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Abstract 

Percolation theory deals with the formation of clusters in disordered media. At the percolation 
threshold for the first time an infinite cluster appears. However, research of the last years showed 
that at this phase transition some old ideas were wrong: There can also be two or three clusters 
spanning from top to bottom, even in large two-dimensional lattices; and the probability of 
spanning is not given by simple real-space renormalization ideas. 

1. Introduction 

Percolation [ 1 ] is more than half  a century old, and thousands o f  papers as well as 

several books were written about it. Thus, one should expect that progress would occur 

mostly in applications [2] while the basic foundations are no longer in flux. Here, we 

review recent work of  others which changed widely held concepts on the number of  

percolating clusters and their description by simple renormalization group techniques. 

In d-dimensional random site percolation, each of  the L d sites of  a large lattice 

is either randomly occupied, with probability p,  or empty, with probability 1 - p. 
A cluster is a group of  neighboring occupied sites; it is spanning or percolating if 

it connects the top and the bottom of  the lattice. Usually, we are interested in the 
thermodynamic limit L ~ c~ when also the spanning clusters must become infinitely 

large. At low p there are mostly isolated sites and a few pairs and other small clusters; 

for p near unity most o f  the occupied sites form one infinite cluster; and thus some 
intermediate percolation threshold pc is the phase transition between no and one infinite 
cluster. Some Pc values are known exactly, like ½ in the triangular lattice, while others 
are known only numerically, like 0.592746... in the square lattice [3]. A mathematical 
theorem claimed that there can never be two or three infinite clusters coexisting with 

each other [4]; their number should be zero, one, or infinite. 
This phase transition is o f  second order ("continuous") and should thus be described 

by renormalization group theories similar to thermal critical phenomena. Particularly 
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successful was the cell-to-site transformation [5] where the L x L lattice is divided 
into many cells, and the whole b x b cell, which percolates with probability R(p),  is 
renormalized into a single site with occupation probability pt = R ( p ) .  The fixed point 

p ~ = p  of  this cell-to-site renormalization then is the percolation threshold, 

R(pc)= p, 

at least for sufficiently large b. 

What was wrong with these ideas? Today it is believed [6] that with a low probability 

we may also have two or more spanning clusters at Pc (though only one above pc)  
even on infinite square lattices, that R(pe) is not [4] equal to pc and is only of  limited 
universality. But Monte-Carlo estimates based on wrong ideas are still correct. And 
since for infinite lattices the problems occur only at p = Pc, they by definition do not 
affect series expansions in powers of  p or 1 - p. 

2. Coexistence of "infinite" clusters 

In two dimensions, an infinite system of  east-west  streets cannot coexist with one of  

north-south streets without some crossing points (bridges use already a third dimen- 
sion.) Once streets cross each other, they are part o f  the same cluster in the definition of  

percolation theory. Thus, we cannot have one infinite cluster spanning from left to right 
coexisting with another one spanning from top to bottom, in two dimensions. In three 
and more dimensions, this is topologically possible, though, in general, the probability 
for it to happen goes to zero if the lattice size goes to infinity. With probability going 
to one, however, we have at intermediate concentrations p,  like 0.31 < p < 0.69 on 
the simple cubic lattice with nearest-neighbor interactions, two interpenetrating infinite 

networks of  occupied and of  empty sites. All this is well known and not controversial. 
Our question here is: Can there be two (or more) clusters o f  occupied sites, which 
both span the two- or three-dimensional lattice from top to bottom, even if the lattice 
size goes to infinity? 

Because of  the above theorem [4], and because computer pictures usually show at 
most one spanning cluster, many people believed the answer is no. This view was 
enforced when de Arcangelis [7] published "Multiplicity of  infinite clusters in perco- 
lation above six dimensions", finding an infinite number of  spanning clusters in seven 
dimensions, as predicted by Coniglio [8]. Thus, the possibility of  infinitely many in- 
finite clusters contained in the above theorem [4] was confirmed, but restricted to 
high dimensions; in two and three dimensions only one or no infinite cluster seemed 
possible. 

However, independent of  these numerical tests, a new theorem on the "Uniqueness of  
the infinite cluster ... for ... percolation" was published [9] around the same time; it was 
supported by later publications [ 10] ignoring Ref. [7]. Apparently, now the possibility 
of  infinitely many infinite clusters was excluded mathematically. These new theorems 
were ignored by computer simulators. This separate development continued, at least 
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for this author, up to an interdisciplinary workshop in June 1996 at the Technion in 
Israel; there I leffrned from the overview talk of J.E. Steif of the uniqueness claim. My 
protest on the basis of Refs. [7,8] found the reply that infinite clusters here were meant 
to cover a finite fraction of the whole lattice. Indeed, such a finite density is required 
in the uniqueness theorem of Ref. [9] while the infinitely many spanning clusters in 
seven dimensions were found right at the percolation threshold. At p - - P c ,  however, 
the largest clusters are "fractal" and have zero density, making the theorem of Ref. [9] 
not applicable. So we seemed to settle on zero or one spanning cluster, with only high 
dimensions fight at Pc being an exception of little practical relevance. 

But then we learned from Aizenman [6] that also in two and three dimensions more 
than one spanning cluster should be possible. Indeed, computer simulations of Hu and 
Lin [11] found many spanning clusters at p =  Pc in long strips, and for quadratic 
or (hyper-) cubic shapes, Sen [12] found a small but finite probability in two-five 
dimensions t~ have two spanning clusters fight at the percolation threshold; the one for 
three coexisting spanning clusters is even lower. Details depend on how the threshold is 
defined for a finite lattice, and the asymptotic decay law (Gaussian or other exponential) 
of the probability to have many spanning clusters is numerically not clear. Shchur and 
Kosyakov [12] confirmed this coexistence of spanning clusters in two dimensions. 
(Actually already de Arcangelis [7] published data showing more than one spanning 
cluster in five dimensions but explained that as a finite-size effect; her boss at that time 
and the referee of her paper must have been really stupid.) 

So it seems one has to distinguish [6] between infinite clusters and spanning clusters 
such that uniqueness theorems are valid only for the first, while of the second we may 
have at p = Pc several in two-five dimensions, and infinitely many in more than six 
dimensions. Sloppy definitions of infinity, while common in computational physics, are 
dangerous in theorems [4,13]. These problems, caused by the fractality of large critical 
clusters, appear only at the threshold: 

For large enough lattices in the form o f  a square or (hyper-)cube, below Pc we 

have no spanning cluster and no cluster covering a positive fraction o f  the whole 

lattice, while above Pc the unique spanning cluster contains a finite fraction o f  the 
whole lattice. At  Pc, one or more spanning clusters are possible, o f  which none has 
a positive density. 

One difference at p =  Pc between the spanning cluster and the largest cluster is 
their identity. Imagine we want to evaluate some complicated property of the "infinite" 
cluster, like its electrical conductivity, and the lattice fills the whole universe; or com- 
putationally, it is stored on a huge and slow hard disk. There is a largest cluster of 
occupied sites (now called the infinite network) on this disk and we have marked it 
somehow. Now to evaluate the conductivity of a finite section of L d sites in the center 
of the whole lattice, we get this section into the fast main memory of our workstation 
or PC. And then we increase L step by step to extrapolate to the usual L---, oo limit, 
keeping the same site at the center of the increasingly large sections. In this procedure, 
sites which belong to the infinite network in the smaller section also belong to it in 
the larger section; the infinite network keeps its identity. Spanning clusters at p = Pc, 
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however, are volatile fractals [14]; sites which were not part of  the spanning cluster for 

the smaller section may be part of  it for the larger section, and the other way around. 
Thus, spanning clusters do not keep their identity as L increases. An infinite network 

can be thought to exist even before the L d sites are looked at; a spanning cluster is 

directly linked to L. 
(Of  course, also the infinite network becomes volatile if we redefine it for every 

different L as the largest cluster o f  this finite section. And generally the definition 
of  an infinite network as the largest cluster is problematic since also below Pc it 

leads to the existence of  an infinite network with a mass increasing asymptotically as 
log(L). It is not easy to define [6] infinite clusters at Pc different from spanning clus- 

ters; perhaps [6] for infinite clusters we first let L--+ ~ above Pc and then p --+ Pc,÷ 
while for fractal spanning clusters we take first p = Pc and then let L--+ ~ .  The first 

choice corresponds to 1 ~ ¢ ,~L and the second to 1 ~ L , ~  3, where ~ is the bulk con- 
nectivity length and diverges at Pc. From now on we deal with spanning clusters 

only. ) 

3. Spanning probability 

Now we ask: What is the probability R(p) that a lattice with L d sites percolates 
in the sense of  having at least one cluster spanning from top to bottom? For large 

enough lattices, R(p < p c ) = 0  and R(p > p c ) =  l. Finite-size scaling theory predicts 
and computer simulation confirms since more than two decades [1] that in a small 
transition region A p c x  L-1/v the spanning probability moves from close to zero towards 
close to one. Here, v is the correlation length exponent for the typical cluster radius and 

4 in two dimensions. One may define a size-dependent pc(L) by the condition that is 
1 the spanning probability should be 50%: R(pc(L))= ~. But small-cell renormalization 

theory [5,1] traditionally determines the critical point as a fixed point: R(pc)= Pc. I f  
we insert the bulk threshold value Pc, does this equation become valid for large enough 

cells? 
It does not. Ziff [3] showed numerically that in a special square lattice case R(pc) 

is ½ and different from 0.592746. More generally, it differs from Pc (and also from ½) 
in three-six dimensions [15,16] and becomes unity in seven [6,17]. Actually, it was 
seen [18] before Ref. [3] that R(pc) on the square lattice differs from 0.593, but 
these authors did not ring the alarm bell with respect to simple renormalization group 
techniques [5]. Lack of  communication across different fields of  percolation theory 

again hampered progress. 
Does this mean that all the numerical work based on the now wrong idea R ( p c ) =  Pc 

were wrong? I have not yet found a single estimate which needs to be revised. The 
reason is that R(p) for L ~ cxD jumps from zero to one. Thus, any constant C between 
zero and one can be used to define a size-dependent pc(L) through R(p =-pc(L))= C; 
for large enough lattices this pc(L) converges to the proper bulk threshold [19]. 
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Also, in ancient times [1] it was assumed that the derivative dR(p)~@ approaches 

for large lattices a Gaussian; this derivative gives the probability that a lattice starts 

to percolate at a concentration p. For a fixed sequence of random numbers there is a 
well-defined onset of  percolation when we increase p, and it is plausible that this onset 
follows a normal distribution for large systems. The width 0-, defined as the standard 

deviation of this distribution of the L-dependent thresholds, 

0.2 2 2 
= ( p c ) L  - ( p c ) L ,  

then varies as L -1Iv and is proportional to the shift (Pc)L - {Pc)~. This is a convenient 

numerical tool to determine the bulk Pc by extrapolation without assuming any critical 
exponent v. Again, the (unprecisely defined) convergence to a Gaussian turned out 

to be bad when tested numerically: The distribution has a finite skewness (third-order 

cumulant) ((Pc-(Pc))3)/((Pc- (Pc))2) 3/2 which shows no intention to vanish for large 
lattices [20,21]. Also in this case, mathematical theorems were found independently of 
the simulations, but now the contact between the two methods was established much 

faster [20] and there is full agreement: Gaussians are out. And again, the determination 
of thresholds and exponents v by the Gaussian assumption did not give wrong results, 
since 0. ~x L -t/v remains valid and only the proportionality factor is influenced by the 

deviations from a Gaussian. 
The reason why the distribution of thresholds in finite system does not follow 

the usual central limit theorem and its Gaussian distribution is [22] that the prop- 

erty of  spanning is a collaborative effort of the whole lattice and not the sum 
of more or less independent contributions from smaller parts of the whole lattice. 

Therefore, the number of  sites in the just-spanning cluster is not a self-averaging 

quantity with relative fluctuations vanishing for L ~ o o .  That fact was known 
numerically since a long time but its indication against a Gaussian distribution was 
overlooked. 

If  neither R(pc) is equal to Pc nor its derivative dR/dp a good Gaussian, at least 
is R(pc) universal [3,21] i.e. independent of  many details but dependent on dimen- 
sionality d? Yes, but only in a limited way [16,23]. As pointed out before for ther- 
mal critical phenomena [24], the universal finite-size scaling functions depend also 
on the boundary conditions and the shape of the sample, and this is true [16,23] 

also for R(pc). Even the choice of the algorithm used may play a role in such stud- 
ies right at the critical point [25]. On the other hand, for square- and triangular-site 
percolation, R(pc) could not be distinguished numerically; and also site and bond 

percolation on the simple cubic lattice lead to the same R(pc) within error 
bars. Some universality seems to persist [26] at the threshold, but not too 
much. 

By the way, if you prefer the simple but wrong renormalization picture of Ref. [5] 
over the more formal one of Ref. [21], its validity can be restored: Just replace cell- 
to-site renormalization (from L to 1) by cell-to-cell renormalization (from L to L/2). 
According to Hu et al. [27], R(pc) for lattice size L agrees with R(pc) for lattice size 
L/2, provided L is large enough. 
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4. Lessons learned? 

From the cited literature, in particular Refs. [7,12,16,20] the reader gets a more 

detailed impression of  past errors and present progress, and from Ref. [6], we learn 

the difficulties of  defining infinite clusters properly. 

It pays off to read "enemy" literature: i f  simulators would have read more theorems 

o f  mathematical physicists, and vice versa, progress on the number of  spanning clusters 

would have been faster. With Gaussian versus non-Gaussian threshold distributions [20], 

contact between mathematicians and simulators was (by luck?) established much faster, 

and the problem was (hopefully) clarified in a much shorter time. These percolation 

problems are not the only cases where one s ide 's  research was triggered by the other 

s ide 's  work. 

It also pays off to check widespread assumptions and supposedly exact theorems if  

one cannot find numerical evidence for them in the literature. While in most cases one 

confirms the expectations, one may also find surprising discrepancies, i f  for example 

the theorems were not applicable, misunderstood, unclear, or based on very slow con- 

vergence. Of  course, computer simulations can also be wrong for similar reasons, and 

important or controversial results should be rechecked. 

Finally, one should be cautious in declaring a field nearly finished. We should have 

learned from the Hitchcock movie "The Trouble With Harry" that dead bodies may 

turn up again and again. To my surprise, percolation theory is not dead. 
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