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Local Entropy Statistics for Point Processes
Daniel E. Clark

Abstract— Point processes are often described with functionals,
such as the probability generating functional, the Laplace func-
tional, and the factorial cumulant generating functional. These
are used to facilitate modelling of different processes and to deter-
mine important statistics via functional differentiation. In infor-
mation theory, generating functions have also been defined for
probability densities to determine information quantities such
as the Shannon information and Kullback-Leibler divergence,
though as yet there are no such analogues for point processes. The
purpose of this article is to exploit the advantages of both types of
generating function to facilitate the derivation of information sta-
tistics for point processes. In particular, a generating functional
for point processes is introduced for determining statistics related
to entropy and relative entropy based on Golomb’s information
function and Moyal’s probability generating functional. It is
shown that the information generating functional permits the
derivation of a suite of statistics, including localised Shannon
entropy and Kullback-Leibler divergence calculations.

Index Terms— Information entropy.

I. INTRODUCTION

GENERATING function and functional expansions are
used as a means of describing functions or stochastic

processes to enable modelling and determination of specific
statistical quantities of interest. For instance, the character-
istic function can be viewed as the Fourier transform of a
probability distribution and it inherits convenient properties
for convolution from the Fourier transform. The Laplace
functional [1], enables similar results to be determined for
a more general class of stochastic processes. Generating func-
tions for information have been developed, notably Golomb’s
information generating function that enables the determination
of entropy moments [2], though are less widely used and
developed. Methods for determination of entropy statistics
for point processes are not new, dating back to McFadden’s
definition in 1965 [3]. However, it is still an active area of
interest, with recent works on the development and application
of the concepts [4], [5].

In this article, a generating functional for information sta-
tistics is developed for the purpose of determining statistics
for point processes [6], [7] based on a unification of Golomb’s
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information generating function and the Laplace functional [1].
The result is then placed in the context of point processes
with the Laplace functional and probability generating func-
tional [7] to determine an information functional version.
This enables the determination of a suite of moment statistics
related to entropy and relative entropy. In particular, by taking
derivatives of the Laplace information functional, we can
determine Shannon entropy [8], the Kullback-Leibler diver-
gence [9], the Rényi divergence [10] and moment statistics of
each of these.

The motivation for this work was to enable decisions to be
made based on local assessments of information. There have
been approaches in the point process literature for addressing a
similar problem [4], [5], though usually restricted to providing
the Shannon entropy.

The paper is structured as follows: In the following section,
the basic concepts are introduced in the context of discrete
random variables. Generating functions for information are
discussed and defined in relation to Shannon entropy and
Kullback-Leibler divergence. It is shown how to derive par-
ticular statistical quantities, from the generating functions.
A summary of the key definitions and tools from point
process theory are presented in Section III as an introduction
to the new information generating functionals designed for
point processes described in the context of Shannon entropy
in Section IV, and for the Kullback-Leibler divergence in
Section V. Worked examples illustrating these concepts are
given in Section VI. The paper concludes in Section VII.

II. GENERATING FUNCTIONS AND ENTROPY STATISTICS

In this Section we discuss generating functions for entropy
statistics. In the following, we describe prior generating
functions for entropy and relative entropy before introducing
extended forms in the context of non-negative valued integer
random variables and their moments.

A. Golomb’s Information Generating Function

In this section, we are concerned with ensembles of discrete
probabilities. p1, p2, . . ., The entropy for an ensemble of
probabiities, p1, . . . , pn , discrete and finite was defined by
Shannon [8] with the summation

H (p) = −
n∑

k=1

pk log pk . (1)

The relative entropy between two distributions pk and qk

was defined by Kullback and Leibler [9] with

K (p, q) =
n∑

k=1

pk log
pk

qk
. (2)
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Following this, Rényi [10] defined the entropy of order α
for a discrete and finite distribution, and between two finite
distributions pk, qk , k = (0, 1, 2, . . .) with

Rα(p) = 1

α − 1
log

n∑
k=1

pα
k , (3)

Rα(p, q) = 1

α − 1
log

n∑
k=1

pα
k q1−α

k . (4)

Definition II.1 (Golomb’s information generating function for
entropy). Golomb defined an information generating function
for entropy with the mathematical relation [2],

T α(p) =
n∑

k=1

pα
k , (5)

Definition II.2 (Guiasu and Reischer’s information generating
function for relative entropy). Guiasu and Reischer [11]
developed Golomb’s idea to define an information generating
function for relative entropy as follows.

T α(p, q) =
n∑

k=1

pα
k

qα−1
k

. (6)

We can see the following relations Rényi entropy and
divergence and the information generating functions with

Rα(pk) = 1

α − 1
log T α(p), (7)

Rα(p, q) = 1

α − 1
log T α(p, q). (8)

Golomb noted that moments of entropy can be determined by
taking derivatives of the information generating function with
respect to α as follows,

dk

dαk
T α(p)

∣∣∣∣
α=1

=
n∑

r=1

(log pr )
k pr . (9)

There is a similar relation for the moments of information for
the Kullback-Leibler divergence.

B. A New Information Generating Function for Non-Negative
Integer-Valued Random Variables

In this section, we are exclusively concerned with non-
negative integer-valued random variables. Let ξ be a random
variable with P(ξ = k) = pk, k = (0, 1, . . .).

Definition II.3 (New information generating function for
entropy). Define the new information generating function for
entropy Gα

ξ (z) of random variable ξ by the series

Gα
ξ (z) =

∞∑
k=0

p1−α
k zk, (10)

where 0 ≤ α ≤ 1, and z is a complex number.

Note that if we set α = 0, we have the usual probability
generating function for non-negative integer-valued random

variables. Thus we can determine the kth term pk via dif-
ferentiation and setting the argument z to be equal to zero,
i.e.

pk = 1

k!
∂k

∂zk
Gα

ξ (z)

∣∣∣∣
z=0,α=0

(k = 0, 1, 2, . . .). (11)

The introduction of the generating function for entropy permits
the treatment of theoretic problems for entropy with the
methods of generating functions. For instance, if we take the
first-order derivative,

∂

∂α
Gα

ξ (1)

∣∣∣∣
α=0

= −
∞∑

k=0

pk log pk, (12)

we find the Shannon entropy. In a similar manner to determin-
ing the terms in the sequence pk , we can determine kth-order
contribution to the Shannon entropy with

−pk log pk = 1

k!
∂k

∂zk

∂

∂α
Gα

ξ (z)

∣∣∣∣
z=0,α=0

(k = 0, 1, 2, . . .).

(13)

By analogy with the probability generating function, we can
similarly define factorial moments of entropy by considering
derivatives of both z and α. For instance, we can determine a
moment statistic for entropy with

∂

∂z

∂

∂α
Gα

ξ (z)

∣∣∣∣
z=1,α=0

= −
∞∑

k=1

kpk log pk . (14)

We now consider calculating some generating functions for
well-known distributions.

Example 1 (Bernoulli distribution). Let ξ be a Bernoulli ran-
dom variable. Then the new information generating function
becomes

Gα
ξ (z) = (1 − p)1−α + p1−αz, (15)

where we recover the Shannon entropy with

∂

∂α
Gα

ξ (1)

∣∣∣∣
α=0

= −(1 − p) log(1 − p) − p log p. (16)

A first-order entropy statistic related to the cardinality is found
by taking the derivative with respect to z, as well as α i.e.

∂

∂α

∂

∂z
Gα

ξ (z)

∣∣∣∣
α=0,z=1

= −p log p. (17)

Example 2 (The Poisson distribution ). Let ξ be a random
variable for a Poisson distribution with rate λ. Then the
generating function becomes

Gα
ξ (z) =

∞∑
k=0

(
λk

k! e−λ

)α

zk . (18)

Using the same argument as earlier, we have the Shannon
entropy for the Poisson distribution with

∂

∂α
Gα

ξ (1)

∣∣∣∣
α=0

= −
∞∑

k=0

λk

k! e−λ log

(
λk

k! e−λ

)
. (19)
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C. Generating Functions for Relative Entropy

Definition II.4 (New information generating function for rela-
tive entropy). Consider ξ1 and ξ2 to be the random variables
of two distributions, where P0(ξ0 = k) = p0,k, P1(ξ1 = k) =
p1,k k = (0, 1, . . .). We define the generating function for
relative entropy, Gα

ξ0,ξ1
(z), of the random variables ξ0, ξ1 with

the series

Gα
ξ0,ξ1

(z) =
∞∑

k=0

p1−α
0,k pα

1,kzk, (20)

where 0 ≤ α ≤ 1, and z is a complex number.

Example 3 (Kullback-Leibler divergence). The
Kullback-Leibler divergence, or relative entropy, between two
distributions can be determined with

− ∂

∂α
Gα

ξ0,ξ1
(1)

∣∣∣∣
α=0

=
∞∑

k=0

p0,k log
p0,k

p1,k
. (21)

We define this as the generating function for relative entropy
between two distributions of non-negative integer-valued ran-
dom variables. As above, we can determine the relative entropy
by differentiating with respect to α, i.e.

∞∑
k=0

p0,0 log
p0,0

p1,0
= − ∂

∂α
Gα

ξ (0)

∣∣∣∣
α=0

; (22)

p0,k log
p0,k

p1,k
= − 1

k!
∂k

dξ k

∂

∂α
Gα

ξ (x)

∣∣∣∣
z=0,α=0

. (23)

These statistics will be extended to their point process
counterparts in Section IV.

Example 4 (New generating function for relative entropy
between two Poisson distributions). Consider two Poisson
distributions with respective parameters λ0 et λ1. The new
generating function for relative entropy is written

Gα
ξ0,ξ1

(z) =
∞∑

k=0

(
λk

0

k! e−λ0

)1−α (
λk

1

k! e−λ1

)α

zk (24)

= exp
(
λ1−α

0 λα
1 z − λ0(1 − α) − λ1α

)
,

where the last line follows from the Taylor expansion of the
exponential function.

The Kullback-Leibler divergence is calculated with

− ∂

∂α
Gα

ξ0,ξ1
(1)

∣∣∣∣
α=0

= λ0 log

(
λ0

λ1

)
− λ0 − λ1. (25)

Note also that the Rényi divergence is simple to compute this
case as

1

1 − α
log Gα

ξ0,ξ1
(1) = (26)

1

α − 1
((λ0(1 − α) − λ1α) −λ1−α

0 λα
1

)
.

In the following Sections we shall extend these ideas in the
context of point processes.

III. POINT PROCESS FUNDAMENTALS

In this section we provide the basic definitions and opera-
tions required for describing point processes, their moments,
and functional descriptions. This summarises review material
on point processes presented in [12]–[14].

Definition III.1. A point process � on X is a random variable
on the process space X = ⋃

n≥0 X n, i.e., the space of
finite sequences of points in X . A realisation of � is a
sequence ϕ = (x1, . . . , xn) ∈ X n, representing a population of
n points with states xi ∈ X . Point processes can be described
using their probability distribution P� on the measurable
space (X,B(X)), where B(X) denotes the Borel σ -algebra
of the process space X [14]. The projection measure P(n)

� of
the probability distribution P� on X n, n ≥ 0, describes the
realisations of � with n elements; the projection measures of
a point process are always defined as symmetric functions.

We shall use the following two descriptions of point
processes, the Laplace functional and the probability gener-
ating functional.

Definition III.2 (Laplace functional). The Laplace functional
L� of a point process � is defined by

L�( f ) = E�

[
exp

(
−
∑
x∈�

f (x)

)]
(27)

=
∑
n≥0

∫
exp

(
−

n∑
i=1

f (xi )

)
P(n)

� (dx1, . . . , dxn),

(28)

for test function f : X → R
+.

Definition III.3 (Probability generating functional). The prob-
ability generating functional (p.g.fl.) G� of a point process �
is defined by

G�(h) = E�

[(∏
x∈�

h(x)

)]
(29)

=
∑
n≥0

∫ ( n∏
i=1

h(xi )

)
P(n)

� (dx1, . . . , dxn),

for test function h : X → [0, 1].
The probability generating functional is analogous to the

the probability generating functions for non-negative integer-
valued random variables, replacing the complex number argu-
ment z for the probability generating function with the function
h, since we can determine the related probability statistics in
a similar way via differentiation. The key difference is the
replacement of the probability distribution pk with projection
measures P(k)

� , k ≥ 0.

Example 5 (Poisson point process on real line). The proba-
bility generating functional of a Poisson point process on the
real line with intensity measure μ�(A), is given by

G�(h) = exp

(∫
(h(x) − 1)μ�(dx)

)
, (30)

where A ∈ R.
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Related functionals for computing the cumulants and
factorial cumulants can be described as the logarithms of these
quantities, eg.

W�( f ) = logL�( f ), (31)

Similarly to real-valued random variables, statistical
moments can be defined for a point process � in order to
provide an alternative description to its probability distribution
P� (or, equivalently, to its projection measures P(n)

� for any
n ∈ N). The n-th order moment measure μ

(n)
� of a point

process � is the measure on X n can be defined with [14]

μ
(n)
� (B1× · · · ×Bn) = E�

[ ∑
x1,...,xn∈�

1B1(x1) . . .1Bn(xn)

]
,

(32)

for any regions Bi ∈ B(X ), 1 ≤ i ≤ n. The notation 1B

denotes the indicator function, i.e., 1B(x) = 1 if x ∈ B , and
zero otherwise. The scalar μ

(n)
� (B1× · · · × Bn) estimates the

joint localisation of sequence points within the regions Bi . For
any Borel set B ∈X , where X is the Borel σ -algebra on X ,
the integer-valued random variable

N�(B) =
∑
x∈�

1B(x) (33)

counts the number of points falling inside B according to the
point process. We can determine the covariance of a point
process � as [14], [15]

cov�(N�(B), N�(B �)) = μ
(2)
� (B × B �) − μ

(1)
� (B)μ

(1)
� (B �),

(34)

for any regions B, B � ∈ B(X ).
Statistical quantities can be determined from the Laplace

functional and p.g.fl. via differentiation. For instance, we can
use the chain differential/derivative [16].

Definition III.4 (Chain differential). given a functional G and
two functions h, η : X → R

+, the (chain) differential of G
with respect to h in the direction of η is defined as [16]

δG(h; η) = lim
n→∞

G(h + εnηn) − G(h)

εn
, (35)

when the limit exists and is identical for any sequence of
real numbers (εn)n∈N converging to 0 and any sequence of
functions (ηn : X → R

+)n∈N converging pointwise to η.

The statistical quantities described in can then be extracted
through the following differentiations:

P(n)
� (B1× · · · ×Bn) = 1

n!δ
nG�(h;1B1, . . . ,1Bn )|h=0, (36)

μ
(n)
� (B1× · · · ×Bn) = (−1)nδnL�( f ;1B1, . . . ,1Bn )| f =0,

(37)

for any regions Bi ∈ B(X ), 1 ≤ i ≤ n [14].
The covariance can be determined via the second-order

derivative of the cumulant generating functional, since the
second-order cumulant is equal to the covariance, i.e.

cov�(N�(A), N�(B)) = δ2W�( f ; 1A, 1B)
∣∣∣

f =0
. (38)

When a functional G is defined as an integral with respect
to a measure μ on X which is absolutely continuous with
respect to the reference measure λ, the term δG( f, δx ) will be
understood as the Radon-Nikodym derivative of the measure
μ� : B �→ δG( f,1B) evaluated at point x , i.e.

δG( f, δx ) := dμ�

dλ
(x), (39)

for any appropriate function f on X and any point x ∈ X .
In the context of this paper, this property holds for the pgfl G�

of any point process � since its probability distribution P�

admits a density wrt the reference measure λ. In particular,

p(n)
� (x1, . . . , xn) = 1

n!δ
nG�(h; δx1, . . . , δxn )|h=0, (40)

for any points xi ∈ X , 1 ≤ i ≤ n. Similarly, the first-order
moment density, or intensity function, can be determined from
the Laplace functional or p.g.fl. as follows

μ
(1)
� (x) = δG�(h; δx)|h=1 (41)

= −δL�( f ; δx)| f =0.

IV. ENTROPY STATISTICS FOR POINT PROCESSES

In this section we generalise the statistics introduced in
Section II to point processes. In the next subsection, we discuss
the concepts in relation to Shannon entropy, and the follow-
ing subsection their related Kullback-Leibler relative entropy
counterparts.

Combining the information function of Golomb [2], and the
probability generating functional of Moyal [7], we introduce
an information generating functional as follows.

Definition IV.1 (Information generating functional for
entropy). Define the information generating functional for
entropy for point processes with

Gα
�(h) = E�

[(∏
x∈�

h(x)

)
p−α
�

]
(42)

=
∑
n≥0

∫ n∏
i=1

h(xi ) p(n)
� (x1, . . . , xn)−α P(n)

� (dx1, . . . , dxn),

where the densities and measures of a point process are defined
in Section III.

First note that if we set h = 1, then we can determine the
Shannon entropy with

∂

∂α
Gα

�(1)

∣∣∣∣
α=0

= −E�

[
log p�

]
. (43)

More generally, we can determine entropy moments [2] with
higher-order derivatives i.e.

∂m

∂αm
Gα

�(1)

∣∣∣∣
α=0

= (−1)m
E�

[
(log p�)m] . (44)

Now consider using the functional in the same way as the
probability generating functional to determine local entropy
statistics. To determine the Shannon entropy related to n points
in the regions B1, . . . , Bn , we can use the analogous relations
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for the p.g.fl. [7]. Using the differentials defined in Section III.
this is calculated with

∂

∂α
δnGα

�(h; 1B1, . . . , 1Bn)
∣∣
h=0,α=0 = (45)

−
∫

B1×...×Bn

log p(n)
� (x1, . . . , xn)P(n)

� (dx1, . . . , dxn).

This result is interpreted as the local contribution to the total
Shannon entropy restricted to n points in regions B1, . . . , Bn .
Note that due to the linearity of the sum and integrals this
is additive. Usage of this result may be too cumbersome
to use in practice since it may require consideration of all
possible numbers of points in specific regions. An alternative
description of local entropy statistics can be considered by
analogy of point process population moments.

Definition IV.2 (Entropy intensity). We can determine an
entropy statistic for a particular region that also considers
the population number. We shall refer to this concept as the
entropy intensity, which shall be defined with

−E�

[
N�(B) log p�

] = ∂

∂α
δGα

�(h; 1B)|α=0,h=1 (46)

= − ∂

∂α
δLα

�( f ; 1B)|α=0, f =0,

where the definition of the counting measure N�(B) is given
in Section III.

By analogy with the means of determining the intensity
measure with the probability generating functional via differ-
entiation, the entropy intensity can be found with the first-
order functional derivative. Note that this the counting measure
restricts the analysis of the entropy to a particular region. For
instance, if the result is zero, then either the entropy is zero
or there are no points. If the result is high, then either there
are many points or the entropy is high.

Higher-order moments can be found by defining a functional
in relation to the Laplace functional as follows.

Definition IV.3 (Laplace information functional for entropy).
For point processes, the Laplace information functional for
Shannon entropy is determined with

Lα
�( f ) = E�

[
exp

(
−
∑
x∈�

f (x)

)
p−α
�

]
. (47)

Setting f = 0 gives the equivalent to the information
generating function, so that the Shannon entropy moments are
found with

E�

[
(log p�)m] = (−1)m ∂m

∂αm
Lα

�( f )

∣∣∣∣
α=0

. (48)

Equivalently, setting α = 0 gives the Laplace functional,
so that the population moments become

E� [N�(B1) . . . N�(Bn)] = (49)

(−1)nδnLα
�( f ; 1B1, . . . , 1Bn )| f =0.

Definition IV.4 (Joint entropy-population moments). The joint
entropy-population moments can be determined by differenti-
ating with respect to f and α, i.e.

E�

[(
n∏

i=1

N�(Bi )

)
(log p�)m

]
= (50)

(−1)m+n ∂m

∂αm
δnLα

�( f ; 1B1, . . . , 1Bn)| f =0,α=0.

Following the definition of the Laplace information func-
tional, an analogous cumulant information functional can be
defined with

Wα
�( f ) = logLα

�( f ). (51)

The second derivative of the cumulant generating function
gives the covariance. Considering the Laplace functional
(α = 0), the population covariance between the number of
points in A and the number of points in B can be determined
with

cov(N�(A), N�(B)) = δ2Wα
�( f ; 1A, 1B)| f =0,α=0. (52)

Similarly setting f = 0 and differentiating with respect to α
gives the variance in the entropy, i.e.

var(log p�) = ∂2

∂α2 Wα
�(0)

∣∣∣∣
α=0

(53)

= E�

[
(log p�)2

]
− E�

[
log p�

]2
.

Another covariance statistic can be found between the number
of points in a particular region A and the entropy, which we
define as follows.

Definition IV.5 (Entropy-population covariance). The covari-
ance between the entropy and the population of points in
region A is determined with

cov(N�(A),− log p�) = ∂

∂α
δWα

�( f ; 1A)| f =0,α=0 (54)

= −E�

[
N�(A) log p�

]+ E� [N�(A)] E�

[
log p�

]
.

This statistic is interesting since it quantifies how much the
number of points in a particular region (local) correlates with
the entropy (global). Hence it can be computed in different
regions and compared to determine which region correlates
more strongly with the entropy. We give a simple example for
exactly one point in the case of a Gaussian distribution.

Example 6 (Gaussian distribution). Suppose that the popula-
tion contains exactly one point, and that it is described with a
Gaussian distribution N (x; m, P) with mean m and variance
P = σ 2. Then the Laplace information functional is given by

Lα
�( f ) =

∫
N (x; m, P)1−αe− f (x)dx . (55)

Then the entropy-population covariance density is

− ∂

∂α
δWα

�( f ; δy)| f =0,α=0 (56)

= −N (y; m, P)

(
logN (y; m, P) + 1

2
log(2πeσ 2)

)
,
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Fig. 1. Entropy-population covariance for Gaussian distribution.

where we note that the Shannon entropy for a Gaussian
distribution is equal to

−
∫

N (x; m, P) logN (x; m, P)dx = 1

2
log(2πeσ 2). (57)

Figure 1 considers an example with mean m = 0, σ = 1.
Note that the covariance is negative around the mean of the
distribution, indicating the correlation least with the entropy,
and the lobes show a positive correlation indicating a stronger
correlation in the tails of the distribution.

V. RELATIVE ENTROPY STATISTICS FOR

POINT PROCESSES

In this section we extend the approach described in the
previous section for relative entropy statistics. This will
involve replacing the methods defined for Shannon entropy for
Kullback-Leibler entropy using the same approach outlined
in Section II. Hence, we begin by defining a information
generating functional as follows.

Definition V.1 (Information generating functional for relative
entropy). Define the information generating functional for
relative entropy between point processes � and  with

Gα
�,(h) = E�

[(∏
x∈�

h(x)

)(
p�

p

)−α
]

. (58)

We see that the Kullback-Leibler divergence is found with

− ∂

∂α
Gα

�,(1)

∣∣∣∣
α=0

= E�

[
log

p�

p

]
. (59)

To determine the local Kullback-Leibler entropy statistic
related to n points in the regions B1, . . . , Bn , we can use the
analogous relations for the p.g.fl. [7], eg.

− ∂

∂α
δnGα

�,(h; 1B1, . . . , 1Bn)
∣∣
h=0,α=0 = (60)∫

B1×...×Bn

log
p(n)
� (x1, . . . , xn)

p(n)
 (x1, . . . , xn)

P(n)
� (dx1, . . . , dxn).

Definition V.2 (Relative entropy intensity). Following the
result above for Shannon entropy, we can determine the

first-order population statistic related to the relative entropy
with

E�

[
N�(B) log

p�

p

]
. (61)

Definition V.3 (Laplace information functional for relative
entropy). For point processes, the Laplace information func-
tional for relative entropy is determined with

Lα
�,( f ) = E�

[
exp

(
−
∑
x∈�

f (x)

)(
p�

p

)−α
]

. (62)

Similarly, a cumulant informational functional for relative
entropy can be determined with

Wα
�,( f ) = logLα

�,( f ), (63)

which enables the determination of the Rényi divergence with

1

α − 1
Wα

�,(0). (64)

Definition V.4 (Relative entropy-population covariance). As
in the Shannon entropy, case, we can consider the covariance
between the number of points in a particular region A and
the entropy, i.e.

cov(N�(A), log
p�

p
) = ∂

∂α
δWα

�,( f ; 1A)| f =0,α=0 (65)

= E�

[
N�(A) log

p�

p

]
− E� [N�(A)] E�

[
log

p�

p

]
.

This statistic is interesting since it quantifies how much
the number of points in a particular region correlates with
the global relative entropy between the two processes. An
illustration of the use of this concept is given in the following
section.

Example 7 (Poisson point process). To illustrate the concept
for point processes, we consider two Poisson processes � and
 , described with probability generating functionals given in
Section III, where μ� and μ� are the intensity measures
of processes � and  respectively. We shall assume that
these admit densities with respect to the Lebesgue measure λ,
which we shall write μ�(x) and μ(x) respectively. Following
the relative entropy between two Poisson distributions in
Section II, we determine that the relative entropy Laplace
information functional becomes

Lα
�,( f ) = exp

(∫
e− f (x)μ�(x)1−αμ(x)α(x)λ(dx)

)
(66)

× exp

(
−
∫

((1 − α)μ�(x) + αμ(x)) λ(dx)

)
.

The Kullback-Leibler divergence is found by setting f = 0
and differentiating with respect to α, i.e.

− ∂

∂α
Lα

�,(0)|α=0 =
(67)∫ (

μ�(x) log

(
μ�(x)

μ(x)

)
− μ�(x) + μ(x)

)
λ(dx).
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To determine the information statistics defined above, we
shall use the cumulant information functional, i.e. the loga-
rithm of the Laplace information functional, which takes the
simple form

Wα
�,( f ) =

∫
e− f (x)μ�(x)1−αμ(x)α(x)λ(dx) (68)

−
∫

((1 − α)μ�(x) + αμ(x)) λ(dx).

The Rényi divergence is then

1

1 − α
Wα

�,(0) = 1

1 − α

(∫
μ�(x)1−αμ(x)α(x)λ(dx)−

(69)∫
((1 − α)μ�(x) + αμ(x)) λ(dx)

)
.

Using Definition III.9, the relative entropy-population covari-
ance becomes

∂

∂α
δWα

�,( f ; 1A)

∣∣∣∣
f =0,α=0

=
∫

A
log

(
μ�(x)

μ(x)

)
μ�(x)λ(dx).

(70)

Note that this closely resembles the Kullback-Leibler diver-
gence, though the probabilities are replaced with point process
intensities. We could also use the density form of this result,
i.e.

∂

∂α
δWα

�,( f ; δy)

∣∣∣∣
f =0,α=0

= μ�(y) log

(
μ�(y)

μ(y)

)
. (71)

This example is illustrated in the following Section.

VI. WORKED EXAMPLES

In this section we consider the application of the results for
particular case studies to demonstrate the potential utility.

A. Shannon Entropy Examples

Here we consider the Laplace functional of a Bernoulli point
process, where the spatial density is described with a Gaussian
distribution, i.e.

L�( f ) = (1 − p) + p
∫

N (x; m, P)e− f (x)dx, (72)

where p is the probability of point existence, and N (x; m, P)
is a Gaussian density function with argument x , mean m and
covariance P . We consider a scenario with potentially two
points, described with independent Bernoulli point processes,
i.e. their Laplace functional of the composite process is given
by the superposition,

L�( f ) = L�0( f )L�1( f ), (73)

of independent Bernoulli components

L�0( f ) = (1 − p0) + p0

∫
N (x; m0, P0) exp(− f (x))dx,

(74)

L�1( f ) = (1 − p1) + p1

∫
N (x; m1, P1) exp(− f (x))dx .

(75)

We note that if each Bernoulli component were taken sepa-
rately, their information functionals become

L�0( f ) = (1 − p0)
1−α + p1−α

1

∫
N (x; m0, P0)

1−αe− f (x)dx,

(76)

L�1( f ) = (1 − p1)
1−α + p1−α

1

∫
N (x; m1, P1)

1−αe− f (x)dx .

(77)

Unfortunately, it is important to note that the functional of the
composite process no longer factorises as the product of indi-
vidual independent components. In this case, the information
functional becomes

Lα
�( f ) = (p0 p1)

1−α+ (78)∫
(p0N (x; m0, P0)(1 − p1)+

p1N (x; m1, P1)(1 − p0))
1−α e− f (x)dx

+
∫

(p0N (x; m0, P0)p1N (x; m1, P1))
1−α e− f (x)− f (y)dxdy.

The first-moment, or intensity, is found in the usual way by
considering the first-order derivative of the Laplace functional,
i.e. by considering the derivative with respect to f when
α = 0. Rather than use the measure, we use the density, so that
the intensity function is calculated with

− δLα
�( f ; δy)

∣∣
f =0 = p0N (y; m0, P0) + p1N (y; m1, P1).

(79)

Conversely, to find the Shannon entropy, we set f = 0 and
differentiate with respect to α. These operations are rather
tedious in practice and lead to many terms and the results of
these operations do not always lead to greater insight into their
nature. Hence, we do not reproduce all of these derivatives.
However, due to the mechanical nature, these operations can be
automated by using computer algebra packages. In particular,
the derivatives here were produced using the Physics package
of Maple [17]. The entropy intensity is calculated with

− ∂

∂α
δLα

�( f ; δy)

∣∣∣∣
α=0, f =0

, (80)

and the covariance between the entropy and the population is
given with

∂

∂α
δWα

�( f ; δy)

∣∣∣∣
α=0, f =0

. (81)

To illustrate these results, we consider a one-dimensional
scenario with parameters: p0 = 0.5, p2 = 0.5, m0 =
−10, m1 = 10, P0 = 1, P1 = 4. This has been chosen to
demonstrate the case with well-separated points, where the
probability of existence is the same but the variances of the
Gaussians are different. In this scenario, the intensity related
to each point is the same, i.e. 0.5. Thus, if we compute the
expectations localised around each point, it is not possible to
distinguish between them. The entropy intensities are com-
puted to be 1.93 and 2.10 respectively. Since the existence
probabilities are equal, we can attribute the higher value to be
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Fig. 2. Entropy statistics.

Fig. 3. Relative entropy statistics.

related to the higher variance in the second Gaussian compo-
nent. The entropy-population covariance calculations restricted
to the two components are 0.35 and 0.53, demonstrating that
the second Gaussian is more strongly correlated with the
entropy. Figure 2 shows the value of these functions. We can
see a dip in the entropy-population covariance near the peak of
the entropy, which relates to better localisation. Note that due
to the linearity of the integral, the global covariance is the sum
of these components, i.e. 0.88, giving an additive expression
for the statistic.

When considering large populations with small global vari-
ations in the probability of existence, the entropy intensity
may provide a useful statistic. However, this should be used
with caution, since it is unable to disambiguate between high
population number and high entropy. It is likely that the
entropy-population covariance is a more useful local statistic,
since it is able to quantify the correlation with the local
intensity of the population with the global entropy. Higher
values can be interpreted as regions with higher entropy.

Fig. 4. Relative entropy statistics between two Poisson components.

B. Relative Entropy Examples

1) Relative Entropy Statistics Between Two Bernoulli Com-
ponents: In this section we consider the relative entropy
between two Bernoulli components. The parameters for the
components are p0 = 0.9, p2 = 0.6, m0 = −10, m1 =
−9.5, P0 = 1, P1 = 4, and the quantities are described
in Figure 3. The Kullback-Leibler divergence is the same
as the entropy intensity for this scenario, 1.71, and the
entropy-population covariance is equal to 0.43. We see that
the entropy intensity is greatest when there is the least overlap
between the intensities, and lowest when there is most overlap,
as desired. The entropy-population covariance is also positive,
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showing a strong correlation between the population statistic
and the entropy statistic. Importantly, the entropy-population
covariance is negative when there is a strong overlap between
the entropies, showing that there is a negative correlation
between the intensities.

2) Relative Entropy Statistics Between Two Poisson compo-
nents: In this section we consider the relative entropy entropy-
covariance between two Poisson components, equation (71),
where each of which is a mixture of two Gaussians with
intensity functions

μ�(y) = ω0N (y; m0, P0) + ω1N (y; m1, P1), (82)

μ(y) = ω2N (y; m2, P2),+ω3N (y; m3, P3), (83)

respectively. The parameters for the first Poisson compo-
nent are ω0 = 0.3, m0 = −20, P0 = 1, ω1 = 0.5,
m1 = 10, P1 = 1, and the second component parameters
are ω2 = 0.9, m2 = 10, P2 = 1, ω3 = 0.5, m3 = −11,
P3 = 1. The intensities of these processes on the is plotted
in Figure 4(a). The entropy-population covariance is plotted
in Figure 4(b). In the section y < 0, we see that there is a
peak around y = −20, since Component 2 is different where
Component 1 is non-zero. Note also that around y = −11,
the entropy-population covariance is zero since Component 1
is zero. In the Section where z > 0, we see that there is
a smaller contribution around z = 10 since the two Poisson
components are similar but not equal. The integration on these
two sections (y < 0 and y > 0) is 16.1 and 0.25 respectively
which shows that a higher correlation to the relative entropy
in the section where y < 0.

VII. DISCUSSION

By considering moment statistic calculations based on a new
generating functional formulation, it is shown that it is possible
to calculate localised information statistics. A new covariance
statistic between the population of points and the entropy

has been proposed that can help determine local regions where
the entropy correlates most strongly with the population of
points.
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