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Abstract

We analyse a N -dimensional anisotropic nonlinear Fokker–Planck equation by considering
stationary and time-dependent solutions. The stationary solutions are obtained for very general
situations, including those when the di usion coe7cients are spatial dependents. Time-dependent
solutions are found in the absence of external force and with constant di usion coe7cients.
When restricted to the bi-dimensional case, our investigation about time-dependent solutions
focuses on situations where the di usion coe7cient are Dx ˙ |x|−�x and Dy ˙ |y|−�y with
�x; �y ∈R. In general, we verify an anomalous behavior induced in a given direction due to the
other directions.
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1. Introduction

The existence of the anomalous di usion and its ubiquity has motivated the study
of nonlinear Fokker–Planck equations, e.g., 9t	 =D∇2	
. In particular, this equation
has been employed in many physical situations such as percolation of gases through
porous media (
¿ 2) [1], thin saturated regions in porous media (
=2) [2], a standard
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solid-on-solid model for surface growth (
 = 3) and thin liquid Glms spreading under
gravity (
=4) [3]. In this direction, it is important to understand the properties concern-
ing the nonlinear Fokker–Planck equation to characterize physical systems related to it.
In recent works, it has been analyzed in several situations, for instance, by considering
a linear external force [4–6], absorption term [7], spatial dependence in the di usion
coe7cient (i.e., D(x)˙ |x|−�) [8,9] and the external force with a di usion coe7cient
time-dependent [10]. In Ref. [11] the nonlinear Fokker–Planck equation was extended
by using fractional derivatives. The relation between the solutions of the porous media
equation and distribution of probability that emerges from the nonextensive statistics
has been investigated in Refs. [4–6]. Other aspects are analyzed in Ref. [12–14].
These investigations essentially focused the nonlinear Fokker–Planck equation in one

dimension or in N -dimension in an isotropic medium. However, there are situations that
are characterized by an anomalous di usion in anisotropic media such as a crystal with
randomly distributed topological defects [15], in neutron scattering study of hydrated
myoglobin [16], and a di usion on bi-dimensional percolation of anisotropic clusters
[17]. In this context, a careful analysis of the anisotropic case for the nonlinear Fokker–
Planck equation has not been performed. Thus, it is an open question how to extend the
above results for the nonlinear Fokker–Planck equation taking an anisotropic medium
into account. In this direction, we focus our attention on the following anisotropic
nonlinear Fokker–Planck equation:

9
9t 	( Jx; t) =

N∑
i; j=1

9
9xi

{
Dij

9
9xj

[	( Jx; t)]

}

−
N∑
i=1

9
9xi

[Fi( Jx; t)	( Jx; t)] ; (1)

where Jx = (x1; x2; : : : ; xN ), Fi( Jx; t) is an external force and Dij are the di usion coe7-
cients, which can be time and spatial dependent in general. A particular but important
case occurs when Fi is linear and Dij = Di|x|−�i�ij with Di and �i being constants.
Note also that the cases mentioned above [4–9,11,12] can essentially be obtained from
the unidimensional version of Eq. (1) by an adequate choice of Fi, Di, �i and 
.
In this work, we Grst investigate a stationary solution of Eq. (1) for the bi-

dimensional case with Dij = Di(xi)�ij. Then, an N -dimensional stationary solution of
Eq. (1) is obtained considering Dij as a nonsingular spatial dependent matrix. Af-
ter that, we start our analysis of time-dependent solutions for Eq. (1) by consider-
ing the bi-dimensional case without external force and �x = �y = 0. In this context,
the N -dimensional case is also investigated. To study time-dependent solution with
�x �= 0, �y �= 0, we return to the bi-dimensional case. In all cases, we emphasize that
the solutions are analytically obtained and the presence of the nonlinearity produces
an e ective coupling among the directions, in contrast with the usual Fokker–Planck
equation (
= 1).

2. Stationary solutions

The stationary solution for the anisotropic nonlinear Fokker–Planck equation in the
bi-dimensional case, when Dij=Di�ij, can be written as ∇· JJ=0 with Jx=−Dx9	
=9x+
Fx	 and Jy=−Dy9	
=9y+Fy	. Note that a constant JJ is a solution for the stationary
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equation ∇ · JJ = 0. Then, we consider this solution by accomplishing the boundary
conditions JJ (x → ∞; y → ∞) → 0, i.e., we investigate the case JJ = 0. At this point,
we suppose that JF=−∇V . Thus, 9	
=9x=−(	=Dx)9V=9x and 9	
=9y=−(	=Dy)9V=9y.
Therefore, the integrability condition for these two equations leads to

1
Dx

92V
9x9y − 1

D2
x

9V
9x

9Dx
9y =

1
Dy

92V
9x9y − 1

D2
y

9V
9y

9Dy
9x : (2)

If we restrict Eq. (2) for Dx=Dx(x) and Dy=Dy(y), it implies that V (x; y)=Vx(x)+
Vy(y) since Dx �= 0, Dy �= 0 and Dx �= Dy in general. Within this potential energy, we
verify that the stationary solution under consideration is given by

	(x; y) = 	0 expq

[
− 	q−1

0

2 − q
(∫ x

0

1
Dx

dVx
dx′

dx′ +
∫ y

0

1
Dy

dVy
dy′ dy

′
)]

; (3)

where 	0 = 	(0; 0) and q = 2 − 
. In particular, if Dx and Dy are constants, we have
	(x; y) = 	0 expq [ − �xVx(x) − �yVy(y)], where �i = 	

q−1
0 =[(2 − q)Di] with i = x; y.

The expq [x] (expq [x] ≡ [1 + (1 − q)x]1=(1−q) if 1 + (1 − q)x¿ 0 and expq [x] ≡ 0
if 1 + (1 − q)x¡ 0) is the generalization of the exponential (q-exponential) related
to the Tsallis formalism [18,19]. In fact, it is simple to verify that the q-exponential
arises when the Tsallis entropy Sq = {1 − ∫ ∫

dx dy[	(x; y)]q}=(q − 1) is maximized
subject to adequate constraints, for instance, 〈〈V (x)〉〉 = 〈〈V (y)〉〉 = cte with 〈〈O〉〉 ≡
[
∫ ∫

dx dy[	(x; y)]qO]=[
∫ ∫

dx dy[	(x; y)]q] and
∫ ∫

dx dy	(x; y) = 1.
In the linear case, 
 = 1, the previous 	(x; y) decouples in a product of a func-

tion of x times another function of y. More precisely, 	(x; y) = 	x(x)	y(y), where
	x(x) (	y(y)) is proportional to the reduced distribution for x (y). Consequently, the
mean value of any function of x (y) is not a ected by the dynamics involving the
y (x) variable. However, this scenario is drastically changed when 
 �= 1, in con-
trast with the separability property of the potential energy that is not a ected by the
nonlinearity of the di usion equation. To illustrate that the mean value for an arbi-
trary function of x contains a memory of the dynamics related to the y variable when

 �= 1, we consider the potential energy V (x; y) = kx|x|n + ky|y|m with kx, ky, Dx, and
Dy being constants. In this case, when we integrate 	(x; y) over y, we obtain the re-
duced distribution 	(x)=

∫
dy 	(x; y; t)=	′

0 expq′ [�′
x|x|n] [20], where 	′

0 is a constant,
q′ = (1− q+mq)=(1− q+m), �′

x = [(m+ 1− q)=m] �x, and the integral is deGned if
q¡m+1. From this result we verify that the mean value of a generic function O(x),
〈O(x)〉= ∫

dx 	(x)O(x)=
∫
dx 	(x), does not depend on the degree of anisotropy when

Vy(y) = ky|y|m. However, q′ and �′
x depend on the external force in the y direction.

In addition, if we have Di =Di|xi|�i with Di = cte, 〈O(x)〉 will contain, in general, a
dependence on �y, indicating the presence of a residual information of the degree of
anisotropy. These facts can be interpreted as a memory induced by the nonlinearity of
the di usion equation (1).
For the N -dimensional case, if we suppose that Fi = −9V=9xi, Dij = Di(xi)�ij in

Eq. (1) and employ the previous analysis, we can verify that V ( Jx) =
∑N

i=1 Vi(xi)
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and

	( Jx) = 	0 expq

[
− 	q−1

0

2 − q
N∑
i=1

∫ x

0

1
Di

dVx′i
dx′i

dx′i

]
: (4)

On the other hand, when we have mixed derivatives, the generalization of this result
for the N -dimensional case is not so immediate. In order to circumvent this di7culty,
we employ another line of reasoning. First, we note that Eq. (1) can be written as the
continuity equation 9	=9t+

∑N
i=1 9Ji=9xi=0 with Ji=−∑N

j=1 Dij9	
=9xj+Fi	. Thus,
a stationary solution obeys the equation

∑N
i=1 9Ji=9xi = 0, where Ji = 0 is the solution

to be investigated. Consequently, we have

Fi = 

N∑
j=1

Dij
9
9xj

(
	
−1 − 1

− 1

)
: (5)

Note that the constant term −1=(
− 1) was introduced in order to recover ln 	 when

 → 1.
Now, supposing that the matrix Dij is invertible and deGning Fi ≡

∑N
j=1 (D

−1)ijFj,
Eq. (5) leads to Fi = [
=(
− 1)]9(	
−1 − 1)=9xi. Therefore, the integrability condition
related to Fi, 9Fi=9xj = 9Fj=9xi, implies that Fi =−9�=9xi, which is in general less
restrictive than Fi = −9V=9xi. From the last two expressions for Fi we verify that

	( Jx) = 	0 expq

[
− 	q−1

0

2 − q �( Jx)
]
; (6)

with q = 2 − 
, �(0) = 0, and 	0 = 	(0). To exemplify our last achievement we
show that it contains the result (4) as a particular case if we suppose Dij = Di(xi)�ij
and Fi(xi) = −dVi(xi)=dxi. From the deGnition of Fi we have 9�=9xi = (1=Di)dVi=dxi
implying �( Jx) =

∑N
i=1

∫ xi
0 (1=Di)(dVi=dx

′
i) dx

′
i . Thus, 	( Jx) reduces to Eq. (4) that nat-

urally recovers Eq. (3) for N = 2.

3. Time-dependent solutions

Now we start our discussion about the time-dependent solutions for Eq. (1) by
considering the free case with N = 2 and Dij =Di�ij (Di = cte). In this direction and
considering an extension of the unidimensional case, we employ the ansatz

	(x; y; t) = expq [ − �x(t)x2 − �y(t)y2]=Z(t) ; (7)

with q = 2 − 
, which recovers the usual Gaussian structure in the q → 1 limit. Note
that this ansatz is a kind of q-Zubarev-like nonequilibrium operator. By substituting
Eq. (7) into Eq. (1), we obtain

dZ
dt

= 2
Z2−
(Dx�x +Dy�y);
d
dt

1
�x

= 4
DxZ1−
;
d
dt

1
�y

= 4
DyZ1−
 : (8)
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Since, in the unidimensional case, there is only one �(t) with �(t) ˙ t� (or �(t) ˙
(t+ t0)�) [4–6,8,9], we are motivated to try �x(t)=Bx(t+ t0)−�x , �y(t)=By(t+ t0)−�y
and Z(t) = Z(t + t0)�, where Bx, By, Z, t0, �x, �y, and � are the constants to be
obtained. In this way, Eq. (8) leads to �x(t) =Bx(t + t0)−�, �y(t) =By(t + t0)−�, and
Z(t) =Z(t + t0)� with �= 1=
 and DxBx =DyBy =Z
−1=4
2. Thus,

	(x; y; t) =
	̃0

(t + t0)�
expq

[
− 	̃0q−1

(2 − q)2
(

x2

4Dx(t + t0)�
+

y2

4Dy(t + t0)�

)]
; (9)

where q = 2 − 
, 	̃0 = 1=Z and t0 are positive constants. This result can be directly
extended for the N -dimensional case when Dij is diagonal and does not depend on t
and Jx. In fact, by considering the diagonal form for Dij (Dij =Di�ij with Di ¿ 0) and
Fi = 0, Eq. (1) reads 9	=9t =

∑N
i=1 Di92	
=9x2i , whose generalized Gaussian solution

is 	( Jx; t) = [	̃0=(t + t0)�N=2] expq{−(	̃0q−1=(2 − q)2)∑N
i=1 x

2
i =(Di(t + t0)

�)}.
Let us now focus on the free case N = 2 with Dx = Dx|x|−�x and Dy = Dy|y|−�y

taking �x �= 0 and �y �= 0 into account. By following the approach employed above,
we can verify that

	(x; y; t) = expq [ − �x(t)|x|2+�x − �y(t)|y|2+�y ]=Z(t) (10)

is a solution for Eq. (1) with q=2− 
 and �x(t), �y(t), and Z(t) obeying a system of
equations like (8). From these equations we can deduce the relations Z(t) [�x(t)]1=(2+�x)

[�y(t)]1=(2+�y) =C0 and 1=[(2+�x)2Dx�x(t)]=1=[(2+�y)2Dy�y(t)]+C1, where C0 and
C1 are constants. By using the last relations and considering C1 = 0, we verify that

�x(t) = {
(2 + �x)2DxC1−
t=�′}−�′
; (11)

where C = C0{(2 + �x)2Dx=[(2 + �y)2Dy]}−1=(2+�x) and

�′ =
(2 + �x)(2 + �y)

(2 + �x)(2 + �y) + (4 + �x + �y)(
− 1)
: (12)

Note that this �x(t) recovers the Grst one when �x = �y = 0 and t0 = 0. From these
results, a complete information is achieved for 〈x2〉 and 〈y2〉. In particular, we have
that 〈x2〉 ˙ �−2=(2+�x)

x (t) and 〈y2〉 ˙ �−2=(2+�y)
y (t). These expressions for 〈x2〉 and 〈y2〉

indicate that there is a coupling between x and y directions since �x (�y) depends on
Dx, Dy, �x, and �y.

4. Summary and conclusions

In summary, we have worked out the nonlinear Fokker–Planck equation (1) in sev-
eral situations by incorporating an anisotropic dependence in the di usion coe7cients
and also in the external force. We Grst obtained stationary solutions in a very general
context, including situations where the di usion coe7cients are spatial dependent. After
that, we considered the time-dependent solutions in the absence of external force. From
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our solutions we veriGed that the nonlinearity (
 �= 1) produces a kind of memory
in the system since the reduced distribution for a given direction contains parameters
related to the others. This memory e ect, for 〈x2〉, is not enough to identify the degree
of anisotropy when the di usion coe7cients are constant, but is only for the presence
of other dimensions. In contrast, when the di usion coe7cients are spatial dependent,
the solutions contain more information about the degree of anisotropy. In this context,
we remark that the solutions found here can not be written as 	(x; y; t)=	x(x; t)	y(y; t),
as in the usual case, due to the nonlinearity of equation under investigation. In addition,
it must be stressed that this conclusion refers to the cases whose di usion coe7cients
Dij do not exhibit mixed terms, i.e., Dij =0 if i �= j. Thus, the memory e ect reported
in this work is only due to the nonlinearity and not from the mixed derivative terms
that occur when Dij �= 0 if i �= j.

Acknowledgements

We thank CNPq and CAPES (Brazilian Agencies) for Gnancial support.

References

[1] M. Muskat, The Flow of Homogeneous Fluid Through Porous Media, McGraw-Hill, New York, 1937.
[2] P.Y. Polubarinova-Kochina, Theory of Ground Water Movement, Princeton University Press, Princeton,

1962.
[3] J. Buckmaster, J. Fluid Mech. 81 (1984) 735.
[4] A.R. Plastino, A. Plastino, Physica A 222 (1995) 347.
[5] C. Tsallis, D.J. Bukman, Phys. Rev. E 54 (1996) R2197.
[6] L. Borland, Phys. Rev. E 57 (1998) 6634.
[7] G. Drazer, H.S. Wio, C. Tsallis, Phys. Rev. E 61 (2000) 1417.
[8] L.C. Malacarne, I.T. Pedron, R.S. Mendes, E.K. Lenzi, Phys. Rev. E 63 (2001) 30101R.
[9] I.T. Pedron, R.S. Mendes, L.C. Malacarne, E.K. Lenzi, Phys. Rev. E 65 (2002) 41108.
[10] L.C. Malacarne, R.S. Mendes, I.T. Pedron, E.K. Lenzi, Phys. Rev. E 65 (2002) 52101.
[11] E.K. Lenzi, R.S. Mendes, L.C. Malacarne, I.T. Pedron, Physica A 319 (2003) 245.
[12] A. Compte, D. Jou, Y. Katayama, J. Phys. A: Math. Gen. 29 (1996) 4321.
[13] L. Borland, F. Pennini, A.R. Plastino, A. Plastino, Eur. Phys. J. B 12 (1999) 285.
[14] T.D. Frank, J. Math. Phys. 43 (2002) 344.
[15] R. Bausch, R. Schmitz, L.A. Turski, Z. Phys. B 97 (1995) 171.
[16] M. Settles, W. Doster, Faraday Discussions 103 (1996) 269.
[17] R. Muralidhar, D.J. Jacobs, D. Ramkrishna, H. Nakanishi, Phys. Rev. A 43 (1991) 6503.
[18] C. Tsallis, J. Statist. Phys. 52 (1988) 479.
[19] C. Tsallis, R.S. Mendes, A.R. Plastino, Physica A 261 (1998) 534.
[20] R.S. Mendes, C. Tsallis, Phys. Lett. A 285 (2001) 273.


	Anomalous diffusion and anisotropic nonlinear Fokker--Planck equation
	Introduction
	Stationary solutions
	Time-dependent solutions
	Summary and conclusions
	Acknowledgements
	References


