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Aiming to promptly process the massive fault data and automatically provide accurate
diagnosis results, numerous studies have been conducted on intelligent fault diagnosis of
rotating machinery. Among these studies, the methods based on artificial neural networks
(ANNs) are commonly used, which employ signal processing techniques for extracting
features and further input the features to ANNs for classifying faults. Though these
methods did work in intelligent fault diagnosis of rotating machinery, they still have two
deficiencies. (1) The features are manually extracted depending on much prior knowledge
about signal processing techniques and diagnostic expertise. In addition, these manual
features are extracted according to a specific diagnosis issue and probably unsuitable for
other issues. (2) The ANNs adopted in these methods have shallow architectures, which
limits the capacity of ANNs to learn the complex non-linear relationships in fault diag-
nosis issues. As a breakthrough in artificial intelligence, deep learning holds the potential
to overcome the aforementioned deficiencies. Through deep learning, deep neural net-
works (DNNs) with deep architectures, instead of shallow ones, could be established to
mine the useful information from raw data and approximate complex non-linear func-
tions. Based on DNNs, a novel intelligent method is proposed in this paper to overcome
the deficiencies of the aforementioned intelligent diagnosis methods. The effectiveness of
the proposed method is validated using datasets from rolling element bearings and pla-
netary gearboxes. These datasets contain massive measured signals involving different
health conditions under various operating conditions. The diagnosis results show that the
proposed method is able to not only adaptively mine available fault characteristics from
the measured signals, but also obtain superior diagnosis accuracy compared with the
existing methods.

& 2015 Elsevier Ltd. All rights reserved.
1. Introduction

In order to fully inspect the health conditions of rotating machinery, condition monitoring systems are used to collect
real-time data from machines and therefore massive data are acquired after long time operation of the machines [1]. As the
data is generally collected faster than diagnosticians can analyze it [2], there is an urgent need for diagnosis methods that
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can effectively analyze massive data and automatically provide accurate diagnosis results. This kind of methods is called
intelligent fault diagnosis methods, in which artificial intelligence techniques, such as artificial neural networks (ANNs),
support vector machine (SVM), fuzzy inference, etc., are used for distinguishing machinery health conditions [3–5]. Based on
the results produced by the intelligent diagnosis methods, it is possible to take appropriate maintenance actions and ensure
healthy operation of the machines [6]. Correspondingly, intelligent fault diagnosis methods have been widely investigated
and applied in the field of fault diagnosis of rotating machinery [7]. Samanta [8] extracted time-domain features and
employed three optimized neural networks to detect pump faults. In addition, Samanta et al. [9] utilized time-domain
features to characterize the bearing health conditions and employed ANNs and SVM to diagnose faults of bearings. Statistical
features were extracted by Tran et al. [10] for representing the health conditions of induction motor and then decision tree
and adaptive neuro-fuzzy inference system (ANFIS) were utilized for distinguishing the faults. Moreover, Tran et al. [11]
calculated features from thermal imaging based on bi-dimensional empirical mode decomposition, and then input selected
features into relevance vector machine (RVM) for fault classification. Two features were proposed by Lei et al. [12] to
characterize health conditions of planetary gearboxes and ANFIS was applied to recognize these health conditions. Widodo
et al. [13] calculated statistical features from the measured signals and carried out RVM and SVM to diagnose the bearing
faults. Lai et al. [14] introduced cumulants as input features and used radial basis function network as the fault classifier. A
method was presented by Bin et al. [15], utilizing wavelet packets-empirical mode decomposition for feature extraction and
multi-layer perceptron network for fault classification.

Through the literature review, we notice that ANNs are one of the most commonly used classifiers in the intelligent fault
diagnosis methods, which generally include two main steps, i.e. fault feature extraction using signal processing techniques
and fault classification using ANN classifiers. Feature extraction involves mapping of measured signals onto representative
features characterizing the health conditions of machinery. And fault classification is to distinguish the health conditions
based on the extracted features. Thanks to the representative features from the measured signals and adaptive learning
capability of ANNs, the ANN-based methods are supposed to displace diagnosticians for making decisions and work well in
intelligent fault diagnosis [7]. The ANN-based methods reported in literature, however, have two obvious deficiencies:
(1) The features input into classifiers are extracted and selected by diagnosticians from the measured signals, largely
depending on prior knowledge about signal processing techniques and diagnostic expertise. In addition, the features are
selected according to a specific diagnosis issue and probably unsuitable for other issues. Thus it is necessary to adaptively
mine the characteristics hidden in the measured signals to reflect the different health conditions of machinery, instead of
extracting and selecting features manually. (2) The ANNs commonly adopted in intelligent fault diagnosis of rotating
machinery have shallow architectures, which means that only one hidden layer is included in an ANN architecture, like the
ANNs in Refs. [8,9,14,15]. Such simple architectures limit the capacity of ANNs to learn the complex non-linear relationships
in fault diagnosis issues. Thus it is necessary to establish a deep architecture network for distinguishing the health con-
ditions of machinery.

Deep learning [16] holds the potential to overcome the aforementioned deficiencies in current intelligent diagnosis methods. It
refers to a class of machine learning techniques, where many layers of information processing stages in deep architectures are
exploited for pattern classification and other tasks [17]. Using deep learning, deep neural networks (DNNs) with deep architectures
can be established. Due to the deep architectures, DNNs are able to adaptively capture the representative information from raw
data throughmultiple non-linear transformations and approximate complex non-linear functions with a small error. Since the idea
of deep learning appeared in Science, it has attracted lot of attention from researchers in different fields [18]. Dahl et al. [19]
proposed a pre-trained deep neural network hidden Markov model for large-vocabulary speech recognition and obtained an
accuracy improvement compared with traditional models. Krizhevsky et al. [20] developed a DNN-based method in large scale
visual recognition challenge involving millions of labeled images, and got the best result. Deep learning methods were utilized by
Baldi et al. [21] to search for exotic particles in high-energy physics and the results demonstrated that the methods can improve
the searching ability of collider. The aforementioned applications prove that deep learning is a promising tool in dealing with
massive data. But it attracts few attentions in the field of fault diagnosis. Based on Teager–Kaiser energy operator and deep belief
network trained by deep learning, Tran et al. [22] proposed a newmethod for diagnosing faults of reciprocating compressor valves.
In this method, they treated deep belief network as a classifier and still manually extracted features to input the classifier, which
ignored the ability of the network in mining fault characteristics.

Based on DNNs trained through deep learning, this paper proposes a novel intelligent diagnosis method to overcome the two
deficiencies of the ANN-based methods in fault diagnosis of rotating machinery. In this method, DNNs are utilized to implement
both fault feature extraction and intelligent diagnosis. The DNNs are first pre-trained by an unsupervised layer-by-layer learning
and then fine-tuned with a supervised algorithm, where the unsupervised process helps the fault characteristic mining and the
supervised process contributes to construct the discriminative fault characteristics for classification [23]. The merits of the pro-
posed method are summarized as follows. (1) It is able to adaptively mine fault characteristics from the measured signals for
various diagnosis issues. (2) The method is good at establishing the non-linear mapping relationship between the different health
conditions of machinery and the corresponding measured signals. Therefore, the proposed method is expected to obtain higher
diagnosis accuracy compared with the methods based on shallow ANNs. The rest of this paper is organized as follows. Section 2
briefly introduces the theoretical background of DNNs. Section 3 is dedicated to a description of the proposed intelligent diagnosis
method. In Section 4, the effectiveness of the proposed method is validated using four rolling element bearing datasets and a
planetary gearbox dataset. The bearing datasets contain thousands of signals with different fault categories and severities under
various operating loads. And the gearbox dataset includes tens of thousands of signals with different fault modes and locations
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under various operating conditions, like different rotating speeds and loads. In addition, the proposed method is compared with
several intelligent methods using the same bearing datasets in this section. Conclusions are drawn in Section 5.
2. A brief introduction to DNNs

DNNs have deep architectures containing multiple hidden layers and each hidden layer conducts a non-linear trans-
formation from the previous layer to next one [18,24]. Through deep learning addressed by Hinton et al. [16], DNNs are
trained according to the following two main procedures: (1) Pre-train the DNNs layer by layer with unsupervised techni-
ques, like autoencoders. (2) Further fine-tune the DNNs with back propagation (BP) algorithm for classification.

2.1. Autoencoders

An autoencoder is one type of unsupervised neural networks with three layers [24,25] and the output target of the
autoencoder is the input data. As depicted in Fig. 1, the autoencoder comprises two parts, i.e., encoder network and decoder
network. The encoder network transforms the input data from a high-dimensional space into codes in a low-dimensional
space and the decoder network reconstructs the inputs from the corresponding codes.

The encoder network is explicitly defined as an encoding function denoted by f θ [24]. This function is called the encoder.
For each measured signal xm from a dataset fxmgMm ¼ 1 of rotating machinery, we define

hm ¼ f θðxmÞ ð1Þ
where hm is the encode vector obtained from xm.

The decoder network is defined as a reconstruction function denoted by gθ0 , namely the decoder. It maps hm from the
low-dimensional space back into the high-dimensional space, producing a reconstruction

x̂m ¼ gθ0 ðhmÞ ð2Þ

The parameter sets of the encoder and decoder are learned simultaneously on the task of reconstructing as well as
possible the original input, attempting to incur the lowest possible reconstruction error Lðx; x̂Þ over the M training examples,
where Lðx; x̂Þ is a loss function that measures the discrepancy between x and x̂ [24].

In summary, the autoencoder training aims to find the parameter sets Q and θ0 minimizing reconstruction error:

ϕAEðθ;θ
0Þ ¼ 1

M

XM

m ¼ 1

Lðxm; gθ0 ðf θðxmÞÞÞ ð3Þ

The commonly used forms for the encoder and decoder are affine mappings [26], optionally followed by a non-linearity:

f θðxÞ ¼ sf ðWxþbÞ ð4Þ

gθ0 ðxÞ ¼ sgðWTxþdÞ ð5Þ

Lðx; x̂Þ ¼ ‖x� x̂‖2 ð6Þ
where sf and sg are the encoder and decoder activation functions, respectively. Thus, the parameter sets of the autoencoder
are θ¼ fW;bg and θ0 ¼ fWT;dg, where b and d are bias vectors, and W and WT are the weight matrices.
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Fig. 1. Architectural graph of an autoencoder.
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2.2. Pre-training and fine-tuning

N autoencoders could be stacked to pre-train an N-hidden-layer DNN. When given input signal xm, the input layer and
the first hidden layer of the DNN are regarded as the encoder network of the first autoencoder. After the first autoencoder is
trained through minimizing the reconstruction error in Eq. (3), the trained parameter set θ1 of the encoder network is used
to initialize the first hidden layer of the DNN. And the first encode vector hm

1 of the xm is calculated as follows:

hm
1 ¼ f θ1

ðxmÞ ð7Þ

Then the encode vector hm
1 is the input data, the first hidden layer and the second hidden layer of the DNN are regarded

as the encoder network of the second autoencoder. Correspondingly, the second hidden layer of the DNN is initialized by the
second trained autoencoder. The process is conducted in the sequence until the Nth autoencoder is trained for initializing
the final hidden layer of the DNN. And the Nth encode vector hm

N of the xm is calculated as

hm
N ¼ f θN

ðhm
N�1Þ ð8Þ

where θN is the parameter set of the Nth autoencoder.
In this way, through training N stacked autoencoders, all the hidden layers of the DNN are pre-trained. This pre-training

process is proven to yield significantly better local minima than random initialization of the DNN and helps achieve better
generalization in classification tasks [26,27], as well as in fault diagnosis of rotating machinery.

After the DNN is pre-trained, fine-tuning process is utilized in next step of the DNN training. The output layer of the DNN
is employed to contain the output targets for classification tasks. The output of the DNN calculated from the input signal xm

is

ym ¼ f θNþ 1
ðhm

N Þ ð9Þ
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Fig. 2. Flowchart of the proposed method.
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where θNþ1 is the parameter set of output layer. In order to approximate the output target properly, BP algorithm is utilized
to minimize the error of the output by adjusting the parameters in the DNN backwards [28]. Supposing that the output
target of the xm is dm, the error criterion is described as

ϕDNNðΘÞ ¼ 1
M

X
m

Lðym;dmÞ ð10Þ

where Θ¼ fθ1; θ2; ⋯; θNþ1g. The parameter set Θ can be updated as follows.

Θ¼Θ�η
∂ϕDNNðΘÞ

∂Θ
ð11Þ

where η is the learning rate of the fine-tuning process, which is introduced to guarantee a convergence in the update
procedure [29].
3. DNN-based intelligent diagnosis method

Based on DNNs, this study proposes a novel intelligent fault diagnosis method that adaptively mines the fault char-
acteristics from raw signals of rotating machinery and automatically classifies machinery health conditions with these fault
characteristics. The raw signals refer to the measured signals in the frequency domain, i.e., frequency spectra. And the main
reason of using frequency spectra is that the frequency spectra of rotating machinery show how their constitutive com-
ponents are distributed with discrete frequencies and may provide clear information about the health conditions of rotating
machinery [30].

As shown in Fig. 2, the proposed method includes the following four procedures: (1) Obtain the frequency spectra of rotating

machinery under different health conditions. These spectra comprise the training set xi;di
n oM

i ¼ 1
, where xi is the ith frequency

spectrum for training, di is the health condition label of the xi andM is the number of the frequency spectra. (2) Build a DNN with
multiple hidden layers, in which the number of the input units is the dimension of the frequency spectrum xi. Then utilize the

unlabeled training set x¼ xi
� �M

i ¼ 1 to pre-train the DNN layer by layer with a stack of autoencoders, where the number of
autoencoders refers to the number of hidden layers inside the DNN. The process is specifically displayed in Fig. 3. Firstly, regard
first hidden layer of the DNN as hidden layer of the first autoencoder and utilize the unlabeled training set x as input data and
output target to train the first autoencoder, as shown in Fig. 3(a). The trained parameters fW1;b1g of the autoencoder are used to
initialize the parameters of the first hidden layer of the DNN, and h1 is the encode vector computed from frequency spectra of
rotating machinery by the first autoencoder. Then, use h1 as the inputs and outputs to train the second autoencoder for initializing
parameters of the second hidden layer of the DNN, and obtain h2 in Fig. 3(b). Finally, continue the training steps in the sequence
until the Nth autoencoder is trained and the frequency spectra are coded into hN in Fig. 3(c). In this way, all of the hidden layers of
the DNN are pre-trained. (3) Determine the dimension of the output layer according to the number of the machinery health
conditions. And implement the BP algorithm to fine-tune the parameters of the DNN through minimizing the error between the
Inputs 

HL 1

HL 2

HL N

HL N-1

Outputs

The second step: The Nth step: The first step: 

x

1h

},{ 11 bW },{ 1
T

1 dW
1h

2h

},{ 11 bW

},{ 22 bW },{ 2
T

2 dW },{ 22 bW

},{ 11 bW

},{ NN bW },{ T
NN dW

1−Nh

Nh

Fig. 3. Diagram of illustrating the pre-training process (HL is short for hidden layer): (a) train the first autoencoder of the DNN, (b) train the second
autoencoder and (c) train the Nth autoencoder.
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output calculated from the frequency spectra and health condition labels. (4) Employ the trained DNN to diagnose faults of the
machinery.

In the proposed method, the pre-training process helps DNNs learn multiple nonlinear transformations, capturing the
main variations of the frequency spectra [26]. Then the fine-tuning process helps the DNNs discover the discriminative
information from these spectra. These processes enable the trained DNNs to mine the essential characteristics from the
frequency spectra and establish complex non-linear mapping between the frequency spectra and health condition labels.
Therefore, the proposed method could implement fault characteristics mining and intelligent diagnosis of rotating
machinery.
4. Fault diagnosis using the proposed method

Rolling element bearings and gears are the key components in rotating machinery [31,32]. The health conditions of these
components often affect the performance, reliability and service life of the machinery. Whereas due to tough working
environment, these components easily suffer from different kinds of damage, leading to breakdowns and heavy economic
losses [33,34]. In this section, two diagnosis cases of rolling element bearings and planetary gearboxes are used to validate
the proposed method, respectively.

4.1. Case 1: Fault diagnosis of rolling element bearings

4.1.1. Data description
The bearing data used here are provided by the Case Western Reserve University (CWRU) [35]. The data were collected

from a motor driving mechanical system under four different loads with the sampling frequency of 48 kHz. The bearing data
set was obtained from the experimental system: (1) under normal condition (N), (2) with outer race fault (OF), (3) with
inner race fault (IF) and (4) with roller fault (RF). The faults were introduced into the drive-end bearing of the motor with
fault diameters of 0.18 mm, 0.36 mm and 0.54 mm, respectively.

In this study, four datasets, i.e. A–D, of the bearings are used to test the performance of the proposed method, and the detailed
description for the datasets is shown in Table 1. Datasets A, B and C contain 10 bearing health conditions under loads of 1, 2 and
3 hp, respectively. There are 200 signals for each health condition and each signal contains 2400 data points. We implement fast
Fourier transformation on each signal to get the 2400 Fourier coefficients. Since the coefficients are symmetric, the first 1200
coefficients are used in each sample. So each of dataset A–C totally contains 2000 samples and each sample has 1200 Fourier
coefficients. Dataset D contains 10 bearing health conditions under loads of 1–3 hp and there are 600 samples for each condition,
where the same health condition under different loads is treated as one class. So dataset D includes 6000 samples.

4.1.2. Diagnosis results
The designed DNN has five layers, in which the unit number of the input layer is determined by the dimension of the samples,

the unit number of the first hidden layer, the second hidden layer and the third hidden layer are 600, 200 and 100 respectively,
and the unit number of the output layer is determined by the number of the health conditions. The active functions of the DNN are
hyperbolic tangent functions. The weights of the DNN are initialized randomly and the biases are initialized to zero. The maximum
training epoch is 100, the learning rate is 0.05 and the momentum is 0.05. Fifty percent of samples are randomly selected for pre-
training the DNN, then these samples are used to fine-tune the parameters of thewhole network, and the other 50% of samples are
used to test the performance. Twenty trials are carried out for diagnosing each bearing dataset. The diagnosis results of datasets A–
D using the proposed method are shown in Fig. 4. In these trials, all of the diagnosis accuracies are over 99% and some are even
100%, which means that the proposed method is able to distinguish the ten health conditions of bearings with a high accuracy.

For comparison, we also deal with the datasets utilizing the method based on back propagation neural network (BPNN), which
is commonly used in intelligent fault diagnosis of rotating machinery. The BPNN has the same architecture as the DNN and is
Table 1
Description of bearing datasets

Datasets Load (hp) The number of samples Fault type Fault diameter (mm) Classification label

A/B/C/D 1/2/3/1�3 200/200/200/600 N 0 1
200/200/200/600 RF 0.18 2
200/200/200/600 RF 0.36 3
200/200/200/600 RF 0.54 4
200/200/200/600 IF 0.18 5
200/200/200/600 IF 0.36 6
200/200/200/600 IF 0.54 7
200/200/200/600 OF 0.18 8
200/200/200/600 OF 0.36 9
200/200/200/600 OF 0.54 10
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Fig. 4. Diagnosis results of 20 trials of bearing datasets using the proposed method: (a) dataset A, (b) dataset B, (c) dataset C and (d) dataset D.
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trained by the same parameters. In each trial, it should be noted that the same training set is used to train the DNN and the BPNN,
respectively. The diagnosis results using the BPNN-based method are depicted in Fig. 5. It shows that the diagnosis accuracies vary
greatly. Most of the accuracies are around 70%, a few of accuracies are good, and the others are terrible. To quantitatively compare
the results between the proposed method and the BPNN-based method, the average accuracies and the standard deviations of 20
trials are calculated for each dataset, as shown in Table 2. It presents that the average training and testing accuracies using the
proposed method range from 99.61% to 100% and the standard deviations below 0.22%, which means the proposed method can
effectively and stably distinguish not only bearing fault categories but also fault severities. But the average accuracies using the
BPNN-based method are much lower and the standard deviations are larger, which illustrates the superiority of the proposed
method to the BPNN-based methods. It is worth mentioning that dataset D includes massive samples for 10 bearing health
conditions under different loads, and its diagnosis accuracies illustrate that the proposed method is able to diagnose the bearing
faults regardless of the load fluctuation.

In Fig. 5, an interesting phenomenon is observed that the 18th trial of dataset A and the 8th trial of dataset D using the
BPNN-based method perform as well as the same trials using the proposed method. The comparisons of training errors are
shown in Fig. 6(a) and (b). It is noticed that the training errors are close to 0 in the two trials using both methods. This
demonstrates that neural networks with deep architectures indeed have great capability of recognizing nonlinear char-
acteristics of the bearing failure so as to facilitate the diagnosis. Unfortunately, the BPNN-based method happens to perform
well because of random factors, but not always. Taking the 12th trial of dataset B and the 10th trial of dataset C for examples,
the results of both trials using the BPNN-based method are extremely poor, and both of testing accuracy is 10.03%. It seems
that in the two trials, the trained networks have learned nothing useful for fault diagnosis, and the training errors of these
trials are shown in Fig. 6(c) and (d). They show that the trainings get stuck in a premature convergence, leading to the
unsatisfied diagnosis accuracies. However, the training errors of the proposed method are updated smoothly into good
solutions. It indicates that the proposed method is more robust than the BPNN-based method, which is helpful for achieving
better diagnosis results of bearings.

To verify the ability of the proposed method in adaptively mining fault characteristics, principal component analysis (PCA) is
utilized to visualize the mined features. These features are considered as the inputs of the output layer of the DNN in this study
since the output layer of the DNN can be treated as a classifier. Therefore, 100 features are obtained from a sample through the
DNN. The PCA is implemented on the 100 features of each sample and the first three principal components (PCs) of the features of
datasets A–D are shown in Fig. 7(a)–(d), respectively. It is seen that most features of the same health condition are gathered in the
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Table 2
Diagnosis results of bearing datasets.

Datasets The proposed method The BPNN-based method

Training accuracy Testing accuracy Training accuracy Testing accuracy

Dataset A 100 99.9570.06 65.81718.2 65.2718.09
Dataset B 99.9470.05 99.6170.21 62.51721.97 61.95722.09
Dataset C 99.9470.08 99.7470.16 70.31717.86 69.82717.67
Dataset D 99.8570.22 99.6870.22 74.24720.31 73.74720.23
Dataset E 100 100 81.34717.92 81.35717.86

The format of the results is: average accuracy7standard deviation.
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corresponding cluster and most features of the different health conditions are separated. In Fig. 7(c) and (d), RF with 0.36 mm
defect and RF with 0.54 mm defect are not separated well by the first three PCs, but the other principal components contain the
essential information for clustering the samples of the two fault severities. Therefore, datasets C and D still achieve the high
diagnosis accuracies. The results reveal that the proposed method could adaptively mine the fault characteristics of rolling element
bearings under varying operation conditions.

4.2. Case 2: Fault diagnosis of planetary gearboxes

4.2.1. Experiments and data description
The planetary gearbox data used in this section is collected from the test rig shown in Fig. 8. It contains a two-stage

planetary gearbox, a two-stage fixed-axis gearbox, a 3-hp motor for driving the gearboxes and a magnetic brake for loading.
The accelerometer mounted on the first stage bearing end cover is used to acquire vibration signals with a sampling fre-
quency of 5120 Hz.

Seven experiments are carried out under different health conditions. These conditions involve normal, a pitted tooth on
the sun gear of the first stage, a cracked tooth on the sun gear of the first stage, a chipped tooth on the planetary gear of the
first stage, a chipped tooth on the sun gear of the second stage, a missing tooth on the sun gear of the second stage and a
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bearing inner race fault of planetary gear of the first stage. In each experiment, a damaged component is installed inside the
test rig and other components are normal. Each experiment is conducted under eight operating conditions: four different
drive motor speeds (2100 rpm, 2400 rpm, 2700 rpm and 3000 rpm) and two loading conditions (no load and the maximum
load). There are 203 signals for each experiment under an identical operating condition and each signal contains 2560 data
points. The frequency spectrum of each signal is used as each sample, which contains 1280 Fourier coefficients. The samples
of seven health conditions under eight operating conditions compose the dataset E, which totally has 12,992 samples. Fig. 9
gives an example of signals and their spectra for each health condition. Although there are some differences of the seven
vibration signals and the corresponding spectra, it is difficult to manually distinguish the different health conditions by
those differences. With thousands of samples needing to be distinguished, the manual diagnosis becomes more impractical.
Therefore, the proposed method is applied to diagnose the faults of the planetary gearbox.
4.2.2. Diagnosis results
Both the proposed method and the BPNN-based method are used to process the dataset. Twenty trials are carried out,

where 50% of samples are randomly selected for training and the other samples are used for testing.
The average accuracies and the corresponding standard deviations of 20 trials are calculated for dataset E, as shown in Table 2.

In the trials using the proposed method, the average accuracies of both training and testing is 100%, which means all the samples
are correctly classified. Using the BPNN-based method, however, the average training accuracy is only 81.34% with considerably
large standard deviation of 17.92% and the average testing accuracy is in the similar situation. This implies that the proposed
method obtains higher diagnosis accuracies and shows better robustness than the BPNN-based method does in distinguishing the
various fault modes and different fault locations of the planetary gearbox.

The scatter plots of principal components of the mined features are displayed in Fig. 10. It is noticed that the features char-
acterizing the same health conditions are clustered well and each cluster is separated. It deserves to be mentioned that dataset E
contains massive samples under eight operating conditions for each health condition, which is ordinarily difficult for extracting
and selecting features from such dataset. Nevertheless, the results of Fig. 10 indicate that the proposed method still extracts the
essential characteristics for distinguishing the health conditions of the planetary gearbox. Thus the proposed method has a great
ability in adaptively mining the fault characteristics of planetary gearboxes.



-10
0

10 -5 0 5

-5

0

5

Th
ird

 P
C

First PC Second PC

-10

0

10 -5
0

5

-4

-2

0

2

4

Th
ird

 P
C

Second PC

First PC

-10

-5

0

5

-4
-2

0
2

4
-5
0
5

Th
ird

 P
C

Second PC First
PC

0.36 mm IF     0.54 mm IF      0.18 mm OF     0.36 mm OF     0.54 mm OF
Normal        0.18 mm RF     0.36 mm RF     0.54 mm RF     0.18 mm IF 

-10

0

10

-505
-4

-2

0

2

4
Th

ird
 P

C

Second PC
Fir

st
PC

Fig. 7. Scatter plots of principal components for the features: (a) dataset A, (b) dataset B, (c) dataset C and (d) dataset D.

Fixed-axis gearbox Planetary gearbox

Motor Magnetic brakeAccelerometer

Fig. 8. The test rig of the planetary gearbox.

F. Jia et al. / Mechanical Systems and Signal Processing 72-73 (2016) 303–315312
4.3. Discussion
(1) Different from the ANN-based methods using the signal processing techniques for feature extraction and shallow ANNs
for fault classification, this work presents a new idea that utilizes DNNs for both fault characteristic mining and
intelligent fault diagnosis. The proposed method is compared with the shallow ANN-based methods using the CWRU
bearing dataset. In Ref. [36], a method based on 19 time-domain and frequency-domain features with semi-supervised
distance-preserving self-organizing map was proposed. The method was used to differentiate three bearings with ball
defects (0.18, 0.36 and 0.54 mm in diameter, respectively) under different loads and 95.8% classification accuracy was
obtained. Nevertheless, Dataset D in this study contains 10-class faults under different loads and the classification is
more complex, and our method still gets 99.68% accuracy. In Ref. [37], a method based on time-domain features and
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neural networks with a single hidden layer was proposed to diagnose three datasets of bearings. These datasets contain
six health conditions under the 1 hp, 2 hp and 3 hp, respectively, which is similar to datasets A, B and C in this work. The
method in Ref. [37] obtained 95.7%, 99.6% and 99.4% classification accuracies for each dataset, whereas our classification
accuracies are 99.95%, 99.61% and 99.74%. It shows that our results are better, even though more bearing conditions are
classified in this study. Ref. [38] developed a method using singular spectrum analysis for feature extraction and a
single-hidden-layer neural network for classification. The method was utilized to diagnose four bearing health
conditions (normal condition, ball fault, inner race fault and outer race fault) under various loads and the diagnosis
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accuracy of 100% was obtained. The diagnosis of dataset D is the similar problem and our diagnosis accuracy is 99.68%. It
is a little lower than the diagnosis accuracy of the method in Ref. [38], but their method only classified four bearing
health conditions, which is much simpler than our diagnosis issue. Thus the difference of 0.32% between the two results
is acceptable. Through the results above, it show that the proposed method classifies obtains fairly high diagnosis
accuracies compared with the shallow ANN-based method in Refs. [36–38].

(2) In the existing ANN-based methods, the features extracted by diagnosticians are used for characterizing the health conditions
and the ANNs are used for classification. As we know, choosing discriminative features is a crucial step. So diagnosticians need
to spend lots of time in analyzing collected signals and grasping their properties. Then according to the diagnosis issues, they
design the feature extraction algorithms to calculate discriminative features from measured signals (like vibration signals and
frequency spectra). These features manually concentrate the information important for classification in the measured signals
and discard the variations irrelevant. Such processes take advantage of human ingenuity but largely depend on much prior
knowledge about signal processing techniques and diagnostic expertise, which is time-consuming and labor-intensive. In
contrast, the proposed method aims to use a deep neural network for both fault feature mining and intelligent fault diagnosis.
Through the scatter plots of principal components for the mined features in Figs. 7 and 10, it is shown that the DNN is able to
automatically mine the information important for classification from the frequency spectra according to the diagnosis issues.
Since mining the features automatically, the proposed method reduces the need of human labor or the prior knowledge about
signal processing techniques and diagnostic expertise. So based on the proposed method, new applications can be achieved
easily. Therefore, the main advantage of the proposed method is that the features are mined from the frequency spectra using
a general-purpose learning procedure instead of being extracted by diagnosticians. However, the proposed method suffers
from a disadvantage: The DNN needs more training time than the shallow ANNs due to the deep architecture. But with the
development of hardware technology, we can build DNNs more rapidly in future.

(3) The results of the two diagnosis cases indicate that the proposed method is able to effectively mine fault characteristics and
classify mechanical health conditions. The main reason lies in utilizing the autoencoders for pre-training DNNs in the
proposed method. Generally, an autoencoder could be regarded as a non-linear function that encodes the input data to a code
vector. And with the code vector of the previous trained autoencoder as input for training the next autoencoder, the pre-
trained DNNs actually presents certain characteristics of the input data. Therefore, the pre-training process facilitates the DNNs
to recognize the characteristics of the rotating machinery signals and helps the DNNs to discover the discriminative info-
rmation of these signals in the fine-tuning process, resulting in the high diagnosis accuracy.

(4) In this paper, we have not studied the architecture selection of the DNNs. When selecting the architecture, we follow a
simple idea: The unit number of the next layer is smaller than that of the previous layer so that the encoding process of
the DNN can be viewed as a data compression process or a feature extraction process. The architecture selection is still
an open problem for neural networks and we will focus on this problem in future work.
5. Conclusions

This paper presents a DNN-based intelligent method for diagnosing the faults of rotating machinery. The effectiveness of the
proposed method is verified using five datasets from rolling element bearings and planetary gearboxes. These datasets contain
massive samples involving different health conditions under various operating conditions. Through the diagnosis results of these
datasets, it is shown that the proposed method is able to mine fault characteristics from the frequency spectra adaptively for
various diagnosis issues and effectively classify the health conditions of the machinery. Since mining fault characteristics auto-
matically, the proposed method is less dependent on human labor or prior knowledge about signal processing techniques and
diagnostic expertise than the current ANN-based methods. So based on the proposed method, new applications can be achieved
easily. There may be some guidance for the utilization of the proposed method. First, hyperbolic tangent function is advised as the
active function of DNNs. Then half coefficients of the frequency spectra should be used because the coefficients are symmetric in
the spectra. Finally, a deeper network could be tried for your applications although the five-layer DNN has performed well in
this paper.

In the proposed method, DNNs are trained by frequency spectra. Therefore, it only works for rotating machinery and reci-
procating machinery whose measured vibration signals are periodic. It is interesting to directly train the DNNs using raw signals in
the time domain so as to apply them to other machines. The authors would investigate this topic in future study.
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