-end manner have delivered strikingly better
results than systems relying on hand-crafted features.
Essential to this success is the built-in invariance of DCNNs
to local image transformations, which allows them to learn
increasingly abstract data representations [13]. This invari-
ance is clearly desirable for classification tasks, but can ham-
per dense prediction tasks such as semantic segmentation,
where abstraction of spatial information is undesired.

In particular we consider three challenges in the applica-
tion of DCNNs to semantic image segmentation: (1) reduced
feature resolution, (2) existence of objects at multiple scales,
and (3) reduced localization accuracy due to DCNN invari-
ance. Next, we discuss these challenges and our approach
to overcome them in our proposed DeepLab system.

The first challenge is caused by the repeated combination
of max-pooling and downsampling (‘striding’) performed
at consecutive layers of DCNNs originally designed for
image classification [2], [4], [5]. This results in feature maps
with significantly reduced spatial resolution when the
DCNN is employed in a fully convolutional fashion [14]. In
order to overcome this hurdle and efficiently produce
denser feature maps, we remove the downsampling opera-
tor from the last few max pooling layers of DCNNs and
instead upsample the filters in subsequent convolutional
layers, resulting in feature maps computed at a higher sam-
pling rate. Filter upsampling amounts to inserting holes
(‘trous’ in French) between nonzero filter taps. This tech-
nique has a long history in signal processing, originally
developed for the efficient computation of the undecimated
wavelet transform in a scheme also known as “algorithme �a
trous” [15]. We use the term atrous convolution as a short-
hand for convolution with upsampled filters. Various fla-
vors of this idea have been used before in the context of
DCNNs by [3], [6], [16]. In practice, we recover full resolu-
tion feature maps by a combination of atrous convolution,
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which computes feature maps more densely, followed by
simple bilinear interpolation of the feature responses to the
original image size. This scheme offers a simple yet power-
ful alternative to using deconvolutional layers [13], [14] in
dense prediction tasks. Compared to regular convolution
with larger filters, atrous convolution allows us to effec-
tively enlarge the field of view of filters without increasing
the number of parameters or the amount of computation.

The second challenge is caused by the existence of objects
at multiple scales. A standard way to deal with this is to
present to the DCNN rescaled versions of the same image
and then aggregate the feature or score maps [6], [17], [18].
We show that this approach indeed increases the perfor-
mance of our system, but comes at the cost of computing
feature responses at all DCNN layers for multiple scaled
versions of the input image. Instead, motivated by spatial
pyramid pooling [19], [20], we propose a computationally
efficient scheme of resampling a given feature layer at mul-
tiple rates prior to convolution. This amounts to probing the
original image with multiple filters that have complemen-
tary effective fields of view, thus capturing objects as well
as useful image context at multiple scales. Rather than actu-
ally resampling features, we efficiently implement this map-
ping using multiple parallel atrous convolutional layers
with different sampling rates; we call the proposed tech-
nique “atrous spatial pyramid pooling” (ASPP).

The third challenge relates to the fact that an object-centric
classifier requires invariance to spatial transformations,
inherently limiting the spatial accuracy of a DCNN. One
way to mitigate this problem is to use skip-layers to extract
“hyper-column” features from multiple network layers
when computing the final segmentation result [14], [21]. Our
work explores an alternative approach which we show to be
highly effective. In particular, we boost ourmodel’s ability to
capture fine details by employing a fully-connected Condi-
tional Random Field (CRF) [22]. CRFs have been broadly
used in semantic segmentation to combine class scores com-
puted by multi-way classifiers with the low-level informa-
tion captured by the local interactions of pixels and edges
[23], [24] or superpixels [25]. Even thoughworks of increased
sophistication have been proposed to model the hierarchical
dependency [26], [27], [28] and/or high-order dependencies
of segments [29], [30], [31], [32], [33], we use the fully con-
nected pairwise CRF proposed by [22] for its efficient compu-
tation, and ability to capture fine edge details while also
catering for long range dependencies. That model was
shown in [22] to improve the performance of a boosting-
based pixel-level classifier. In this work, we demonstrate
that it leads to state-of-the-art results when coupled with a
DCNN-based pixel-level classifier.

A high-level illustration of the proposed DeepLab model
is shown in Fig. 1. A deep convolutional neural network
(VGG-16 [4] or ResNet-101 [11] in this work) trained in the
task of image classification is re-purposed to the task of
semantic segmentation by (1) transforming all the fully con-
nected layers to convolutional layers (i.e., fully convolutional
network [14]) and (2) increasing feature resolution through
atrous convolutional layers, allowing us to compute feature
responses every 8 pixels instead of every 32 pixels in the orig-
inal network. We then employ bi-linear interpolation to
upsample by a factor of 8 the score map to reach the original

image resolution, yielding the input to a fully-connected
CRF [22] that refines the segmentation results.

From a practical standpoint, the three main advantages
of our DeepLab system are: (1) Speed: by virtue of atrous
convolution, our dense DCNN operates at 8 FPS on an NVi-
dia Titan X GPU, while Mean Field Inference for the fully-
connected CRF requires 0.5 secs on a CPU. (2) Accuracy: We
obtain state-of-art results on several challenging datasets,
including the PASCAL VOC 2012 semantic segmentation
benchmark [34], PASCAL-Context [35], PASCAL-Person-
Part [36], and Cityscapes [37]. (3) Simplicity: Our system is
composed of a cascade of two very well-established mod-
ules, DCNNs and CRFs.

The updated DeepLab system we present in this paper
features several improvements compared to its first version
reported in our original conference publication [38]. Our
new version can better segment objects at multiple scales,
via either multi-scale input processing [17], [39], [40] or the
proposed ASPP. We have built a residual net variant of
DeepLab by adapting the state-of-art ResNet [11] image
classification DCNN, achieving better semantic segmenta-
tion performance compared to our original model based on
VGG-16 [4]. Finally, we present a more comprehensive
experimental evaluation of multiple model variants and
report state-of-art results not only on the PASCAL VOC
2012 benchmark but also on other challenging tasks. We
have implemented the proposed methods by extending the
Caffe framework [41]. We share our code and models at a
companion web site http://liangchiehchen.com/projects/
DeepLab.html.

2 RELATED WORK

Most of the successful semantic segmentation systems
developed in the previous decade relied on hand-crafted
features combined with flat classifiers, such as Boosting
[24], [42], Random Forests [43], or Support Vector Machines
[44]. Substantial improvements have been achieved by
incorporating richer information from context [45] and
structured prediction techniques [22], [26], [27], [46], but the
performance of these systems has always been compro-
mised by the limited expressive power of the features. Over
the past few years the breakthroughs of Deep Learning in
image classification were quickly transferred to the seman-
tic segmentation task. Since this task involves both segmen-
tation and classification, a central question is how to
combine the two tasks.

The first family of DCNN-based systems for semantic seg-
mentation typically employs a cascade of bottom-up image
segmentation, followed by DCNN-based region classifica-
tion. For instance the bounding box proposals and masked
regions delivered by [47], [48] are used in [7] and [49] as
inputs to a DCNN to incorporate shape information into the
classification process. Similarly, the authors of [50] rely on a
superpixel representation. Even though these approaches
can benefit from the sharp boundaries delivered by a good
segmentation, they also cannot recover from any of its errors.

The second family of works relies on using convolution-
ally computed DCNN features for dense image labeling,
and couples them with segmentations that are obtained
independently. Among the first have been [39] who apply
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DCNNs at multiple image resolutions and then employ a
segmentation tree to smooth the prediction results. More
recently, [21] propose to use skip layers and concatenate the
computed intermediate feature maps within the DCNNs for
pixel classification. Further, [51] propose to pool the inter-
mediate feature maps by region proposals. These works still
employ segmentation algorithms that are decoupled from
the DCNN classifier’s results, thus risking commitment to
premature decisions.

The third family ofworks usesDCNNs to directly provide
dense category-level pixel labels, which makes it possible to
even discard segmentation altogether. The segmentation-
free approaches of [14], [52] directly apply DCNNs to the
whole image in a fully convolutional fashion, transforming
the last fully connected layers of the DCNN into convolu-
tional layers. In order to deal with the spatial localization
issues outlined in the introduction, [14] upsample and con-
catenate the scores from intermediate feature maps, while
[52] refine the prediction result from coarse to fine by propa-
gating the coarse results to another DCNN. Our work builds
on these works, and as described in the introduction extends
them by exerting control on the feature resolution, introduc-
ing multi-scale pooling techniques and integrating the
densely connected CRF of [22] on top of the DCNN. We
show that this leads to significantly better segmentation
results, especially along object boundaries. The combination
of DCNN and CRF is of course not new but previous works
only tried locally connected CRF models. Specifically, [53]
use CRFs as a proposal mechanism for a DCNN-based
reranking system, while [39] treat superpixels as nodes for a
local pairwise CRF and use graph-cuts for discrete inference.
As such their models were limited by errors in superpixel
computations or ignored long-range dependencies. Our
approach instead treats every pixel as a CRF node receiving
unary potentials by the DCNN. Crucially, the Gaussian CRF
potentials in the fully connected CRF model of [22] that we
adopt can capture long-range dependencies and at the same
time the model is amenable to fast mean field inference. We
note that mean field inference had been extensively studied
for traditional image segmentation tasks [54], [55], [56], but
these older models were typically limited to short-range con-
nections. In independent work, [57] use a very similar
densely connected CRF model to refine the results of DCNN

for the problem of material classification. However, the
DCNN module of [57] was only trained by sparse point
supervision instead of dense supervision at every pixel.

Since the first version of this work was made publicly
available [38], the area of semantic segmentation has pro-
gressed drastically. Multiple groups have made important
advances, significantly raising the bar on the PASCAL VOC
2012 semantic segmentation benchmark, as reflected to the
high level of activity in the benchmark’s leaderboard1 [17],
[40], [58], [59], [60], [61], [62], [63]. Interestingly, most top-
performing methods have adopted one or both of the key
ingredients of our DeepLab system: Atrous convolution for
efficient dense feature extraction and refinement of the raw
DCNN scores bymeans of a fully connected CRF.We outline
below some of themost important and interesting advances.

End-to-end training for structured prediction has more
recently been explored in several related works. While we
employ the CRF as a post-processing method, [40], [59],
[62], [64], [65] have successfully pursued joint learning of
the DCNN and CRF. In particular, [59], [65] unroll the CRF
mean-field inference steps to convert the whole system into
an end-to-end trainable feed-forward network, while [62]
approximates one iteration of the dense CRF mean field
inference [22] by convolutional layers with learnable filters.
Another fruitful direction pursued by [40], [66] is to learn
the pairwise terms of a CRF via a DCNN, significantly
improving performance at the cost of heavier computation.
In a different direction, [63] replace the bilateral filtering
module used in mean field inference with a faster domain
transform module [67], improving the speed and lowering
the memory requirements of the overall system, while [18],
[68] combine semantic segmentation with edge detection.

Weaker supervision has been pursued in a number of
papers, relaxing the assumption that pixel-level semantic
annotations are available for the whole training set [58],
[69], [70], [71], achieving significantly better results than
weakly-supervised pre-DCNN systems such as [72]. In
another line of research, [49], [73] pursue instance segmen-
tation, jointly tackling object detection and semantic
segmentation.

Fig. 1. Model illustration. A deep convolutional neural network such as VGG-16 or ResNet-101 is employed in a fully convolutional fashion, using
atrous convolution to reduce the degree of signal downsampling (from 32x down 8x). A bilinear interpolation stage enlarges the feature maps to the
original image resolution. A fully connected CRF is then applied to refine the segmentation result and better capture the object boundaries.

1. http://host.robots.ox.ac.uk:8080/leaderboard/displaylb.php?
challengeid=11&compid=6
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What we call here atrous convolutionwas originally devel-
oped for the efficient computation of the undecimated
wavelet transform in the “algorithme �a trous” scheme of
[15]. We refer the interested reader to [74] for early referen-
ces from the wavelet literature. Atrous convolution is also
intimately related to the “noble identities” in multi-rate sig-
nal processing, which builds on the same interplay of input
signal and filter sampling rates [75]. Atrous convolution is a
term we first used in [6]. The same operation was later
called dilated convolution by [76], a term they coined moti-
vated by the fact that the operation corresponds to regular
convolution with upsampled (or dilated in the terminology
of [15]) filters. Various authors have used the same opera-
tion before for denser feature extraction in DCNNs [3], [6],
[16]. Beyond mere resolution enhancement, atrous convolu-
tion allows us to enlarge the field of view of filters to incor-
porate larger context, which we have shown in [38] to be
beneficial. This approach has been pursued further by [76],
who employ a series of atrous convolutional layers with
increasing rates to aggregate multiscale context. The atrous
spatial pyramid pooling scheme proposed here to capture
multiscale objects and context also employs multiple atrous
convolutional layers with different sampling rates, which
we however lay out in parallel instead of in serial. Interest-
ingly, the atrous convolution technique has also been
adopted for a broader set of tasks, such as object detection
[12], [77], instance-level segmentation [78], visual question
answering [79], and optical flow [80].

We also show that, as expected, integrating into DeepLab
more advanced image classification DCNNs such as the
residual net of [11] leads to better results. This has also been
observed independently by [81].

3 METHODS

3.1 Atrous Convolution for Dense Feature
Extraction and Field-of-View Enlargement

The use of DCNNs for semantic segmentation, or other
dense prediction tasks, has been shown to be simply and
successfully addressed by deploying DCNNs in a fully con-
volutional fashion [3], [14]. However, the repeated combina-
tion of max-pooling and striding at consecutive layers of

these networks reduces significantly the spatial resolution
of the resulting feature maps, typically by a factor of 32
across each direction in recent DCNNs. A partial remedy is
to use ‘deconvolutional’ layers as in [14], which however
requires additional memory and time.

We advocate instead the use of atrous convolution, origi-
nally developed for the efficient computation of the undeci-
mated wavelet transform in the “algorithme �a trous”
scheme of [15] and used before in the DCNN context by [3],
[6], [16]. This algorithm allows us to compute the responses
of any layer at any desirable resolution. It can be applied
post-hoc, once a network has been trained, but can also be
seamlessly integrated with training.

Considering one-dimensional signals first, the output y½i�
of atrous convolution2 of a 1-D input signal x½i� with a filter
w½k� of lengthK is defined as

y½i� ¼
XK
k¼1

x½iþ r � k�w½k�: (1)

The rate parameter r corresponds to the stride with which
we sample the input signal. Standard convolution is a spe-
cial case for rate r ¼ 1. See Fig. 2 for illustration.

We illustrate the algorithm’s operation in 2-D through a
simple example in Fig. 3: Given an image, we assume that
we first have a downsampling operation that reduces the
resolution by a factor of 2, and then perform a convolution
with a kernel-here, the vertical Gaussian derivative. If one
implants the resulting feature map in the original image
coordinates, we realize that we have obtained responses at
only 1/4 of the image positions. Instead, we can compute
responses at all image positions if we convolve the full reso-
lution image with a filter ‘with holes’, in which we upsam-
ple the original filter by a factor of 2, and introduce zeros in
between filter values. Although the effective filter size
increases, we only need to take into account the non-zero fil-
ter values, hence both the number of filter parameters and
the number of operations per position stay constant. The
resulting scheme allows us to easily and explicitly control
the spatial resolution of neural network feature responses.

Fig. 2. Illustration of atrous convolution in 1-D. (a) Sparse feature extrac-
tion with standard convolution on a low resolution input feature map. (b)
Dense feature extraction with atrous convolution with rate r ¼ 2, applied
on a high resolution input feature map.

Fig. 3. Illustration of atrous convolution in 2-D. Top row: sparse feature
extraction with standard convolution on a low resolution input feature
map. Bottom row: Dense feature extraction with atrous convolution with
rate r ¼ 2, applied on a high resolution input feature map.

2. We follow the standard practice in the DCNN literature and use
non-mirrored filters in this definition.
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In the context of DCNNs one can use atrous convolution
in a chain of layers, effectively allowing us to compute the
final DCNN network responses at an arbitrarily high resolu-
tion. For example, in order to double the spatial density of
computed feature responses in the VGG-16 or ResNet-101
networks, we find the last pooling or convolutional layer
that decreases resolution (’pool5’ or ’conv5_1’ respectively),
set its stride to 1 to avoid signal decimation, and replace all
subsequent convolutional layers with atrous convolutional
layers having rate r ¼ 2. Pushing this approach all the way
through the network could allow us to compute feature
responses at the original image resolution, but this ends up
being too costly. We have adopted instead a hybrid
approach that strikes a good efficiency/accuracy trade-off,
using atrous convolution to increase by a factor of 4 the den-
sity of computed feature maps, followed by fast bilinear
interpolation by an additional factor of 8 to recover feature
maps at the original image resolution. Bilinear interpolation
is sufficient in this setting because the class score maps (cor-
responding to log-probabilities) are quite smooth, as illus-
trated in Fig. 5. Unlike the deconvolutional approach
adopted by [14], the proposed approach converts image
classification networks into dense feature extractors without
requiring learning any extra parameters, leading to faster
DCNN training in practice.

Atrous convolution also allows us to arbitrarily enlarge
the field-of-view of filters at any DCNN layer. State-of-the-art
DCNNs typically employ spatially small convolution ker-
nels (typically 3�3) in order to keep both computation and
number of parameters contained. Atrous convolution with
rate r introduces r� 1 zeros between consecutive filter val-
ues, effectively enlarging the kernel size of a k�k filter to
ke ¼ kþ ðk� 1Þðr� 1Þ without increasing the number of
parameters or the amount of computation. It thus offers an
efficient mechanism to control the field-of-view and finds
the best trade-off between accurate localization (small field-
of-view) and context assimilation (large field-of-view). We
have successfully experimented with this technique: Our
DeepLab-LargeFOV model variant [38] employs atrous con-
volution with rate r ¼ 12 in VGG-16 ‘fc6’ layer with signifi-
cant performance gains, as detailed in Section 4.

Turning to implementation aspects, there are two effi-
cient ways to perform atrous convolution. The first is to
implicitly upsample the filters by inserting holes (zeros),
or equivalently sparsely sample the input feature maps

[15]. We implemented this in our earlier work [6], [38], fol-
lowed by [76], within the Caffe framework [41] by adding
to the im2col function (it extracts vectorized patches from
multi-channel feature maps) the option to sparsely sample
the underlying feature maps. The second method, origi-
nally proposed by [82] and used in [3], [16] is to subsam-
ple the input feature map by a factor equal to the atrous
convolution rate r, deinterlacing it to produce r2 reduced
resolution maps, one for each of the r�r possible shifts.
This is followed by applying standard convolution to
these intermediate feature maps and reinterlacing them to
the original image resolution. By reducing atrous convolu-
tion into regular convolution, it allows us to use off-the-
shelf highly optimized convolution routines. We have
implemented the second approach into the TensorFlow
framework [83].

3.2 Multiscale Image Representations Using Atrous
Spatial Pyramid Pooling

DCNNs have shown a remarkable ability to implicitly rep-
resent scale, simply by being trained on datasets that con-
tain objects of varying size. Still, explicitly accounting for
object scale can improve the DCNN’s ability to successfully
handle both large and small objects [6].

We have experimented with two approaches to handling
scale variability in semantic segmentation. The first
approach amounts to standard multiscale processing [17],
[18]. We extract DCNN score maps from multiple (three in
our experiments) rescaled versions of the original image
using parallel DCNN branches that share the same parame-
ters. To produce the final result, we bilinearly interpolate
the feature maps from the parallel DCNN branches to the
original image resolution and fuse them, by taking at each
position the maximum response across the different scales.
We do this both during training and testing. Multiscale
processing significantly improves performance, but at the
cost of computing feature responses at all DCNN layers for
multiple scales of input.

The second approach is inspired by the success of the
R-CNN spatial pyramid pooling method of [20], which
showed that regions of an arbitrary scale can be accurately
and efficiently classified by resampling convolutional fea-
tures extracted at a single scale. We have implemented a
variant of their scheme which uses multiple parallel atrous
convolutional layers with different sampling rates. The fea-
tures extracted for each sampling rate are further processed
in separate branches and fused to generate the final result.
The proposed “atrous spatial pyramid pooling” (DeepLab-
ASPP) approach generalizes our DeepLab-LargeFOV vari-
ant and is illustrated in Fig. 4.

Fig. 5. Score map (input before softmax function) and belief map (output
of softmax function) for Aeroplane. We show the score (1st row) and
belief (2nd row) maps after each mean field iteration. The output of last
DCNN layer is used as input to the mean field inference.

Fig. 4. Atrous Spatial Pyramid Pooling (ASPP). To classify the center
pixel (orange), ASPP exploits multi-scale features by employing multiple
parallel filters with different rates. The effective Field-Of-Views are
shown in different colors.
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3.3 Structured Prediction with Fully-Connected
Conditional Random Fields for Accurate
Boundary Recovery

A trade-off between localization accuracy and classifica-
tion performance seems to be inherent in DCNNs: deeper
models with multiple max-pooling layers have proven
most successful in classification tasks, however the
increased invariance and the large receptive fields of top-
level nodes can only yield smooth responses. As illus-
trated in Fig. 5, DCNN score maps can predict the pres-
ence and rough position of objects but cannot really
delineate their borders.

Previous work has pursued two directions to address
this localization challenge. The first approach is to harness
information from multiple layers in the convolutional net-
work in order to better estimate the object boundaries [14],
[21], [52]. The second is to employ a super-pixel representa-
tion, essentially delegating the localization task to a low-
level segmentation method [50].

We pursue an alternative direction based on coupling the
recognition capacity of DCNNs and the fine-grained locali-
zation accuracy of fully connected CRFs and show that it is
remarkably successful in addressing the localization chal-
lenge, producing accurate semantic segmentation results
and recovering object boundaries at a level of detail that is
well beyond the reach of existing methods. This direction
has been extended by several follow-up papers [17], [40],
[58], [59], [60], [61], [62], [63], [65], since the first version of
our work was published [38].

Traditionally, conditional random fields (CRFs) have
been employed to smooth noisy segmentation maps [23],
[31]. Typically these models couple neighboring nodes,
favoring same-label assignments to spatially proximal
pixels. Qualitatively, the primary function of these short-
range CRFs is to clean up the spurious predictions of
weak classifiers built on top of local hand-engineered
features.

Compared to these weaker classifiers, modern DCNN
architectures such as the one we use in this work produce
score maps and semantic label predictions which are quali-
tatively different. As illustrated in Fig. 5, the score maps are
typically quite smooth and produce homogeneous classifi-
cation results. In this regime, using short-range CRFs can be
detrimental, as our goal should be to recover detailed local
structure rather than further smooth it. Using contrast-
sensitive potentials [23] in conjunction to local-range CRFs
can potentially improve localization but still miss thin-struc-
tures and typically requires solving an expensive discrete
optimization problem.

To overcome these limitations of short-range CRFs, we
integrate into our system the fully connected CRF model of
[22]. The model employs the energy function

EðxxÞ ¼
X
i

uiðxiÞ þ
X
ij

uijðxi; xjÞ; (2)

where xx is the label assignment for pixels. We use as unary
potential uiðxiÞ ¼ �logP ðxiÞ, where P ðxiÞ is the label
assignment probability at pixel i as computed by a DCNN.
The pairwise potential has a form that allows for efficient
inference while using a fully-connected graph, i.e., when

connecting all pairs of image pixels, i; j. In particular, as in
[22], we use the following expression

uijðxi; xjÞ ¼ mðxi; xjÞ w1exp

 
� jjpi � pjjj2

2s2
a

� jjIi � Ijjj2
2s2

b

!"

þ w2 exp

 
� jjpi � pjjj2

2s2
g

!#
;

(3)

where mðxi; xjÞ ¼ 1 if xi 6¼ xj, and zero otherwise, which, as
in the Potts model, means that only nodes with distinct
labels are penalized. The remaining expression uses two
Gaussian kernels in different feature spaces; the first,
‘bilateral’ kernel depends on both pixel positions (denoted
as p) and RGB color (denoted as I), and the second kernel
only depends on pixel positions. The hyper parameters sa,
sb and sg control the scale of Gaussian kernels. The first ker-
nel forces pixels with similar color and position to have sim-
ilar labels, while the second kernel only considers spatial
proximity when enforcing smoothness.

Crucially, this model is amenable to efficient approxi-
mate probabilistic inference [22]. The message passing
updates under a fully decomposable mean field approxima-
tion bðxxÞ ¼Qi biðxiÞ can be expressed as Gaussian convolu-
tions in bilateral space. High-dimensional filtering
algorithms [84] significantly speed-up this computation
resulting in an algorithm that is very fast in practice, requir-
ing less that 0.5 sec on average for Pascal VOC images using
the publicly available implementation of [22].

4 EXPERIMENTAL RESULTS

We finetune the model weights of the Imagenet-
pretrained VGG-16 or ResNet-101 networks to adapt
them to the semantic segmentation task in a straightfor-
ward fashion, following the procedure of [14]. We replace
the 1000-way Imagenet classifier in the last layer with a
classifier having as many targets as the number of seman-
tic classes of our task (including the background, if appli-
cable). Our loss function is the sum of cross-entropy
terms for each spatial position in the CNN output map
(subsampled by 8 compared to the original image). All
positions and labels are equally weighted in the overall
loss function (except for unlabeled pixels which are
ignored). Our targets are the ground truth labels (sub-
sampled by 8). We optimize the objective function with
respect to the weights at all network layers by the stan-
dard SGD procedure of [2]. We decouple the DCNN and
CRF training stages, assuming the DCNN unary terms
are fixed when setting the CRF parameters.

We evaluate the proposed models on four challenging
datasets: PASCAL VOC 2012, PASCAL-Context, PASCAL-
Person-Part, and Cityscapes. We first report the main results
of our conference version [38] on PASCAL VOC 2012, and
move forward to latest results on all datasets.

4.1 PASCAL VOC 2012

Dataset. The PASCAL VOC 2012 segmentation benchmark
[34] involves 20 foreground object classes and one back-
ground class. The original dataset contains 1,464 (train),
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1,449 (val), and 1,456 (test) pixel-level labeled images for
training, validation, and testing, respectively. The dataset is
augmented by the extra annotations provided by [85],
resulting in 10,582 (trainaug) training images. The perfor-
mance is measured in terms of pixel intersection-over-union
(IOU) averaged across the 21 classes.

4.1.1 Results from Our Conference Version

We employ the VGG-16 network pre-trained on Imagenet,
adapted for semantic segmentation as described in
Section 3.1. We use a mini-batch of 20 images and initial
learning rate of 0.001 (0.01 for the final classifier layer), mul-
tiplying the learning rate by 0.1 every 2,000 iterations. We
use momentum of 0.9 and weight decay of 0.0005.

After the DCNN has been fine-tuned on trainaug, we
cross-validate the CRF parameters along the lines of [22].
We use default values of w2 ¼ 3 and sg ¼ 3 and we search
for the best values of w1, sa, and sb by cross-validation on
100 images from val. We employ a coarse-to-fine search
scheme. The initial search range of the parameters are
w1 2 ½3 : 6�, sa 2 ½30 : 10 : 100� and sb 2 ½3 : 6� (MATLAB
notation), and then we refine the search step sizes around
the first round’s best values. We employ 10 mean field
iterations.

Field of View and CRF. In Table 1, we report experi-
ments with DeepLab model variants that use different
field-of-view sizes, obtained by adjusting the kernel size
and atrous sampling rate r in the ‘fc6’ layer, as described
in Section 3.1. We start with a direct adaptation of VGG-
16 net, using the original 7�7 kernel size and r ¼ 4 (since
we use no stride for the last two max-pooling layers).
This model yields performance of 67.64 percent after
CRF, but is relatively slow (1.44 images per second dur-
ing training). We have improved model speed to 2.9
images per second by reducing the kernel size to 4�4.
We have experimented with two such network variants
with smaller (r ¼ 4) and larger (r ¼ 8) FOV sizes; the lat-
ter one performs better. Finally, we employ kernel size
3�3 and even larger atrous sampling rate (r ¼ 12), also
making the network thinner by retaining a random subset
of 1,024 out of the 4,096 filters in layers ‘fc6’ and ‘fc7’.
The resulting model, DeepLab-CRF-LargeFOV, matches
the performance of the direct VGG-16 adaptation (7�7
kernel size, r ¼ 4). At the same time, DeepLab-LargeFOV
is 3.36 times faster and has significantly fewer parameters
(20.5 M instead of 134.3 M).

The CRF substantially boosts performance of all model
variants, offering a 3-5 percent absolute increase inmean IOU.

Test Set Evaluation. We have evaluated our DeepLab-
CRF-LargeFOV model on the PASCAL VOC 2012 official
test set. It achieves 70:3percentmean IOU performance.

4.1.2 Improvements after Conference Version

of This Work

After the conference version of this work [38], we
have pursued three main improvements of our model,
which we discuss below: (1) different learning policy
during training, (2) atrous spatial pyramid pooling, and
(3) employment of deeper networks and multi-scale
processing.

Learning Rate Policy. We have explored different learn-
ing rate policies when training DeepLab-LargeFOV. Simi-
lar to [86], we also found that employing a “poly” learning
rate policy (the learning rate is multiplied by
ð1� iter

max iterÞpower) is more effective than “step” learning
rate (reduce the learning rate at a fixed step size). As
shown in Table 2, employing “poly” (with power ¼ 0:9)
and using the same batch size and same training iterations
yields 1.17 percent better performance than employing
“step” policy. Fixing the batch size and increasing the
training iteration to 10 K improves the performance to
64.90 percent (1.48 percent gain); however, the total train-
ing time increases due to more training iterations. We then
reduce the batch size to 10 and found that comparable
performance is still maintained (64.90 percent versus
64.71 percent). In the end, we employ batch size = 10 and
20 K iterations in order to maintain similar training time
as previous “step” policy. Surprisingly, this gives us the
performance of 65.88 percent (3.63 percent improvement
over “step”) on val, and 67.7 percent on test, compared to
65.1 percent of the original “step” setting for DeepLab-
LargeFOV before CRF. We employ the “poly” learning
rate policy for all experiments reported in the rest of
the paper.

Atrous Spatial Pyramid Pooling. We have experimented
with the proposed Atrous Spatial Pyramid Pooling (ASPP)
scheme, described in Section 3.1. As shown in Fig. 7, ASPP
for VGG-16 employs several parallel fc6-fc7-fc8 branches.
They all use 3�3 kernels but different atrous rates r in the
‘fc6’ in order to capture objects of different size. In Table 3,
we report results with several settings: (1) Our baseline
LargeFOV model, having a single branch with r ¼ 12, (2)
ASPP-S, with four branches and smaller atrous rates (r = {2, 4,
8, 12}), and (3) ASPP-L, with four branches and larger rates (r
= {6, 12, 18, 24}). For each variant we report results before and

TABLE 1
Effect of Field-Of-View by Adjusting the Kernel Size

and Atrous sampling Rate r at ‘fc6’ Layer

Kernel Rate FOV Params Speed bef/aft CRF

7�7 4 224 134.3M 1.44 64.38 / 67.64
4�4 4 128 65.1M 2.90 59.80 / 63.74
4�4 8 224 65.1M 2.90 63.41 / 67.14
3�3 12 224 20.5M 4.84 62.25 / 67.64

We show number of model parameters, training speed (img/sec), and val set
mean IOU before and after CRF. DeepLab-LargeFOV (kernel size 3�3,
r ¼ 12) strikes the best balance.

TABLE 2
PASCALVOC 2012 val Set Results (%) (before CRF)

as Different Learning Hyper Parameters Vary

Learning policy Batch size Iteration mean IOU

step 30 6K 62.25
poly 30 6K 63.42
poly 30 10K 64.90
poly 10 10K 64.71
poly 10 20K 65.88

Employing “poly” learning policy is more effective than “step” when training
DeepLab-LargeFOV.
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after CRF. As shown in the table, ASPP-S yields 1.22 percent
improvement over the baseline LargeFOV before CRF. How-
ever, after CRF both LargeFOV and ASPP-S perform simi-
larly. On the other hand, ASPP-L yields consistent
improvements over the baseline LargeFOV both before and
after CRF. We evaluate on test the proposed ASPP-L + CRF
model, attaining 72.6 percent. We visualize the effect of the
different schemes in Fig. 8.

Deeper Networks and Multiscale Processing. We have
experimented building DeepLab around the recently pro-
posed residual net ResNet-101 [11] instead of VGG-16.
Similar to what we did for VGG-16 net, we re-purpose
ResNet-101 by atrous convolution, as described in
Section 3.1. On top of that, we adopt several other fea-
tures, following recent work of [17], [18], [39], [40], [58],
[59], [62]: (1) Multi-scale inputs: We separately feed to the
DCNN images at scale = {0.5, 0.75, 1}, fusing their score
maps by taking the maximum response across scales for
each position separately [17]. (2) Models pretrained on
MS-COCO [87]. (3) Data augmentation by randomly scal-
ing the input images (from 0.5 to 1.5) during training. In
Table 4, we evaluate how each of these factors, along with
LargeFOV and atrous spatial pyramid pooling (ASPP),
affects val set performance. Adopting ResNet-101 instead
of VGG-16 significantly improves DeepLab performance

(e.g., our simplest ResNet-101 based model attains 68.72
percent, compared to 65.76 percent of our DeepLab-Large-
FOV VGG-16 based variant, both before CRF). Multiscale
fusion [17] brings extra 2.55 percent improvement,
while pretraining the model on MS-COCO gives another
2.01 percent gain. Data augmentation during training is
effective (about 1.6 percent improvement). Employing
LargeFOV (adding an atrous convolutional layer on top of
ResNet, with 3� 3 kernel and rate = 12) is beneficial
(about 0.6 percent improvement). Further 0.8 percent
improvement is achieved by atrous spatial pyramid pool-
ing (ASPP). Post-processing our best model by dense CRF
yields performance of 77.69 percent.

Qualitative Results. We provide qualitative visual com-
parisons of DeepLab’s results (our best model variant)
before and after CRF in Fig. 6. The visualization results
obtained by DeepLab before CRF already yields excellent
segmentation results, while employing the CRF further
improves the performance by removing false positives and
refining object boundaries.

Test Set Results. We have submitted the result of our
final best model to the official server, obtaining test set
performance of 79.7 percent, as shown in Table 5. The
model substantially outperforms previous DeepLab var-
iants (e.g., DeepLab-LargeFOV with VGG-16 net) and is
currently the top performing method on the PASCAL
VOC 2012 segmentation leaderboard.

Fig. 7. DeepLab-ASPP employs multiple filters with different rates to
capture objects and context at multiple scales.

Fig. 6. PASCALVOC 2012 val results. Input image and our DeepLab results before/after CRF.

Fig. 8. Qualitative segmentation results with ASPP compared to the
baseline LargeFOVmodel. The ASPP-Lmodel, employing multiple large
FOVs can successfully capture objects as well as image context at multi-
ple scales.
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VGG-16 versus ResNet-101. We have observed that Deep-
Lab based on ResNet-101 [11] delivers better segmentation
results along object boundaries than employing VGG-16 [4],
as visualized in Fig. 9. We think the identity mapping [94]
of ResNet-101 has similar effect as hyper-column features
[21], which exploits the features from the intermediate
layers to better localize boundaries. We further quantize
this effect in Fig. 10 within the “trimap” [22], [31] (a narrow
band along object boundaries). As shown in the figure,
employing ResNet-101 before CRF has almost the same

accuracy along object boundaries as employing VGG-16 in
conjunction with a CRF. Post-processing the ResNet-101
result with a CRF further improves the segmentation result.

4.2 PASCAL-Context

Dataset. The PASCAL-Context dataset [35] provides
detailed semantic labels for the whole scene, including both
object (e.g., person) and stuff (e.g., sky). Following [35], the
proposed models are evaluated on the most frequent 59
classes along with one background category. The training
set and validation set contain 4,998 and 5,105 images.

Evaluation. We report the evaluation results in Table 6.
Our VGG-16 based LargeFOV variant yields 37.6 percent

Fig. 9. DeepLab results based on VGG-16 net or ResNet-101 before and
after CRF. The CRF is critical for accurate prediction along object bound-
aries with VGG-16, whereas ResNet-101 has acceptable performance
even before CRF.

TABLE 6
Comparison with Other State-of-Art Methods

on PASCAL-Context Dataset

Method MSC COCO Aug LargeFOV ASPP CRF mIOU

VGG-16
DeepLab [38] @ 37.6
DeepLab [38] @ @ 39.6

ResNet-101
DeepLab 39.6
DeepLab @ @ 41.4
DeepLab @ @ @ 42.9
DeepLab @ @ @ @ 43.5
DeepLab @ @ @ @ 44.7
DeepLab @ @ @ @ @ 45.7

O2P [45] 18.1
CFM [51] 34.4
FCN-8s [14] 37.8
CRF-RNN [59] 39.3
ParseNet [86] 40.4
BoxSup [60] 40.5
HO_CRF [91] 41.3
Context [40] 43.3
VeryDeep [93] 44.5

TABLE 3
Effect of ASPP on PASCALVOC 2012 val Set Performance

(Mean IOU) for VGG-16 Based DeepLab Model

Method before CRF after CRF

LargeFOV 65.76 69.84
ASPP-S 66.98 69.73
ASPP-L 68.96 71.57

LargeFOV: single branch, r ¼ 12. ASPP-S: four branches, r = {2, 4, 8, 12}.
ASPP-L: four branches, r = {6, 12, 18, 24}.

TABLE 4
Employing ResNet-101 for DeepLab on PASCAL

VOC 2012 val set

MSC COCO Aug LargeFOV ASPP CRF mIOU

68.72
@ 71.27
@ @ 73.28
@ @ @ 74.87
@ @ @ @ 75.54
@ @ @ @ 76.35
@ @ @ @ @ 77.69

MSC: Employing mutli-scale inputs with max fusion COCO: Models pre-
trained on MS-COCO. Aug: Data augmentation by randomly rescaling
inputs.

TABLE 5
Performance on PASCALVOC 2012 test Set

Method mIOU

DeepLab-CRF-LargeFOV-COCO [58] 72.7
MERL_DEEP_GCRF [88] 73.2
CRF-RNN [59] 74.7
POSTECH_DeconvNet_CRF_VOC [61] 74.8
BoxSup [60] 75.2
Context + CRF-RNN [76] 75.3
QOmres

4 [66] 75.5
DeepLab-CRF-Attention [17] 75.7
CentraleSuperBoundaries++ [18] 76.0
DeepLab-CRF-Attention-DT [63] 76.3
H-ReNet + DenseCRF [89] 76.8
LRR_4x_COCO [90] 76.8
DPN [62] 77.5
Adelaide_Context [40] 77.8
Oxford_TVG_HO_CRF [91] 77.9
Context CRF + Guidance CRF [92] 78.1
Adelaide_VeryDeep_FCN_VOC [93] 79.1

DeepLab-CRF (ResNet-101) 79.7

We have added some results from recent arXiv papers on top of the official lea-
dearboard results.

Fig. 10. (a) Trimap examples (top-left: image. top-right: ground-truth. bot-
tom-left: trimap of 2 pixels. bottom-right: trimap of 10 pixels). (b) Pixel
mean IOU as a function of the band width around the object boundaries
when employing VGG-16 or ResNet-101 before and after CRF.
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before and 39.6 percent after CRF. Repurposing the ResNet-
101 [11] for DeepLab improves 2 percent over the VGG-16
LargeFOV. Similar to [17], employing multi-scale inputs
and max-pooling to merge the results improves the perfor-
mance to 41.4 percent. Pretraining the model on MS-COCO
brings extra 1.5 percent improvement. Employing atrous
spatial pyramid pooling is more effective than LargeFOV.
After further employing dense CRF as post processing, our
final model yields 45.7 percent, outperforming the current
state-of-art method [40] by 2.4 percent without using their
non-linear pairwise term. Our final model is slightly better
than the concurrent work [93] by 1.2 percent, which also
employs atrous convolution to repurpose the residual net of
[11] for semantic segmentation.

Qualitative Results. We visualize the segmentation results
of our best model with and without CRF as post processing
in Fig. 11. DeepLab before CRF can already predict most of
the object/stuff with high accuracy. Employing CRF, our
model is able to further remove isolated false positives and
improve the prediction along object/stuff boundaries.

4.3 PASCAL-Person-Part

Dataset. We further perform experiments on semantic part
segmentation [98], [99], using the extra PASCAL VOC 2010

annotations by [36]. We focus on the person part for the data-
set, which contains more training data and large variation in
object scale and human pose. Specifically, the dataset con-
tains detailed part annotations for every person, e.g., eyes,
nose. We merge the annotations to be Head, Torso, Upper/
Lower Arms and Upper/Lower Legs, resulting in six per-
son part classes and one background class. We only use
those images containing persons for training (1,716 images)
and validation (1,817 images).

Evaluation. The human part segmentation results on
PASCAL-Person-Part is reported in Table 7. [17] has
already conducted experiments on this dataset with
re-purposed VGG-16 net for DeepLab, attaining
56.39 percent (with multi-scale inputs). Therefore, in this
part, we mainly focus on the effect of repurposing
ResNet-101 for DeepLab. With ResNet-101, DeepLab
alone yields 58.9 percent, significantly outperforming
DeepLab-LargeFOV (VGG-16 net) and DeepLab-Attention
(VGG-16 net) by about 7 percent and 2.5 percent, respec-
tively. Incorporating multi-scale inputs and fusion by
max-pooling further improves performance to 63.1 per-
cent. Additionally pretraining the model on MS-COCO
yields another 1.3 percent improvement. However, we do
not observe any improvement when adopting either
LargeFOV or ASPP on this dataset. Employing the dense
CRF to post process our final output substantially outper-
forms the concurrent work [97] by 4.78 percent.

Qualitative Results.We visualize the results in Fig. 12.

4.4 Cityscapes

Dataset. Cityscapes [37] is a recently released large-scale
dataset, which contains high quality pixel-level annota-
tions of 5,000 images collected in street scenes from 50
different cities. Following the evaluation protocol [37], 19
semantic labels (belonging to 7 super categories: ground,
construction, object, nature, sky, human, and vehicle) are
used for evaluation (the void label is not considered for
evaluation). The training, validation, and test sets contain
2,975, 500, and 1,525 images respectively.

Test Set Results of Pre-Release. We have participated in
benchmarking the Cityscapes dataset pre-release. As

Fig. 11. PASCAL-Context results. Input image, ground-truth, and our DeepLab results before/after CRF.

TABLE 7
Comparison with Other State-of-Art Methods

on PASCAL-Person-Part Dataset

Method MSC COCO Aug LFOV ASPP CRF mIOU

ResNet-101
DeepLab 58.90
DeepLab @ @ 63.10
DeepLab @ @ @ 64.40
DeepLab @ @ @ @ 64.94

DeepLab @ @ @ @ 62.18
DeepLab @ @ @ @ 62.76

Attention [17] 56.39
HAZN [95] 57.54
LG-LSTM [96] 57.97
Graph LSTM [97] 60.16
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shown in the top of Table 8, our model attained third
place, with performance of 63.1 and 64.8 percent (with
training on additional coarsely annotated images).

Val Set Results. After the initial release, we further
explored the validation set in Table 9. The images of City-
scapes have resolution 2; 048�1; 024, making it a challeng-
ing problem to train deeper networks with limited GPU
memory. During benchmarking the pre-release of the data-
set, we downsampled the images by 2. However, we have
found that it is beneficial to process the images in their origi-
nal resolution. With the same training protocol, using
images of original resolution significantly brings 1.9 and
1.8 percent improvements before and after CRF, respec-
tively. In order to perform inference on this dataset with
high resolution images, we split each image into overlapped
regions, similar to [37]. We have also replaced the VGG-16

net with ResNet-101. We do not exploit multi-scale inputs
due to the limited GPU memories at hand. Instead, we only
explore (1) deeper networks (i.e., ResNet-101), (2) data aug-
mentation, (3) LargeFOV or ASPP, and (4) CRF as post proc-
essing on this dataset. We first find that employing ResNet-
101 alone is better than using VGG-16 net. Employing
LargeFOV brings 2.6 percent improvement and using ASPP
further improves results by 1.2 percent. Adopting data aug-
mentation and CRF as post processing brings another 0.6
and 0.4 percent, respectively.

Current Test Result. We have uploaded our best model
to the evaluation server, obtaining performance of
70.4 percent. Note that our model is only trained on the
train set.

Qualitative Results.We visualize the results in Fig. 13.

4.5 Failure Modes

We further qualitatively analyze some failure modes of our
best model variant on PASCAL VOC 2012 val set. As shown
in Fig. 14, our proposed model fails to capture the delicate
boundaries of objects, such as bicycle and chair. The details

Fig. 12. PASCAL-Person-Part results. Input image, ground-truth, and our DeepLab results before/after CRF.

TABLE 8
Test Set Results on the Cityscapes Dataset, Comparing Our

DeepLab System with Other State-of-Art Methods

Method mIOU

pre-release version of dataset
Adelaide_Context [40] 66.4
FCN-8s [14] 65.3

DeepLab-CRF-LargeFOV-StrongWeak [58] 64.8
DeepLab-CRF-LargeFOV [38] 63.1

CRF-RNN [59] 62.5
DPN [62] 59.1
Segnet basic [100] 57.0
Segnet extended [100] 56.1

official version
Adelaide_Context [40] 71.6
Dilation10 [76] 67.1
DPN [62] 66.8
Pixel-level Encoding [101] 64.3

DeepLab-CRF (ResNet-101) 70.4

TABLE 9
Val Set Results on Cityscapes Dataset

Full Aug LargeFOV ASPP CRF mIOU

VGG-16
@ 62.97
@ @ 64.18

@ @ 64.89
@ @ @ 65.94

ResNet-101
@ 66.6
@ @ 69.2
@ @ 70.4
@ @ @ 71.0
@ @ @ @ 71.4

Full: model trained with full resolution images.
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could not even be recovered by the CRF post processing
since the unary term is not confident enough. We hypothe-
size the encoder-decoder structure of [100], [102] may allevi-
ate the problem by exploiting the high resolution feature
maps in the decoder path. How to efficiently incorporate
the method is left as a future work.

5 CONCLUSION

Our proposed “DeepLab” system re-purposes networks
trained on image classification to the task of semantic seg-
mentation by applying the ‘atrous convolution’ with
upsampled filters for dense feature extraction. We further
extend it to atrous spatial pyramid pooling, which encodes
objects as well as image context at multiple scales. To pro-
duce semantically accurate predictions and detailed seg-
mentation maps along object boundaries, we also combine
ideas from deep convolutional neural networks and fully-
connected conditional random fields. Our experimental
results show that the proposed method significantly advan-
ces the state-of-art in several challenging datasets, including
PASCAL VOC 2012 semantic image segmentation bench-
mark, PASCAL-Context, PASCAL-Person-Part, and City-
scapes datasets.
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