
Computers them. Engng Vol. 22, Suppl.. pp. S587-S593, 1998 
Q 1998 Elsevier Science Ltd. All rights reserved 

PII: SOO98-1354(98)00104-5 
Printed in Great Britain 

0098-1354/98 $19.00 + 0.00 

Intelligent Modelling in the Chemical Process 
Industry with Neural Networks: a Case Study 

Kiirt Meert and Marcel Rijckaert 
Expert Systems Applications Development Group, Department of Chemical Engineering 

Katholieke Universiteit Leuven, de Croylaan 46, B-3001 Heverlee, Belgium 

Abstract 
Nowadays the increasing complexity of most processes increases the demand for performant models. Most of these 
processes are highly non-linear and dynamic ones, which require complex modelling techniques. Neural networks 
are eligible modelling candidates for such processes, since they have the ability to map a variety of input-output 
patterns quite easily. Moreover certain types of networks (the so-called spatio-temporal networks) can not only 
model spatial but also temporal patterns. Nevertheless a continuous search for improvement is mandatory. Therefore 
in this paper combinations of spatio-temporal neural network types with other modelling techniques are discussed 
whilst applied to a complex problem from the chemical process industry, i.e. a polymerisation reactor. 0 1998 
Elsevier Science Ltd. All rights reserved. 
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Introduction 
The chemical process industry encounters many 
problems in controlling and monitoring 
polymerisation reactors. This has always been a 
challenging industrial problem due to its complex 
process dynamics, strong nonlinearities and interaction 
between process variables. It is therefore an ideal 
testing field for different kinds of AI techniques. A lot 
of effort has already been put into these specific 
problems because of their tiequent appearance in the 
process industry. 
One of the major problems that arise during polymer 
production is the estimation of the average chain 
length of the polymer. Such an estimation is quite 
elaborate and time consuming. A MWD (Molecular 
Weight Distribution) measurement with an on-line 
size exclusion chromatograph detector causes a time 
delay of 10 to 15 minutes, which is the main reason 
why industrial viscosimeters and some empirical 
correlations am used to estimate the MWD 
(Ponnuswamy et al., 1987). If the inertia of the process 
itself (e.g. residence time) is added up to the 
measurement time delay, one can imagine the 
consequences a disturbance has on the output of the 
reactor with such a large total time delay. 
Furthermore, an erroneous output at the reactor (an 
unwanted chain length) can cause a lot of losses 
(production as well as financial). Therefore newer 
methods for real-time estimation of the chain length 
distribution are widely developed (Ellis et al, 1994; 
van Dootingh et al., 1992). In (Dimitratos et al., 
1994) a broad review is given on control cf 
polymerisation reactors. 

One of the most promising methods for application in 
the chemical process industry, and more specific to 
polymerisation reactors, are neural networks. They not 
only have the ability to model complex, nonlinear 
processes, but they can also map temporal 
relationships between input and output parameters. 
Neural networks which can map spatial as well as 
temporal relationships are called spatio-temporal 
networks (Pearlmutter, 1995). These spatio-temporal 
networks can be divided into two classes, i.e. pseudo 
spatio-temporal and real spatio-temporal networks 
(abbreviated spatio-temporal networks). Real spatio- 
temporal networks, e.g. Elman (Elman, 1990) and the 
RTRL (Real-Time Recurrent Learning) network 
(Williams & Zipser, 1989) recycle their activities 
indefinitely, thus enabling them to capture any 
temporal phenomenon without requiring some a priori 
process knowledge. On the other hand pseudo spatio- 
temporal networks acquire their dynamic mapping 
abilities by using process specific knowledge (e.g. 
process time delays) to construct one or other complex 
architecture, e.g. BP (BackPropagation) networks 
using a time window (Waibel et al., 1989). Hence 
their temporal memory capacity is limited, e.g. in the 
case of a time window, to the length of the time 
window. This paper focuses on the use of real spatio- 
temporal networks for modelling a complex problem 
of the chemical process industry, i.e. a polymerisation 
reactor. Two types of spatio-temporal networks are 
applied to this problem, the RTRL network and the 
MLRN (Multi-Layer Recurrent Network) (Meert & 
Ludik, 1997). Nevertheless, for referential purposes, a 
BP network will also be applied to this modelling 
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problem. 
To improve the modelling performance of the spatio- 
temporal networks, they were introduced into the 
NMAX model framework (Chen & Billings, 1992). 
NMAX stands for Nonlinear, Moving Average with 
exogenous inputs. This means that we have a 
nonlinear model, where the model error is fed back 
into the network as an input and which uses some 
external parameters as inputs. Hence these five network 
types, i.e. BP, RTRL, MLRN, NMAX-RTRL and 
NMAX-MLRN (in order of rising complexity), are 
used to model the polymerisation reactor. 
Even for spatio-temporal networks. additional 
improvements can be obtained by using process 
specific knowledge. In this paper we make use of the 
isotime lines of the process. lsotime lines connect 
points which have an equal time delay. Hence the 
process parameters (input and output) can be aligned 
in time. This means, e.g. that an output parameter of 
the reactor at time t corresponds with an input 
parameter at time t minus the average residence time of 
the reactor. 
Apart from using these neural models as state 
estimators, they can be introduced e.g. into predictive 
control architectures or optimisation schemes. In these 
cases some additional restrictions have to be imposed 
on the input parameters, since some of these input 
parameters cannot be altered independently from other 
input parameters. Hence the input parameters must be 
divided into two classes, i.e. controlling and 
controlled input parameters. Whereas the first class of 
parameters can be varied arbitrarily, the behaviour of 
the second class of parameters, like the system’s 
output, depends on the first class of parameters. 
Moreover the actual values of the controlled parameters 
are rarely available and they cannot be applied directly 
as input parameters. However they are generally stored 
in the plant’s historical data base and thus can be used 

for constructing a neural network model. To 
incorporate this additional information in the model, a 
hybrid architecture is developed, which consists of two 
modules, each of them being a spatio-temporal 
network. Both modules are explicit models, where the 
first one predicts the controlled “input” parameters as a 
function of the controlling “input” parameters and the 
second one predicts the output parameter as a function 
of all the input parameters (controlling and predicted 
controlled input parameters). 
In the next part, a brief description is given of the 
polymer reactor. In section three the modelling results 
for a variety of network types and architectures are 
discussed. In the fourth section we conclude with a 
final discussion. 

Polymer production plant description 

A continuous stirred tank reactor is used for the free 

radical polymerisation of methylmethacrylate (MMA). 
Polymethylmethacrylate (PMMA) is produced in a 
toluene solvent and benzoyl peroxide (Ponnuswamy et 
al., 1987) is used as an initiator. Monomer and 
initiator product are fed into the reactor continuously. 
The input concentration and flow rate of monomer and 
initiator can be varied. The reactor temperature can 
also vary due to a heating jacket. A valve controls the 
level in the reactor. The average residence time is i 5 
minutes. Based on the average residence time the 
isotime lines of the polymer reactor can be derived 
(Figure I). All these variables have a strong impact on 
chain length distributions. An overview of the most 
important reactions is given below: 

Initiation : 

Propagation : 

Termination by addition : P,, + P,, -ff!--+ M,,,,, 

In this reaction scheme M and 1 respectively denote the 
monomer and initiator, P, the produced polymer with 
chain length i and k,, kpr, k,, the reaction rate constants 
for the initiation, propagation and termination 
reactions. To avoid useless overloading of the 
simulation program some termination reactions ate 
omitted from the basic reaction scheme. 
Together with these reactions a number of mass and 
energy balances are obtained. A general overview can 
be found in (Froment & Bischoff, 1979) and (Holland 
& Anthony, 1979). The most important equations, 
the monomer and initiator mass balances, are given by 

d(VW 2fifx 1/ - = &M; - elM - k,+) (I) MV 
dt 

(1) 
I 

d(VI) - = F;,I; - F;,I - k,IV 
dt 

with V the reactor volume andfthe initiator efficiency. 
F,, M, represent the monomer input flow rate and 

concentration, F,,, I, the initiator input flow rate and 

concentration, and F,, M, I the output flow rate, 

monomer and initiator concentration. 
Equations (1) and (2) lead to the following equation 
(3) for calculating the average number of monomer 
units in the polymer chain PN 

- 
(PN)O = &=p$ (3) 

The equations listed above are used to simulate the 
polymerisation reactor. This simulation calculates the 
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reactor volume, the output concentration of monomer 
and initiator, the output flow rate and the average 
number of monomer units in the polymer chain and 
the number average molecular weight. Furthermore 
some measurement noise is added to F,, M,, F,,, I, 
and T. 
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Mudeiling results for a variety of neural networks 
This section is divided into 3 subsections. In each cf 
these subsections the polymer reactor is modelled by 
different types of nets or architectures (BP, RTRL, 
MLRN) and from different points of view (making use 
of a priori knowledge, different sets of input 
parameters, etc.). time = 0 

time= 15 

Figure I. The polymer reactor with its isotime lines. 

We are now using the simulation to generate the 
different input patterns for the neural nets to estimate 
the average number of monomer units in the polymer 
chain (or average chain length). One of the major 
advantages of using such a simulation is the ability to 
vary and “measure” all the parameters so as to get a 
broad and general training file, where every possible 
technique or architecture can be tested on without any 
limitations whatsoever. Additionally a variety aC 
special problems can be included in the simulator, e.g. 
measurement noise, etc. 

600 i 

Modelling of the polymer reactor 
In this subsection, five different network types or 
architectures are applied to the polymer reactor: a 
backpropagation net, a RTRL and a MLRN with or 
without error feedback, i.e. NMAX(=,w). However, no 
use is made of the a priori knowledge that the average 
residence time approximates I5 minutes. This 
signifies that the actual average chain length is 
determined based on the actual measurements of the 
process parameters: no time shift is applied. This 
leads to the following formula 

mf) = NNF;,W,M;(t), F;,(t), Z;(t), v(t). (4) 
T(r), F,(r), M(t), 10)) 

The train and test results are listed in Table I. 

Table I. MAE of five different network types and 
architectures for train and test case. 

1000 
Time 

2000 3000 

-reactor ______ mlt 

Figure 2. The evolution of the correct and predicted chain length for the MLRN (mlt). 
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The results gradually improve when the complexity of 
the network structure rises. The RTRL network 
outperfotms the BP network on the test set by 
17%.The error for the RTRL and the MLRN ate 
almost equal for the training and the test set. By 
applying the previous model error to the two recurrent 
networks, the average error for the NMAX-RTRL and 
NMAX-MLRN are respectively reduced by 38% and 
50%. Figure 2 shows the evolution of the correct chain 
length and of its prediction by the MLRN. 

Making use of isotime lines 
Unlike in the previous case, a priori knowledge is 
used to reduce the modelling error. This is done by 
making use of the isotime lines of the process. In this 
case only two isotime lines are relevant, i.e. the 0 and 
the I5 minutes isotime line. The latter is based on an 
estimate of the reactor’s average residence time. A time 
shit? I5 minutes is applied between input and output 
variables. Formula (4) is converted to the following 
equation 

K./(r)= N/v(F;,(t - l5),M;@ - YJ),&,(t - l5), 

I,(t - 15),V(r - 15),T(r - l5), (5) 

F;,(f), M(r), W) 

While varying the input flow, the output flow and the 
volume are changed and thus also the residence time. 
Therefore we assume that the applied changes do not 
atfect significantly the average residence time. If this 
assumption does not hold, the network performance 
would deteriorate rapidly and eventually another 
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model should be applied. As an alternative one could 
also use the minimal residence time of the process, 
thus avoiding non causal behaviour of the model, 
which might occur when using the average residence 
time. The results of the simulation runs of the five 
different network types are listed in Table 2. 

Network type 
BP 
RTRL 
MLRN 
NMAX-RTRL 
NMAX-MLRN 

train test 
0.0279 0.0564 
0.0275 0.0489 
0.0270 0.0478 
0.0181 0.0303 
0.0177 0.024 I 

Table 2. MAE of five different network types and 
architectures for the training and test set, when using 

isotime lines. 

Similar conclusions as in the previous section can be 
drawn when analysing the errors of the networks which 
use isotime lines. The improvement, however, 
obtained by increasing the structural complexity of the 
networks, is less in this case than it was in the former 
case: e.g. the test error for the RTRL network is only 
reduced by 13% compared to that of the BP network. 
Ifthe errors for both modelling cases are compared to 
each other (see Table I and 2), the results of the 
networks with only a limited dynamic capacity have 
improved the most: 8% for the BP net and 4% for the 
RTRL network. The results for the NMAX-MLRN are 
almost identical for both cases. This can be explained 
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Figure 3. The evolution of the correct and predicted chain length of the MRLN which uses isotime lines (ml 15t). 
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by the fact that in the previous experiment no temporal 
information was provided to the BP network. On the 
other hand, the spatio-temporal networks were already 
able, without the aid of process specific knowledge, to 
capture (part of) the existing temporal relationships, 
hence that is why their experimental results only show 
some relatively small improvements over the results 
obtained in the previous experiment. Figure 3 shows 
the evolution of the correct chain length and of its 
prediction by the MLRN. 
Figure 4 shows the evolution of the correct chain 
length and of its prediction by the BP networks far 
both modelling cases. A detail of Figure 4 has been 
blown up. 
Notice the phase lead between the output of the BP 
network which does not make use of the isotime lines, 
and the correct chain length, which appears during 
transitions of one steady-state to another. This phase 

600 T 

530 - 

510 -- 

490 -- 
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lead approximates the residence time (= 15 minutes) of 
the reactor. The output of the BP network anticipates 
the changes in the actual values of the input parameters 
before these really a&ct the output of the reactor. On 
the other hand no phase lead emerges for the network 
which uses isotime lines. Nevertheless some small 
phase lead or lag can appear since the residence time is 
subject to changes in the process input or output. 

Controlling and controlled parameters 

Until now we have only treated those cases where the 
actual values of all parameters were available. After a 
small analysis of the problem, the process parameters 
can be divided into two classes, the controlling and 
the controlled parameters. The first class of parameters 
can be altered at one’s own discretion, whereas the 

0 ---_------_-k__- ._~_._~_ +---_-_t--~- _~_. --*-_-_ ___.__~___-. __._ --+ 

0 1000 2000 3000 
Time 

- reactor ______ bpt ---- bpl5t 

Figure 4. Comparison of the evolution of the BP network with and without 
the use of isotime lines (respectively (bplfit) and (bpt)). 
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second class of parameters have to obey the laws Ef 
nature and are, as well as the output parameter, 
controlled by the first class of parameters. Moreover 
their actual value is not on-line available and/or cannot 
be altered independently from the other input 
parameters. Therefore it would be unrealistic to use 
these parameters directly as input parameters for the 
network. To solve this issue a modular network 
structure (Figure 5) is developed. 

Controlling 
parameters 

Figure 5. The modular network structure: the first 
network is used to predict the controlled parameters 

whereas the second network calculates the output 
parameter based on the controlling and the controlled 

parameters. 

First of all a model is built to predict the three 
controlled parameters, V, A!, I, based upon the six 
controlling parameters, F,, IV,, F,,, I,, F,, T. Then 

both classes of parameters, controlling and (predicted) 
controlled parameters, are fed into a global model, 
similar to the one built in the previous section, to 
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calculate the average chain length. 
This gives rise to the following set of equations: 

V,,(r),M,,(t),I,,(t)=NN,(F;,(f-15), 

M,(t - 15), C,(f - 15), (6) 

[,(1- 15),T(f - l5), F;,(t)) 

P&r)= NN,(I;;,(t - lS),M,(t - 15),F;,(t- 15). 

I,(t - 15),T(t- 15),~;,(f),V/#), (7) 

M,(r), I,(r)) 

Observe that equation (7) resembles equation (5) 
except for the subscript p (which stands for predicted) 
for V, M, I. In both cases an identical model network 
is used. 

Network type 
Modular network 
Sinnle network 

train test 
0.0840 0.0796 
0.1003 0.1360 

Table 3. MAE of the modular and single network for 
train and test case. 

In Table 3 the results are listed for the modular 
network as well as for a single neural network model, 
which predicts the average chain length merely based 
upon the controlling parameters. For both experiments 
RTRL networks were used. 

- reactor ---- rtld _ - _ _ - _ _ file 

Figure 6. The evolution of the correct and predicted chain length 
of a single RTRL network (rtld) and of a modular RTRL network (rtlc). 
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The modular network outperforms the single network 
on the training set by 16% and on the test set by 41%. 
Figure 6 shows the evolution of the correct chain 
length and of its prediction by the modular as well as 
by the single network. 

Conclusion 
In this paper various techniques were compared to each 
other. For this purpose we applied them to a 
challenging benchmark problem, i.e. the modelling of 
a nonlinear dynamic polymer reactor. First five 
different network types and architectures, i.e. a BP, a 
RTRL and a MLRN network and the NMAX versions 
of these last two network types, were applied to the 
polymer reactor modelling problem. The more 
complex spatio-temporal network types outperformed 
the networks with reduced temporal capacity, i.e. the 
NMAX -RTRL and -MLRN networks. 
Moreover to improve the modelling performance of 
these networks, isotime lines were used. The networks 
with limited dynamics benefited most of this 
additional information. Nevertheless the NMAX 
network structures remained the best performing 
networks. 
Finally a modular network structure was used to 
model the polymer reactor solely based upon the 
controlling parameters and the intermediate prediction 
of the controlled parameters. The modular network 
structure outperforms the single network. 
As a general conclusion we can state that the usage cf 
a priori problem knowledge in combination with the 
right network type or structure results in an optimal 
model. 

Notation 

s = initiator efficiency 
F,/ = initiator input flow rate 
F Ihl = monomer input flow rate 
fi/ = output flow rate 
I = initiator concentration in the reactor 
I, = initiator concentration in the input flow 
k, = reaction rate constant for the initiation 

reaction 

t = reaction rate constant for the propagation 
reaction 

k, = reaction rate constant for the termination 
reaction 

M = monomer concentration in the reactor 
A4l = monomer concentration in the input flow 
NN() = vector valued neural network function 
TjN(t) = average chain length at time I 

p, = polymer with chain length I 
T = reactor temperature 
c = reactor volume 
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