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Abstract 

The renormalization in real space of systems with nonlocal degrees of freedom is discussed 
and reviewed for the percolation model, for which the degrees of freedom, the clusters, are 
nonlocal and span all ranges in the system. Previous attempts, including recent ones, are 
critically examined and shown to lack a theoretical basis; in particular, they do not consider the 
partition function. It is demonstrated that, in contrast to the case of local degrees of freedom, all 
ranges of the degrees of freedom must be considered when eliminating nonlocal degrees of 
freedom at short distances. New couplings are naturally generated, and lead to a mapping 
between clusters in the original and renormalized systems, and thus to the renormalization- 
group equations. Remaining questions are discussed. 
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1. Introduction 

The renormalization-group theory of phase transitions was originally developed 
I l l  to solve problems with infinitely many degrees of freedom, which exhibit fluctu- 
ations over infinitely many scales. Typical of these problems is that of fluids and 
magnets at a critical point, at which thermal fluctuations occur over all scales of 
length. In the case of a magnet, for example, the local degrees of freedom are the spins 
attached to the sites of a lattice, which interact with each other by typically short- 
ranged forces. 

The strategy of renormalization-group theory is to evaluate the free energy in steps, 
integrating out the fluctuations step by step, starting with fluctuations on the smallest 
scale of length (the atomic scale) and successively treating the fluctuations on increas- 
ingly larger scales of length, until fluctuations on all scales of length have been dealt 
with. The problem was originally solved in momentum space for continuous spins, 
and since then these original methods have been applied to determine the critical 
behavior of numerous models of phase transitions with local degrees of freedom [2]. 
For models with local degrees of freedom which are discrete rather than continuous, 
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renormalization-group methods were developed in real space and applied successfully 
to the two-dimensional Ising model of a uniaxial magnet [3a, b]. 

Probably the simplest system with nonlocal degrees of freedom which displays 
a critical phase transition is the percolation model. In its site version, the sites of 
a lattice are, respectively, occupied or empty with probability p or 1 - p, independent- 
ly of each other. Occupied sites which are nearest neighbors are grouped into clusters. 
For small values of p, only finite clusters are present in the infinite lattice; the 
percolation transition occurs at a critical value of p, Pc, at which an infinite cluster first 
appears in the system. For  p > Pc, there is, with certainty, an infinite cluster in the 
system. 

The cluster observables are calculated from a generating function or cluster size 
distribution, equivalent to the free energy of a magnetic system in the presence of an 
external magnetic field 

f (p,  h) = ~ ~ 1/lTlAb.r.l¢~:. I pM(1 - p)leTI e-hJ:'l, (1) 
171 I~1 

where Al~l,l(~l is the number of clusters of size [7] and perimeter ]c~?[ containing an 
arbitrary fixed site, and h is the external field. The external field is represented by an 
external site independently connected by a bond to each lattice site in a random way, 
a bond being present with probability 1 - e -h and absent with probability e -h. The 
functionf(p, h), according to whether h is zero or not, represents the average number 
of clusters per site in the absence or presence of the external field h. 

From the free energy given by (1), it is seen that the degrees of freedom over which 

we must sum are by essence nonlocal, being the clusters of size [71 and perimeter I0~[ 
containing an arbitrary fixed site. 

2. Nonlocal versus local degrees of freedom 

To understand the origin of the difficulties associated with the renormalization of 
nonlocal degrees of freedom, it is useful to recall how one is able to renormalize in real 
space local degrees of freedom such as those of the Ising model. 

The basic relation underlying the method of Niemeijer and van Leeuwen [3a] is 

e ''(s') = ~ e H(~''~) , (2) 
a 

which expresses the mapping of the Hamiltonian of an Ising model to that of a new 
Ising model in which the spins are grouped into cells and a spin degree of freedom s' is 
attached to each cell; H(s', ~) is the Hamiltonian H(s) of the site system where the site 
spin variables s are expressed in terms of the new variables s' and a, and H'(s') is the 
Hamiltonian of the cell system. It is readily seen by summing both of its sides over s' 
that relation (2) satisfies the fundamental requirement of renormalization-group 
theory [4] that the free energy be conserved. 
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All degrees of freedom in both the site and cell systems, namely s, a and s', are local 

degrees of freedom attached to a site or to a cell, and the renormalization-group 
equation (2) is obtained by partially summing over these local degrees of freedom in 
the original system. 

In contrast to this case, due to the nonlocal character of the degrees of freedom of 
the percolation model, it is not possible to perform, as one does for local degrees of 
freedom such as those of the Ising model, a summation over degrees of freedom at 
short distance in the original system and obtain, even in principle, an accurate 
renormalization-group equation of the type of (2). 

If one sums nonlocal degrees of freedom over short ranges, without taking into 
account the fact that the degrees of freedom span all ranges, one is led to a renor- 
malized cluster probability distribution of a given cluster which contains only partial 
information about the system and not, as in the case of the Ising model, to the 
Boltzmann distribution. Such an incorrect procedure will obviously be dependent on 
the structure of the lattice, and the topological structure of the clusters will not be 
preserved upon renormalization, so that the free-energy conservation requirement 
will be violated as well. 

It is a fundamental property of renormalization-group theory [1] that new coup- 
lings are naturally generated. That additional coupling constants must necessarily be 
generated in a renormalization-group transformation in fact infinitely many, at 
the thermodynamic limit - can be seen from an elementary physical argument. 
Consider, indeed, two systems which are identical up to their sizes. Clearly, their 
partition functions will differ and so will their free energies, the later by a factor equal 
to the size ratio (extensivity). Consequently, the only way the partition functions 
(free energies) of both systems can be made invariant, i.e., be the same, is by adding 
new coupling constants. Exceptions to this general rule only occur in very special 
cases, such as the one-dimensional Ising model with nearest-neighbor couplings, 
which can be exactly renormalized by modifying a single coupling, without adding 

new ones [4]. 
Previous attempts [5] to renormalize the percolation model in real space, together 

with their numerous applications to scientific and engineering problems exhibiting 
percolative behavior [6], lack a theoretical basis. This is because instead of consider- 
ing the partition function and summing over its degrees of freedom [1], and conse- 
quently deriving the appropriate renormalization-group equations for the coupling 
constants, these schemes directly focus on the coupling constants - usually one, 
sometimes two in an arbitrary fashion, and rescale them in an ad hoc way. It has 
even been said by authors of these previous attempts that since one could do well with 
a single coupling constant, why bother with additional ones, as they only complicate 
matters! 

The same features of earlier schemes characterize the "large-cell' and the recent 
"cell-to-cell" renormalization-group transformations, which do not consider the 
partition function, and violate basic principles by postulating a renormalization- 
group relation involving a single coupling [5h,i]. 
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Fig. 1. A disconnected configuration, which does not define a cluster and thus does not contribute as such 
to the free energy given by Eq. (1), although it apparently "'renormalizes" to a cluster, since cells 1 and 2 are 
occupied and nearest neighbors. 

Restricting onself to taking only a single coupling constant into account [5] is 
tantamount to making Kadanoff's assumption [7] of nearest-neighbor coupling in 
the Ising model, without reference to Wilson's subsequent discovery [1,2] that 
additional couplings must be present in the renormalized system. 

While the necessity of introducing new couplings when renormalizing the percola- 
tion model has recently been briefly mentioned [8a], in particular, to correct incon- 
sistent predictions of renormalization-group transformations based on a single coup- 
ling [-8b], no method has been developed for constructing appropriate renormaliz- 
ation-group equations. 

Heuristic arguments commonly given for the necessity of additional couplings are 
misleading. For  example, Fig. 20(a) of Ref. [9 p, 80], shows a configuration of two 
clusters in the original system, which "renormalize" to a single cluster. A similar 
configuration is shown here in Fig. 1 (cell occupancy is defined by a minimum of 
three sites being occupied). These examples are not appropriate, because such 
configurations are not clusters and thus do not contribute to the partition function 
(free energy of Eq. (1)) of the system. 
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It thus comes as no surprise that the numerical results [5a e,h,i] obtained by 

such procedures are haphazard, although they may be accidentally accurate. 
These fortuitous numerical successes have unfortunately been taken by most 
authors as proofs of the validity of such procedures (see, for example, [9, 
p. 78]), and it appears that this point of view still prevails in much of the current 
literature. 

Further discussion of these previous schemes is made in Section 4. 

3. Renormalization-group method 

3.1. Genera l  m e t h o d  

From the above discussion, it transpires that the only way in which one can deal 
with the essential nonlocal character of the degrees of freedom is to consider all ranges 
of the degrees of freedom in the process of elimination of degrees of freedom at shorl 
distances. Since the nonlocal degrees of freedom in the percolation model are the 
cluster degrees of freedom, we must consider the clusters themselves in the process of 
constructing the renormalization group. 

An exact mapping will be defined between clusters in the original and renormalized 
systems, and for that purpose clusters will be grouped into classes according to their 
topological structure. Here, the expression "topological structure" refers to the con- 
nectedness of the clusters as defined by the various couplings, as will become clear 
below. 

As will be seen below, new couplings of a longer range than the original nearest- 
neighbor couplings and of a new type are generated by the renormalization-group 
transformation. These new couplings will provide a most natural way to perform 
a topological classification of the clusters [10]. 

To each new coupling generated by the renormalization-group transformation 
corresponds a topologically distinct class of clusters characterized by the topological 
property that the connectedness (integrity) of those clusters is lost or ill-defined by 
removal of that new coupling. In other words, that new coupling is essential to 
preserve the connectedness (integrity) of these clusters. 

In order to define a mapping between the clusters in the original system and those 
in the renormalized system, new coupling constants must therefore be introduced in 
the original system. We will thus have to take into account the contribution from 
different clusters to each type of coupling, To each class of clusters thus defined in the 
renormalized system there will correspond a class of clusters of the same topological 
structure in the original system. 

Next, consider the probability distribution of each class of clusters and sum over 
short-ranged degrees of freedom in the original system; this gives the probability 
distribution of the corresponding class of clusters in the renormalized system, and 
leads to the implicit renormalization-group equation for the coupling constants. 
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At each step, one obtains renormalization-group equations of the form 

P")(Pb,  rb, Sb . . . .  ) = P") (p ,  r, s,  . . .  ), i = 1, 2, 3 . . . . .  k ,  (3) 

where P") (P")) is the probability distribution of the ith class of clusters in the 
renormalized (original) system, p, r, s . . . .  denote the coupling constants in the original 
system, and Pb, rb, Sb denote the analogous coupling constants in the renormalized 
system (b stands for block). 

Eqs. (3) are a system of k nonlinear implicit equations in k unknowns, which define 
the renormalization-group flow in the space of parameters (couplings). The renormal- 
ization-group equations (3) are expected to give rise to a single nontrivial fixed point 
(p*, r*, s* . . . .  ) defined by 

P *  = P b  ----- P ,  

r *  ~ r b ~ r , 

s* = sb = s, etc., 

which are solutions of Eqs. (3). Linearization of these equations about this fixed point 
yields k eigenvalues, of which only one is expected to be larger that one. This 
eigenvalue, 2t, determines the thermal exponent Yt 

Yt = In 2t/ln L ,  

where L is the edge length of the cells. 
It is readily seen that by summing over i both sides of Eqs. (3), we obtain, up to 

regular terms, the total free energy of the original and renormalized systems. We 
return to this important point and to related matters in the discussion of Section 4. 

The field exponent (fractal dimension) is obtained by studying the response of the 
system to a variation of the external field about h* = 0 [3a,10]. One has 

~ [-Ptot(Pb, rb, Sb, . . . ,  hb)] [p*.r*,s" = 6[Pto t (p ,  r, s . . . .  , h)] Ip,.r*.,,, (4) 

where Ptot and Ptot are the sums over the k terms of Eqs. (3), with h ~ 0. Linearization 
of (4) with respect to h about h * =  0 yields the eigenvalue 2h and thus the field 
exponent Yh 

y h = l n  2 h / l n L .  

3.2. I l lus t ra t ion  

The general method described above will be illustrated by the explicit construction 
of the renormalization-group mapping for the site percolation problem on the square 
lattice. In the following, the expressions "first order", "second order . . . .  ,"  are used in 
the sense of the cluster approximation (expansion) of Niemeijer and van Leeuwen [3a] 
(the term "cluster" refers here to connected cells, and is not to be confused with the 
clusters of the percolation model). 
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3.2.1. First and second orders 
In these cases, no new couplings are generated by the renormalization-group 

mappings, and there is thus only one class of topologically distinct clusters, namely, 
those with nearest-neighbor couplings. These mappings, respectively, lead to the 
renormalization-group equations 

and 

P(Pb) = Pb, p(p) = p4 + 4p3(1 _ p) 

P(Pb) = p 2  p(p) = pS + 8p'(1 - p) + 14p6(1 - p)Z. 

The nontrivial fixed points are, respectively, 

p* = 0.768 and 0.789. 

15) 

(6) 

The eigenvalues of the linearized equations (5) and (6) lead, respectively, to the 
correlation length exponents (v = yt- ~) 

v = 1.40 and 1.42. 

The presumed exact value is 1.33 (4/3). 
Note that the first-order approximation coincides with the block-cluster approach 

previously developed by one of us [5f]. But in contrast to this earlier approach which, 
in spite of its numerical success up to the upper critical dimension of 6 [5g], retained 
a heuristic character, the present approximation is the lowest-order of a well-defined 
approximation (expansion). 

3.2.2. Third order 
Two new couplings are generated at this order of the approximation, as shown in 

Fig. 2. Fig. 2(a) illustrates a cluster in which cell 2, while not occupied, contains an 
occupied site which establishes a connection between next-nearest-neighbor occupied 
cells 1 and 3. This corresponds to the generation of a next-nearest-neighbor coupling 
between cells 1 and 3. 

Consequently, in order to preserve the topological properties of the clusters of the 
original system upon renormalization, a new coupling, that is, a diagonal coupling, is 
introduced in the original system. 

Fig. 2(b) illustrates a cluster, where cell 1 is occupied, but is not connected to its 
nearest-neighbor occupied cell 2. This corresponds to the generation of a bond 
coupling between nearest-neighbor occupied cells 1 and 2 in the renormalized system. 
In the case of Fig. 2(b), the bond coupling must be specified to be absent as shown by 
the hatched line. Consequently, a new coupling must again be introduced, namely, 
a bond coupling between nearest-neighbor sites. 

Therefore, the addition of new couplings leads to a precise mapping between 
the clusters in the original and renormalized systems. In the present case of the 
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Fig. 2. Illustration of generation of new couplings by the renormalization-group transformation corres- 
ponding to Eqs. (7)-(9). • (o) denotes occupied (empty) site or cell. (a) Cluster showing necessity of 
introducing next-nearest-neighbor coupling: cells 1 and 3 are occupied and connected via cell 2, which is 
empty. (b) Cluster in original system showing necessity of introducing nearest-neighbor bond coupling: two 
nearest-neighbor cells 1 and 2 are occupied, but are not connected. Empty bond coupling is shown by 
broken line. 

third-order  approximat ion,  there are three classes of  topologically distinct clusters. 
The first class contains those clusters in which all nearest-neighbor cells that are 

occupied are connected by the nearest-neighbor couplings of  the original site model. 
In the second class, diagonal  couplings are generated, while the third class contains all 

clusters in which nearest-neighbor bond couplings are generated. 

Each cluster in the renormalized system belongs to one and only one of  these 
classes. To each of these three classes, corresponds a class of  clusters of the same 
topological structure in the original system. Any subset of  one of  these three classes of 

clusters in the original system maps into one and only one cluster in the renormalized 
system. This mapping  is surjective ("onto") and defines the renormalizat ion-  
g roup  equat ion for the probabil i ty distributions of the corresponding classes of  
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clusters, which read 

Pnn ( Pb, rb, db) 3 2 = pbrbdb + p3br~,(1 -- du) + 2p2rb[rb(1 -- pb)(1 -- db) 

+ rudb(1 - -  P b )  + (1 -- ru)db(1 -- Pb) + (1 -- db)(l -- r~,) 

= Pnn(P, r, d) ,  (7) 

Pbo,d(Pb, rb, db)= pZdb[r2b(1 -- Pb) + 2rb(l -- ru)(1 -- Pb) + (1 -- rb) 2] 

= Pbona(P, r, d ) ,  (8) 

Pnnn(Pb, rb, d~) = 2pb3rb(1 - -  rb )d  b 

= P,,n(p, r, d) .  t9) 

The subscripts nn and nnn stand for nearest-neighbor and next-nearest-neighbor,  
respectively; P(Pb) is the probabil i ty that a site (cell) is occupied, r(rb) is the probabil i ty 
that a nearest-neighbor bond is present between two sites (cells), and d(db) is the 
probabil i ty that  two next-nearest-neighbor sites (cells) are connected by a diagonal 
bond. The left-hand sides of Eqs. (7)--(9) are most  conveniently derived by referring 
to Fig. 3. 

The exact determinat ion of the functions P,n(P, r, d), Pn, , (P,  r, d), and Pbon~(P, r, d) 
in Eqs. (7)-(9) requires a large number  of clusters to be counted.  The calculation is 
conveniently performed on a computer ,  in which all clusters are enumerated  and 
classified as described above. Here, we present the results of a slightly approx-  
imate calculation in which a small fraction of the clusters in the original system is 
overcounted.  

The renormal iza t ion-group equat ions (7) (9) give rise to a single nontrivial fixed 
point (p*, r*, d*) given by 

p* = 0.794, r* = 0.632, d* = 0.487. 

Linearizing both sides of Eqs. (7) (9) about  the fixed point (p*, r*, d*) enables us to 
obtain the thermal exponent  by determining the eigenvalues of the 3 x 3 matrix 

~Pn n ~Pn n ~Pn n 

8pb 8 rb  8db 

(qPbond 8Pbond 8Pbond 

?Pb 8rb 8db 

(~Pn n n (~P. nn (~Pn n n 

(~Pb ('?rb 8db .r*,d* 

8P. .  ?P . .  ?P . .  

(?p 81" 8d 

('~Pbond 8Vbond (~Vbond 
?p ~r &l 

8P . . .  (~'Pnnn (~P 
i?p i'r 8d ~*, r*. d* 

The eigenvalues of this matr ix are 

21 = 1.646, 2 2 = 0.594, 23 = 0.387, 
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Fig. 3. Classes of clusters in renormalized system, up to symmetry operations, corresponding to 
Eqs. (7) (9). 

of  which only one, 21, is relevant,  i.e., larger than  unity. The  thermal  exponent  is 
given by 

Yt = In 2t / In 2 = 0.72, 

which yields the corre la t ion length exponent  v = 1.39. 
The  field exponent  (fractal dimension) is calculated as described above  at the end of 

Section 3.1, and found to be, respectively, equal  to 1.79, 1.81 and  1.84 in the first-, 
second- and  th i rd-order  app rox ima t ions  [10]. The  p resumed exact value is 1.89. 
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4. Discussion 

The renormalization in real space of systems with nonlocal degrees of freedom has 
been reviewed and discussed for the percolation model, and previous attempts have 
been critically examined. The latter were shown to lack of theoretical basis. A recent 
renormalization-group transformation was described which appears to have the 
required properties a renormalization-group transformation should have. It was 
shown that it is necessary to consider all ranges of the degrees of freedom when 
eliminating nonlocal degrees of freedom at short distances. It was then seen that new 
coupling constants are naturally generated, as they should be in any renormalization- 
group transformation 1-1]. 

The renormalization-group equations derived above possess a nontrivial fixed 
point and the predicted values of the critical exponents appear to converge to the 
presumed exact values as higher orders are considered. However, this renormaliz- 
ation-group method raises several questions which deserve further study. 

First, one is unable to assess the effect of the higher-order couplings which are 
generated by the renormalization-group transformation as the system size increases. 
This is like in the real-space cluster-approximation renormalization-group method 
[-3a], but is in contrast to the momentum-space renormalization-group method El]. 
The present results indicate that the nearest-neighbor coupling is the strongest one, as 
found in earlier studies of the two-dimensional lsing model [-3a,11]. 

It is desirable to verify this property at higher orders and for other lattice structures, 
such as the triangular lattice. We do not believe that the definition of cell occupancy 
will affect the results at the higher orders of the approximation. Also, the numerical 
results obtained for the third- and fourth-order [10] approximations should be tested 
with more refined computer algorithms. 

Unfortunately, for the fourth and higher orders, such a verification may require 
prohibitive computational capabilities. The same difficulty characterizes the cluster- 
expansion method applied to the two-dimensional Ising model I-3a], which becomes 
very laborious for large clusters. It would clearly be desirable to be able to build into 
the renormalization-group transformation, like in Kadanoff 's decimation transforma- 
tion, an arbitrary parameter which can be optimized by internal consistency consider- 
ations. 

It is well known I-2] that with any renormalization-group transformation, be 
it in momentum or real space, there is no guarantee that it will exhibit fixed 
points. There is not only no guarantee that the renormalization-group equations for 
larger systems will admit a nontrivial fixed point but also, there is no certainty 
that, at the limit of an infinite system, the infinite system of renormalization-group 
equations for the infinitely many couplings (one for each coupling, as seen above in 
Section 3), will remain analytic. Analyticity is of course not in question for finite 
systems. 

The form of the renormalization-group equations (3) shows that, at the thermodyn- 
amic limit, the singular part of the free energy is split into infinitely many terms, each 
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term involving infinitely many couplings. It is hoped that each such term remains 

analytic at the thermodynamic  limit. The same situation prevails in earlier studies [3a]. 

This is in contrast  to the case of previous schemes such as those involving large cells 

[5d],  where the singular part  of  the free energy is equated to the rescaled coupling p'. 

Apar t  f rom lacking a theoretical basis (as seen above), such schemes clearly violate the 

renormal iza t ion-group requirement of analyticity of  the renormal iza t ion-group equa- 

tions at the the rmodynamic  limit, since the corresponding free energy is singular at the 

critical point. The inappropriateness of  such procedures has been emphasized by 

Wilson [1], who urged never to renormalize the free energy itself, because it is singular 

at a critical point. Large-cell renormalizat ion schemes with a single coupling, which 

are commonly  used to analyze computer  data  [8b],  also lead to other  basic incon- 

sistencies and incorrect predictions, as recently pointed out  [Sa]. 

Finally, we note that the recent mathemat ical  proofs of  possible pathologies of 

real-space renormal iza t ion-group transformations,  including lack of analyticity at the 

the rmodynamic  limit [12], are irrelevant, in particular, as they apply away from the 

critical point. 
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