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A B S T R A C T

Bearing is commonly used in rotating machinery, and it is significant to monitor bearing running states to
ensure machine safety. Performance degradation assessment is an important work in bearing condition-
based maintenance (CBM) and predictive maintenance. In this paper, a data-driven bearing performance
degradation assessment method based on long short-term memory (LSTM) recurrent neural network
(RNN) is proposed to comprehensively utilize the fault propagation information. Firstly, universal
degradation simulation model based on vibration response mechanism is constructed for feature
verification. A new proposed indicator "waveform entropy (WFE)" is developed and validated by this
simulation model. Then waveform entropy and other conventional indicators are input into the LSTM
RNN to identify the bearing running state, while particle swarm optimization method is applied to
optimize the network structure parameters simultaneously. Experimental results demonstrate that
LSTM RNN can effectively identify the bearing degradation states and accurately predict the remaining
useful life.

© 2018 Elsevier B.V. All rights reserved.
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1. Introduction

Rolling element bearings withstand a variety of mechanical
stress and thermal stress during the operation of machinery.
According to [1], more than 40% of motor failures are related to
bearing faults. Hence, accurate fault detection [2,3] and remaining
useful life (RUL) prediction are rewarding to decrease the
maintenance cost and reduce costly downtime. Many effective
methods have been proposed and applied for bearing intelligent
diagnosis [4–6], such as vibration analysis, temperature analysis
and oil analysis. Among all these methods, vibration analysis [7–9]
is the most convincing one and numerous indicators derived from
vibration signals are implemented as criteria in traditional fault
diagnosis.

Time-domain features (e.g., root mean square 'RMS' and kurtosis)
are widely utilized to assess bearing performance degradation. Liao
[10] extracted ten time-domain features as the input of the ANN and
regrouping particle swarm optimization was utilized for the
optimization of network structure. However, the fluctuation of
conventional indicators affects the assessment of the bearing
running state. Additionally, the fault threshold, especially for slight
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fault detection, is hard to determined only by time-domain features.
Frequency-domain indicators are also served as the criteria to
identify bearing running state because of the development of the FFT
algorithm. When the defect occurred, the corresponding fault
frequency would be aroused, and the signature presented in a wide
frequency band. Liao [11] picked up bearing fault frequency band
energy and other time-domain indicators, and employed genetic
programming to construct bearing degradation indicators for RUL
prediction. Frequency-domain analysis can make the bearing defect
more visualized, but it is not such efficacious when applied to the
inner ring defect and the complex defect because of the complex
spectrum in these cases. Another disadvantage is that frequency
analysis requires expertise.

Data-driven methods (e.g., hidden markov model, support
vector machine and artificial neural networks) have caught
increasing attentions in past decades. Various indicators (time-
domain, frequency-domain, time-frequency domain etc.) have
been used to catch the practical fault information from high-
dimension information. Chen [12] developed a more smooth
indicator named relative root mean square to avoid the influences
of outliers. Selak [13] proposed a condition monitoring and fault
diagnostic system for hydropower plants, in which support vector
machine was applied for fault identification. Li [14] used adaptive
Stochastic Resonance (ASR) to enhance bearing fault feature in
incipient stage and construct a quantitative evaluation system. Li
[15] improved locality preserving projection by simultaneous
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analyzing both the nearest and farthest samples of the feature
space to enhance the fault classification and clustering perfor-
mance. Chen [16] applied multiple two-layer sparse auto-encoder
(SAE) neural networks for feature fusion, and the fused feature
vectors were used to train deep belief network (DBN) for bearing
fault classification. Qian [17] implemented recurrence quantifica-
tion analysis (RQA) to extract features, which were served as the
input of an auto-regression model to predict bearing states, and
then Kalman filter was utilized to optimize the prediction. Chen
[18] used a visualized data partition method based on spectral
decomposition to avoid the misjudgment caused by poor quality
datasets with outliers. Benkedjouh [19] processed vibration
features by isometric feature mapping technique (ISOMAP), then
these features were input into support vector regression (SVR)
model to predict bearing RUL. Zhao [20] adopted Gated Recurrent
Unit (GRU) Networks to learn representation of extracted features.
However, the fusion feature generated by dimensionality reduc-
tion algorithms often has weak physical meaning. Moreover, the
validity of these different indicators should be verified by a
universal degradation model to avoid the influence of individual
data sets.

Beyond feature extraction and fusion, data-driven model could
summarize the characteristic of different degradation stage and
catch the same characteristic hidden in testing samples, which
paves another path to RUL prediction. Huang [21] extracted
minimum quantization error (MQE) based on self-organizing map
as an indicator to estimate bearing RUL. Compared with the L10
life, this method give a new bearing RUL guidance. But the RUL
prediction error of 14 test bearings are still around 20%. Yu [22]
proposed negative log likelihood probability (NLLP) based on
gaussian mixture model. Compared with the traditional indicators,
NLLP has a good monotonous trend, which is helpful to judge the
bearing degradation degree. But this indicator is insensitive to
bearing incipient fault. Ben [23] proposed a new indicator named
root mean square entropy estimator, which was used as the input
of simplified fuzzy adaptive resonance theory map neural network
(SFAM) to identify the bearing fault degree. The indicators of two
consecutive time points were utilized. This study transformed
degradation assessment to classification tasks and the classifica-
tion rate reached 74.2%. Its disadvantage is that the SFAM model
Fig. 1. Flowchart of proposed bearing perfor
could not discover the relationship of sequential inputs. Guo [24]
adopted recurrent neural network to construct a fusion indicator
named RNN-HI. A double exponential model was applied for
RNN-HI curve fitting and prediction. The mean of testing RUL error
is 32.48%. However, bearing usually running smoothly before fault
occurrence, this method linearly labeled the whole degradation
from 0 to 1 to obtain RNN-HI, which was inconsistent with the
actual degradation process.

Although many researchers have achieved great progress in the
field of bearing performance degradation assessment, there are
still some problems need to be resolved:

(1) Automatic detection of the fault occurrence. The defect
occurrence is the start of degradation, which is important to
predict the RUL. According to the detection of fault occurrence,
the fault propagation will be tracked and assessed by the
model. However, for most existing methods, the fault occur-
rence is determined by experts’ judgments.

(2) A health indicator should have clear physical meaning and
exhibits a monotonically trend during degradation. And the
effectiveness will be undermined if the indicators only perform
well in specific conditions. So, its robustness and effectiveness
need to be verified.

(3) The usage of historical data. For bearings, the degradation is a
continuous process, the fault occurring, propagating, develop-
ing and damaging information should be utilized as a whole life
data for construction of the assessment model.

In this paper, a data-driven prognosis method based on LSTM
recurrent network is proposed. Firstly, we construct a bearing
degradation indicator, called waveform entropy, to represent
bearing running states. The effectiveness of the proposed indicator
is further verified by a universal degradation simulation model
based on vibration response mechanism. After feature verification
and selection, bearing states are identified by LSTM recurrent
network, whose structure parameters are simultaneously
determined by particle swarm optimization (PSO) method. In
order to catch reasonable samples and better training accuracy, a
pre-training of fault occurrence point identification is
implemented. Experimental results demonstrate that LSTM
mance degradation assessment method.
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networks can effectively identify the bearing degradation degree
and accurately predict the RUL. The main contributions of this
study can be concluded as follows:

1) A dimensionless indicator called waveform entropy is proposed
to represent bearing running states, which exhibits better
robustness and stronger monotonicity.

2) Considering the bearing vibration mechanism, a degradation
simulation model is constructed for feature verification and
selection. Different simulation conditions can be set to test the
performance of each feature.

3) An automatic detection method is proposed to identify the fault
occurrence, and thus the degradation process can be segmented
into different stages according to time stamps.

4) LSTM recurrent network is employed for bearing degradation
assessment and its structure parameters are optimized by PSO
method. The effectiveness of the proposed method is validated
by run-to-failure experimental datasets.

The remainder of this paper is organized as follows: Section 2
introduces the process of the proposed bearing performance
degradation assessment. Section 3 describes the feature construc-
tion and verifies its effectiveness. Section 4 introduces the
structure of LSTM recurrent neural network and its parameters
determination process. Section 5 presents the experimental results
and analyses. Finally, Section 6 concludes the whole works.

2. The RUL prediction procedure of the proposed approach

In this work, a bearing degradation assessing method based on
LSTM recurrent neural network is proposed, which can be divided
into three steps as follows:

(1) Degradation indicator selection. In this step, a degradation
indicator named waveform entropy is developed. To verify the
performance of different indicators, a bearing degradation
simulation model based on vibration response mechanism is
proposed. The robust features would be selected as input of
assessment model.

(2) Automatic detection of bearing fault occurrence. The normal
state of bearing has a long duration and should be distin-
guished from fault state when making training samples.
Prognosis of bearing fault occurrence is a pre-training of final
classification, which can improve the rationality of labeling
samples.

(3) Classification of degradation stages. The degradation process is
further divided into several stages after fault occurrence
identification. Then LSTM recurrent network model was built
to recognize the degradation level through classification. Each
class and its possibility are used to calculate a degradation
index, then an exponential degradation model is applied to
predict the degradation trend.
Fig. 2. Simulated bearing degradation
3. Feature extraction

Feature extraction is critical to degradation assessment because
bearing vibration signal contains rich hidden information. Many
time-domain features are adopted to explore the relationship
between the bearing running states and vibration signals. Among
them, RMS and kurtosis are most common features, since they can
effectively reflect the real-time change of the bearing vibration.
However, the fluctuation caused by the uncertainty of vibration
has a great influence on the estimation of the bearing degradation.
Therefore, further processing of the traditional features, e.g.,
feature fusion or statistical analysis, is needed to find a good
indicator.

3.1. Waveform entropy feature

For a single discrete random vector X, its entropy can be
calculated by

E ¼ 1
M

XM

i¼1

pðxiÞ � lnðpðxiÞÞ ð1Þ

Where xi represents an element in X and its probability mass
function is p(xi). M is the total number of elements in variable X.

When the bearing defect occurs, the vibration shows an
increasing trend with the fault developing. Despite discontinuous
saltus may occurs, the average vibration energy during this period
has a great correlation with bearing degradation. Entropy is the
measurement of system average uncertainty and chaos. From the
prospect of statistics, the vibration entropy in a period can better
depict the real bearing state. Based on this hypothesis, it is
reasonable to construct an entropy feature to reflect the
degradation degree.

For time-domain features, the dimensional indicators are
related to not only the state of the equipment but also the
operating conditions (speed and load), whereas the dimensionless
indicators are related to the state of the machine and not sensitive
to the change of load and speed. Therefore, we prefer to construct a
dimensionless indicator, such as some kind of entropy features.

Waveform factor is defined as the ratio of RMS to the average of
absolute amplitude, which reflecting the deviation from the
average. And it is not sensitive to operation conditions. Inspired by
Ben [23], we construct a dimensionless indicator called Waveform
Entropy(WFE), defined by:

WFEt ¼ 1
M

XM�1

i¼0

Wt�i � logðWt�iÞ ð2Þ

Where WFE is the waveform entropy, Wt is the waveform factor of
vibration signals at time t, and M is the length of sliding window.

As it can be seen, the calculation of WFE do not need signals
decomposition and complex parameter setting compared with
 signals of small-noise condition.



Fig. 3. Bearing degradation indicators of small-noise condition simulation.

Fig. 4. Simulated bearing degradation signals of big noise condition.
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time-frequency domain features. ‘Waveform entropy’(WFE) is the
local mean of logarithmic vibration energy, which has clear
physical meaning of the measure of vibration strength. Since
waveform factor of vibration signals may be greater than 1,
applying log function can keep ‘WFE’ from variating drastically.

3.2. Degradation simulation analysis

To compare the performance of different indicators, a bearing
degradation simulation model are constructed according to
vibration response mechanism [25]. This vibration signals mainly
contains three components, which are vibration response signals,
environment noise and system noise. The frequency component of
vibration response signals depends on the fault type and operating
conditions, and the amplitude is related to degradation degree. In
this simulation, the components except for vibration response are
regarded as noise components. Environmental noise is fixed-size
noise in mechanical equipment installation position, which won't
produce very big change. System noise is a vibration interference,
which may come from inside the equipment and would increase as
bearing damage becoming severe.

Combined with the exponential degradation model and the
bearing fault vibration response mechanism, bearing degradation
signals could be simulated by

f tð Þ ¼ l1 � expðl2Þ � x tð Þ þ h1 tð Þ þ l3h2 tð Þ ð3Þ

x tð Þ¼
XI

i¼1

XJ

j¼1

Aijexp
�2pzjffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � z2j

q f dj t � ti � iTð Þ

2
64

3
75sin 2pf dj t � ti � iTð Þ

h i
;

t � ti ð4Þ
In Eq. (3),f(t) is the final simulation signals, l1; l2 are two

parameters which reflect vibration amplitude variation. l3 is set to
describe the influence of system noise. h1 tð Þ and h2 tð Þ are Gaussian
white noise. x(t) is bearing damage vibration response component.

In Eq. (4),ðf dj; zjÞ j ¼ 1; 2; . . . ; J represent the corresponding
system frequency and damping ratio under different modes, only
the first few components are considered; Aij represents the
amplitude of jth system frequency upon the ith impulse, which is set
to be a random value in range [0,0.5]. T represents the theoretical
cycle of the impulse. ti represents the difference between
theoretical cycle and real impulse time (Fig. 1).

Four working condition are set for simulation, which include
constant speed with small-noise, constant speed with large-noise,



Fig. 5. Bearing degradation indicators of big noise condition simulation.

Fig. 6. Simulated bearing degradation signals of rotation fluctuation condition.
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speed fluctuation without noise and speed fluctuation with large-
noise. In each condition, we compare the performance of different
indicators to validate the effectiveness. For comparison, bearing
parameters are set the same as Rexnord ZA-2115 and rotation
speed is 2000 rpm. Thus BPFO, BPFI and BSF are respectively
236.4 Hz, 396.9 Hz and 140.0 Hz. Assuming that the first two
system frequency components are aroused when bearing damage
occurred, and these two frequency components are respectively
2000 Hz and 4000 Hz while the damping ratio are respectively 0.1
and 0.05. The sampling rate is set to 12 kHz and sampling length is
1 s. To simplify the model, h1 tð Þ and h2 tð Þ are set to the same

Gaussian white noise, l3 is set to l2
2.

The first working condition is small-noise condition. The whole
life of simulation bearing is set to700 s and signal-to-noise ratio is
-15db in time 350 s. The Gaussian noise in time 350 s is applied as
the environmental noise of whole bearing life, while system noise
is l3 fold than environmental noise. In this working condition, the
700 segments of degradation data are showed as Fig. 2.

Different indicators are extracted from the simulation signals,
including RMS, kurtosis, wavelet packet entropy (WPE) and
waveform entropy. Db3 wavelet is applied to wavelet decomposi-
tion and the decomposition layer number is set to 3. The length of
sliding window of waveform entropy is set to 20. The result is
showed in Fig. 3. In this small-noise working condition, all of the
four indicators have a good performance in degradation assess-
ment. RMS and WPE present a good increasing trend with only a
litter fluctuation. Kurtosis is fitted to diagnosis the early fault for its
peak value in this period. Compared with other indicators, the
proposed WFE has better monotonicity and less fluctuation.

In the second working condition, environment noise and
system noise are further increased. The signal-to-noise ratio is
-30db in time 350 s, and the Gaussian noise is also applied as the
environmental noise of whole bearing life. Other parameters are
set as same as those under the first condition. In this big-noise
working condition, the 700 segments of degradation data the four
indicators are shown in Figs. 4 and 5.

As shown in Fig. 5, RMS and kurtosis are heavily interferenced
by the noise, which present a big value even in the normal stage,
whereas the WPE and the WFE show good monotonicity with little
fluctuation.

Under the third working condition, the fluctuation of rotation
speed was considered. The rotation speed is set as a random value
in [1900, 2100] rpm in each segment of 700 degradation data,
which means that the rotation fluctuation range is 10%. And the



Fig. 7. Bearing degradation indicators of rotation fluctuation condition simulation.
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700 segments of degradation data are showed as in Fig. 6 and the
four indicators in Fig. 7.

In this condition, RMS, kurtosis and WFE perform as same as
those under the first condition. But the WPE presents great
fluctuation which may influence the diagnosis result.

Under the fourth working condition, both big noise and rotation
fluctuation are considered, and the degradation process is showed
as Fig. 8.

RMS, kurtosis, WPE and WFE are also calculated as showed in
Fig. 9. It can be seen that the first three indicators suffer from
severe interference under this working condition. However, WFE
performs strong robustness and good monotonicity even with this
couple interference.

Simulation results illustrate that WFE (waveform entropy) has
advantages of strong robustness and good monotonicity, which is
appropriate for degradation assessment and health monitoring.

4. LSTM recurrent network based assessing model

When assessing bearing degradation, utilizing the history data
no doubt plays a positive role. A neural network, named as long
short-term memory (LSTM) recurrent network, has memory
Fig. 8. Simulated bearing degradation signals of r
function and powerful series processing ability, which attracts
much attentions recently.

The pioneer recurrent network are Elman networks and Jordan
networks [26,27], inwhichtheactivationofnodescalculatesnotonly
the current input but also the previous return value. The recurrent
structure endows the network with a superior sequential processing
performance, but gradient disappearance problem comes together.
With the increasing of time window length, historical information is
progressively forgotten by the network. Hochreiter [28] proposed
long short-term memory (LSTM) cells, adding three switches to
hidden layer nodes. These switches, which named “gates”, deter-
minetheextractionratio of the input andrecurrent information, thus
solving the problem of gradient disappearance.

LSTM-RNN achieves a really good performance in sequential data
processing because of the recurrent feedback. For instance, Liwicki
[29] applied LSTM recurrent network to handwritten digital
recognition and achieved a state-of-art result. Sutskever [30]
constructedtwomulti-layerLSTMnetworks formachinetranslation.
In addition, LSTM have also been extensively applied in the language
model, text generation, and speech recognition. Considering LSTM’s
ability of processing sequential data, we construct a degradation
assessment model based on LSTM recurrent network.
otation fluctuation with big noise condition.



Fig. 9. Bearing degradation indicators of rotation fluctuation with big noise condition.

Fig. 10. LSTM recurrent network.
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4.1. The structure of LSTM recurrent network

The recurrent network applied in this study is shown as Fig. 10,
where x1, x2, . . . , xm are the inputs of the network, y1, y2, . . . , yn
are the outputs. For example, the inputs can be the features
extracted from vibration signals and the outputs can be the states
of bearing. W(1), W(2)and W(3) are the weights of the layer
connection, which are represented by solid lines. Wt

(1), Wt
(1)and

Wt
(1) are the weights of the time connection, which are

represented by dashed lines.
Each hidden node in the above neural networks is a LSTM cell,

whose structure is shown in Fig. 11.Where ht represents the output
of LSTM cell at current time t, st denotes the state of LSTM cell at
time t, (gs, is, fs, os) represents the activation of the input and ht-1
(i.e., activation of input nodes, input gate, forget gate and output
gate), s and f are the activation function (sigmoid and tanh
function), and ‘

Q
’ is the symbol for pointwise multiplication.

Once the input and the recurrent value ht-1 are weighting
summed, the outputs of the LSTM recurrent network are calculated
according to the following formula:

gs ¼ jðWgx � x þ Wgh � ht�1 þ bgÞ ð5Þ

is ¼ sðWix � x þ Wih � ht�1 þ biÞ ð6Þ

f s ¼ sðWf x � x þ Wf h � ht�1 þ bf Þ ð7Þ



Fig. 11. The structure of LSTM cell.

Fig. 12. Structure hyperparameter optimization process using PSO.
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os ¼ sðWox � x þ Woh � ht�1 þ boÞ ð8Þ

st ¼ gs � is þ st�1 � f s ð9Þ

ht ¼ ’ðstÞ � os ð10Þ
Where Wgx represents the “input-input node” weights matrix, Wix

the “input-input gate” weights matrix, Wfx the “input-forget gate”
weights matrix and Wox the “input-output gate” weights matrix,
respectively; Wgh, Wih, Wfh and Woh represent the weights matrix of
recurrent value (ht-1) and these four nodes (input node, input
gate, forget gate, output gate) respectively; bg, bi, bf, bo are the bias
of the summed weighted input, and � represents pointwise
multiplication.

4.2. PSO-based network structure parameter optimization

Like other deep neural networks, RNN is also sensitive to the
setting of network hyperparameters, such as number of hidden
layers, number of nodes per layer, time step and learning rate.



Fig. 13. Test rig [32].

Table 1
The running condition and fault type of run-to-failure bearings.

Bearing Failure time Failure type Rotation speed /rpm Load /lbs

TB1 2156 Inner race defect 2000 6000
TB2 2156 Roller defect 2000 6000
TB3 984 Outer race defect 2000 6000
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Commonly, the deeper layers and the more hidden nodes will lead to
betterfitting.However, itwill increasing computationcost and isalso
time consuming. Sometime, the coupling effects of different
hyperparameters will influence the performance of the network.

To solve this problem, particle swarm optimization (PSO) is
adopted in this study. PSO is a kind of multiple-parameter
optimization algorithm, which is designed by simulating the
foraging behavior of bird flock [31]. Assuming there is only one
optimal solution in a certain district D, the position and velocity of
m particles are initialized in this district. The position of particle
represents a candidate solution, and the velocity determines the
movement of the particle. The fitness of each particle could be
calculated after initialization, and the personal best position Pbest
and the global best position Gbest could be recorded. Then the
position and velocity of m particles could be updated according to
Fig. 14. Traditional featu
the Eqs. (11) and (12):

Vkþ1
id ¼ wVk

id þ c1r1ðPk
best � xkidÞ þ c2r2ðGk

best � xkidÞ ð11Þ

Xkþ1
id ¼ Xk

id þ Vkþ1
id ð12Þ

where Vkþ1
id is the velocity of the ith particle in the (k+1)th iteration,

Xk
id is the position of the ith particle in the kth iteration, w is inertia

factor, c1 and c2 are acceleration constants, r1 and r2 are the random
value within [0,1], d represents the dth dimension of the position
and velocity.

The fitness would be calculated again after updating the
position, and the personal best position Pbest and the global best
position Gbest are updated. If the maximum iteration is reached or
the position error is smaller than preset value, the current position
is the optimal solution. If fail to meet these two requirements,
recalculate the fitness and best position.

The optimization process of structure hyperparameters is
shown as Fig. 12. First, the number of particles m and the search
range D are set, and the position and velocity of the particle are

initialized in this range. All elements of Vk
id and Xk

id would be
rounded to the nearest integer. Each set of parameters correspond
to a particle, and the mean square error (MSE) of each training
res of TB2 bearing.



Fig. 15. Waveform entropy of TB2 bearing (ball fault).

Table 2
Bearing states binary classification samples.

Bearing Failure
time

Normal
sample

Severe fault
sample

Case 1
sample

Case 2
sample

TB1 2156 500-1000 1900-2100
p

TB2 2156 500-1000 1700-2100
p p

TB3 984 300-450 700-900
p
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process of network can be set as fitness function of a particle. Then
personal best position and global best position are updated
according to the fitness of all particles. And the velocity and
position of each particle can be updated by the new personal best
Fig. 16. Binary classifi

Fig. 17. Fault occurrence te
position and global best position. At last, optimal structure
hyperparameters can be obtained (Fig. 13).

5. Bearing fault experiment

5.1. Bearing degradation state classification

The experimental data is obtained from NSF I/UCRC for
Intelligent Maintenance Systems (IMS) [23]. The run-to-failure
data sets are described in Table 1. Each file of the data sets consists
of 20,480 points with a sampling rate of 20 kHz

Among these datasets, we select TB2 bearing for data analysis.
RMS and kurtosis of TB2 bearing are shown as Fig. 14. The
fluctuations and saltations of RMS make fault diagnosis more
cation samples.

sting result in case 1.



Table 3
Classification results of methods.

Indicators method Training accuracy (%) Test accuracy (%)

Waveform factor
Kurtosis

LSTM recurrent network 89.428 78.455

Waveform factor
Kurtosis
Waveform entropy

LSTM recurrent network 94.968 93.117

Waveform factor
Kurtosis
Waveform entropy

BP networks 81.434 78.407

Waveform factor
Kurtosis
Waveform entropy

SAE 90.630 86.774

Waveform factor
Kurtosis
Waveform entropy

CNN 93.175 92.037

Fig. 18. Fault occurrence testing result in case 2.
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difficult. The kurtosis is better than RMS, which indicates the fault
clearly. However, it increases sharply, which is not easy to track the
fault propagation.

The WFE of TB2 bearing run-to-failure data is shown as Fig. 15.
Compared with the previous indicators, the WFE shows a good
monotonicity, especially in the fault generation stage. The
indicator comparison of experimental data is consistent with that
of degradation simulation, which further confirms the effective-
ness of WFE as a degradation indicator.

5.1.1. Automatic detection of bearing fault occurrence
Vibration signals show only slight difference between normal

one before degradation stage and incipient fault. In order to predict
the bearing RUL, it is necessary to define the fault occurrence
during the running process. In this work, a binary classifier is
Fig. 19. Identified degradatio
constructed to prognosticate fault occurrence automatically. The
samples of normal state and severe fault state are selected for
training this classifier, while other samples of run-to-failure data
for testing. It means that, the classifier can predict the incipient
fault automatically according to the information learnt through
severe fault samples. The effectiveness and feasibility of this binary
classification are verified by cross-validation.

According to vibration signals, samples (500, 1000] of TB1
bearing, samples (500, 1000] of TB2 bearing and samples (300, 450]
of TB3 bearing are selected as normal samples, whereas samples
(1900, 2100] of TB1 bearing, samples (1700, 2100] of TB2 bearing and
samples (700, 900] of TB3 bearing are selected as severe fault
samples, which are listed in Table 2 and shown in Fig.16.

Case 1. In case1, only normal and severe fault samples of TB2
and TB3 are used for model training, while all bearing data are
n states of test bearings.



Fig. 20. PRONOSTIA test rig [33].

Table 4
The working condition of each bearing.

Working condition Rotation / rpm Load / N Training bearing Test bearing

C1 1800 4000 A1 A2 B1 B2 B3 B4 B5
C2 1650 4200 A3 A4 B6 B7 B8 B9 B10
C3 1500 5000 A5 A6 B11
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used for testing. Two output categories correspond to the
normal and fault possibility of test bearing. Possibility of
normality (PON) and possibility of faulty (POF) curve derived
from testing are shown in Fig. 17. For TB2 and TB3 bearing data
set, the faults are identified in time 1573 and time 603,
Fig. 21. The degradation proc
respectively. For untrained TB1 bearing, the fault is identified
in time 1816 (Fig. 18).

Case 2. In case2, only normal and severe fault samples of TB1
and TB2 are used for model training, while all bearing data are
ess of training bearings.



Fig. 22. waveform entropy of training bearings.

26 B. Zhang et al. / Computers in Industry 106 (2019) 14–29
used for testing. For bearing TB1 and TB2, the fault occurrences
are identified respectively in time 1789 and 1479. For untrained
TB3 bearing, the fault is identified in time 619.

Although training with different data sets leads to different
detection in these two cases, the experimental results are
acceptable. To balance the training difference, we take the mean
of two results as the final detection result, in other words, time
1802, 1526 and 611 are identified as fault occurrence point of the
three data sets. Compared to FFT or other artificial recognition, this
binary classifier needs no experts’ experiences and can effectively
identify the fault occurrence. For simplicity, the degradation
process after fault occurrence is then divided into ten equal stages
by time. This binary classification can be regarded as pre-training
of final bearing states identification.

5.1.2. Degradation states classification
The LSTM recurrent network is constructed in the TensorFlow

and keras framework, and PSO method is used for parameters
optimization. Three hidden layers are used and 150 nodes are
implemented in each hidden layer. The ‘adam’ optimizer with a
learning rate of 0.001 is applied, and the time step is 8. Totally 5218
samples are obtained after feature extraction and in this section,
Table 5
Fault occurrence identification samples.

Bearing Failure time / 10s Normal samples 

A1 2803 100-600 

A2 871 – 

A3 911 200-300 

A4 797 50-150 

A5 515 100-300 

A6 1637 500-600 
70% of the samples are applied for training while other samples are
employed for testing. For each fault state, 89 samples are utilized
for training while 38 samples for testing.

Back propagation (BP) network, Sparse auto-encoder (SAE) and
Convolutional Neural Network (CNN) are employed for compari-
son. Iterations of all networks are set to 300, and the ‘adam’

optimizer is also applied for these methods. The structure of BP
network is also set to three 150-nodes hidden layers. The structure
of SAE is also set to three hidden layers, and the nodes of these
three layers are set to 150, 100 and 50, respectively. The input data
with 8 time-step is reshape to a vector because SAE and BP cannot
process two-dimension data. The CNN applied here have two
convolution layers and two pooling layers. The number of
convolution kernel are set to 16 and 32, and the size of kernel is
set to 5.

Classification accuracy of different methods are shown in
Table 3. The combination of kurtosis and waveform factor obtains
an accuracy of 78.455%. Compared to previous work [23] (74.2%), it
comes to a better accuracy with only traditional features. The
classification accuracy markedly increases to 91.748% using
waveform entropy and the two traditional features, which
illustrates that the combination of both traditional features and
entropy indicators can better reflect the bearing degradation level.
Severe fault samples Identified fault occurrence
2500-2803 2174
820-871 784
860-911 805
750-797 723
470-515 446
1600-1637 1521



Fig. 23. The degradation state monitoring result of test bearings.
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Moreover, waveform entropy impressively brings an accuracy
improvement of 14% compared with only traditional features
(93.117%), which reveals the excellent degradation assessing ability
of waveform entropy. When using back propagation (BP) networks,
the training accuracy and testing accuracy were only 81.434% and
78.407%, respectively. SAE had a better performance than BP, but its
testing accuracy is no better than 87%. CNN can calculate the local
feature of the cover region of its convolution kernel, but its
performance is just close to and no better than proposed method.
LSTM showed better performance both in training and testing
compared with other three networks, which illustrates than LSTM
have stronger sequence data processing ability and bearing
degradation assessment ability.

The identified bearing degradation states are shown in Fig. 19.
As it can be observed, normal state and different fault states can be
distinctly recognized by LSTM recurrent network model.

5.2. Bearing health monitoring

The experimental data is obtained from IEEE PHM 2012
Prognostic Challenge, which including a training set A and a
testing set B. The vibration signals and temperature signals of 6
whole life bearings are contained in training set while signals of 11
bearings in testing sets. The test rig for bearing degradation
experiment is shown in Fig. 20. The bearing shaft is driven by an AC
motor, and the bearing pedestal is equipped with a unidirectional
vibration acceleration sensor in the vertical and horizontal
directions, respectively. In addition, there are holes in the bearing
pedestal to install temperature sensors near the outer ring of the
bearing. The sampling rate of vibration signals is 25.6 kHz. The
vibration data is collected per 10 s, and the sampling length is 0.1 s.
The sampling rate of temperature signals is 0.1 Hz. The working
condition of each bearing can be seen in Table 4.

Notably, the sampling rate of 25,600 Hz and the sampling
length of only 0.1 s make it difficult to analyze the frequency
domain indicators.

After denoising by sym4 wavelet, the whole degradation of
training bearings is showed in Fig. 21. The amplitude of vibration
presents an increasing trend, and the bearing is considered as
failure when the amplitude is over 20 m/s2

It can be observed from the time domain signals that bearings
under the first working condition have a gently degradation
process and a long degradation time. Although wavelet de-noising
helpfully removed the interference, the fluctuation still can be
observed, especially in bearing A2. As shown in Fig. 22, waveform
entropy of all training bearings perform a monotonous trend under
all three working conditions. The WFE holds its stationary state
until the bearing step into fault stage from normal stage. Even if the
vibration signals of the bearing A2 and A3 are affected by noise, the
WFE can avoid the saltus and still keep gradual increasing trend,
which is beneficial to the degradation prediction.

A binary classification recurrent network is also used to detect
the fault occurrence, and the training samples are selected as
Table 5. No normal samples are selected from bearing A2 because
these samples have big interference.

The identified fault occurrence of A1-A6 bearings are time
stamp 2174, 784, 805, 723, 446, and 1521, respectively. According to
Table 6
The monitoring life error of test bearings.

Bearing B1 B2 B3 B4 B

Actual life (10s) 2375 1428 2463 2448 22
Predicted life (10s) 1842 1108 1653 1656 22
Time error (10s) 533 320 810 792 2
Error (%) 22.4 22.4 32.9 32.4 1
the fault occurrence recognition, the degradation process is
divided into equal stages by time. Since degradation process of
these 6 bearings is relatively short, it is only divided into 5
degradation levels.

After labeling, six kind of bearing states can be obtained. When
testing the state of a new bearing, the probability of the six
categories of network output is extracted, and the degradation
index Deg is calculated by the following equation:

Deg ¼
X6

n¼1

pðy ¼ nÞ � ðn � 1Þ ð13Þ

where n is the serial number of degradation category, P is the
possibility of degradation level.

A hard alarm threshold of Deg is artificially set to 4.5 because
the Deg of degradation level is 5. When Deg is greater than 4.5, this
time is recorded as failure time. However, if the test results are less
than 4.5, the following nonlinear exponential degradation model is
applied to predict the failure time.

yt ¼ l1 � expðl2=tÞ ð14Þ
When applying the model, the zero point and the current Deg are
considered as the point of fitted curve, and the Deg recorded in
history would be used to fit the curve by least square method. In
order to reduce the computational load, if the last monitoring point
is Tk, the point with interval of 1/15*Tk between [2/3*Tk, Tk] are
selected to fit the curve.

The bearing health monitoring results are shown in Fig. 23, and
the Deg of most test bearings have a monotonous increasing trend.
According to the monitoring results, two degradation modes can
be identified. The first is slowly growing degradation trend like
bearing B1 while another is a rapid one with healing phenomenon
like bearing B3 and B4. Considering with the sampling rate of
25.6 kHz and sampling length of 0.1 s, the short signals may not
record the fault impact components especially when test bearings
have an inner-race fault. And with the development of fault, the
bearing performance may enter a repetition stage of “alleviation-
aggravation”. Hence, the monitored life curve presents an unstable
trend in these two bearings (B3 and B4).

The error of predicted failure time and real failure time can
be seen in Table 6. The predicted life of the five test bearings
(B1-B5) under the first working condition is within the actual
life, whereas the lowest error is 1.2%(B5) and the highest is 32.9%
(B3). And it can be seen, due to the complexity of B3 and B4
bearings working, it is hard to predict RUL of these bearings
accurately. In the second condition, most bearings’ RUL are
predicted with low error (lower than 1.6%), only the bearing B10
is not recognized effectively because its degradation process is
too short to witness the remarkable change of waveform
entropy. For bearing B11, working under the third condition,
the prediction error is 3.9%.

The experimental results show that the waveform entropy has a
good performance under different working conditions, but it has a
certain lag due to the window length. For most test bearings, LSTM
assessment model has ability to monitor the bearing degradation
and can provide guidance for bearing failure warning, but it may
not be able to reflect the rapid degradation process completely.
5 B6 B7 B8 B9 B10 B11

59 1955 751 2311 701 230 434
33 1983 763 2287 712 – 451
6 28 12 24 11 – 17
.2 1.4 1.6 1.0 1.6 – 3.9
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6. Conclusion

Bearing performance degradation assessment is crucial to
intelligent prognosis, and accurate RUL prediction can provide
effective maintenance policy and replacement guidance. In this
work, a novel degradation indicator is proposed, and a LSTM
recurrent network model is constructed for bearing degradation
assessment. Based on the bearing fault vibration response
mechanism, the nonlinear degradation signal model is constructed
for feature verification and selection. Experimental results
demonstrate that the proposed indicator can comprehensively
reflect the degradation degree and the LSTM-RNN assessment
model can effectively assess the bearing degradation states.
However, there are still some issues need to be considered. On
the one hand, the exponential degradation component which only
reflects the general degradation trend is impossible to simulate the
random mutation in the degradation process. On the other hand,
the degradation process is simply divided into different stages by
time, which might not reflect the real degradation process. These
problems will be studied further.
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