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Abstract

Local minima and plateaus pose a serious problem in learning of neural networks. We investigate the hierarchical geometric structure of
the parameter space of three-layer perceptrons in order to show the existence of local minima and plateaus. Itis proved that a critical point of
the model withH — 1 hidden units always gives many critical points of the model Withidden units. These critical points consist of many
lines in the parameter space, which can cause plateaus in learning of neural networks. Based on this result, we prove that a point in the critical
lines corresponding to the global minimum of the smaller model can be a local minimum or a saddle point of the larger model. We give a
necessary and sufficient condition for this, and show that this kind of local minima exist as a line segment if any. The results are universal in
the sense that they do not require special properties of the target, loss functions and activation functions, but only use the hierarchical
structure of the model© 2000 Elsevier Science Ltd. All rights reserved.
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1. Introduction general cases has been an open problem in the rigorous
mathematical sense.

It has been believed that the error surface of multilayer It is also difficult to derive meaningful results on local
perceptrons (MLP) has in general many local minima. This minima from numerical experiments. In practical applica-
has been regarded as one of the disadvantages of neurdions, we often see extremely slow dynamics around a point
networks, and a great deal of effort has been paid to find that differs from the global minimum. However, it is not
good methods of avoiding them and achieving the global easy to tell rigorously whether it is a local minimum. It is
minimum. known that a typical learning curve showglateauin the

There have been no rigorous results, however, to prove middle of training, which causes very slow decrease of the
the existence of local minima. Even in the simple example training error for a long time before a sudden exit from it
of the XOR problem, existence of local minima had been a (Amari, 1998; Saad & Solla, 1995). A plateau can be easily
controversial problem. Lisboa and Perantonis (1991) eluci- misunderstood as a local minimum in practical problems.
dated all the critical points of the XOR problem and asserted  This paper discusses critical points of the MLP model,
with a help of numerical simulations that some of them are which are caused by the hierarchical structure of the models
local minima. Recently, Hamney (1998) and Sprinkhuizen- having a smaller number of hidden units. For simplicity, we
Kuyper and Boers (1998a,b) rigorously proved that what discuss only the MLP model with a one-dimensional output
have been believed to be local minima in Lisboa and in this paper. The input—output function space of networks
Perantonis (1991) correspond to local minima with infinite with H — 1 hidden units is included in the function space of
parameter values, and that there always exists a strictlynetworks with H hidden units. However, the relation
decreasing path from each finite point to the global mini- between the parameter spaces of these two models is not
mum. Thus, there are no local minima in the finite weight so simple (see Chen, Lu & Hecht-Nielsen, 1993gBu&
region for the XOR problem. Existence of local minima in Ossen, 1997). Sussmann (1992) elucidated the condition

that a function described by a network with hidden
* Corresponding author. Tel.:+ 81-48-467-9664; fax:+ 81-48-467- un!ts _Can be realized l.)y a networ_k with — .l hidden
0693. units in the case of activation function. In this paper, we
E-mail addressfuku@brain.riken.go.jp (K. Fukumizu). further investigate the geometric structure of the parameters
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of networks which are realizable by a network with— 1 notations:
hidden units. In particular, we elucidate how they can be 1 W
embedded in the parameter spaceddfidden units. Based ¢ — ( ) ER-L, W = ( JO) ERL 1=j=H),
on the geometric structure, we show that a critical point of X 7
the error surface for the MLP model witH — 1 hidden 2
units gives a set of critical points in the parametric space o )
of the MLP withH hidden units. for simplicity, we can write

The main purpose of the present paper is to show that a
subset of critical points corresponding to the global mini- f*(x; M) = Zv @(W] %) + V. ©)
mum of a smaller network can be local minima or saddles of =1

the Itarger nﬁﬁvﬁoiﬁ' l\_/loret pre;:rsetltk/), Lhe _supset:] of C”t'ca_‘l Using the result of Ktkova and Kainen (1994), all the
points on which the input=output behavior 1S the Same IS y,q5.ems obtained in this paper are applicable for other

?r:V'dfg Into (;V(;IIO paftst' O\r;\(,a consisting 01|‘.|c.>tca| ngj'.?.'ma a;}nd sigmoid- or bell-shaped activation functions with necessary
€ olher sadcie points. We give an explicit condition Wnen ., isications. We will show this later. We use the linear

fhls Iocc_:u_rs. 'If'hlsthgl\f/_e St? forn':/lal proof otfhthe exrstence o]f activation in the output layer. However, all the results are
oca minima for the Tirst ime. Vioreover, the coexistence o easily extended to a model with a monotone nonlinear

Iocal minima and sa_ddles in one equivalent set of critical output unit, because this causes only a nonlinear rescaling
points explains a serious mechanism of plateaus: when suc rbf the output data.
is the case the network parameters are attracted in the part leen N input—output training data (", y(V))|V_

of local minima, stay and walk randomly for a long time N}, we use a MLP model to realize the relation

in that flat region on which the performance is the same, expressed by the data. The objective of training is to find

but_eventqal!y go out from the _part O.f sa(_jdles |r1 the the parameter that minimizes the error function defined by:
region. This is a new type of critical points in nonlinear

. . . . X N
(rjny:;glrtms given rise to by the hierarchical structure of a EL(OM) = Ze(y“’),f(x(v);e(m)), @
This paper is organized as follows. In Section 2, after =t

showing the necessary definitions and terminologies, we where£(y,2) is a loss function such tha(y,z) = 0 and
elucidate the geometric or topological structure of the para- the equalrt%/ holds if and only iff =z When £(y,2) =

the objective function is the mean square
surface. In Sectlon 4, we mathematically prove the coexis- error. We can use other loss functions suchLasiorm
tence of local minima and saddles under one condition. This£(y,2) = 1/plly — Z|® and the cross entropy(y,2) =
shows not only the existence of local minima but also a —o(y)log (2 — (1 — o (y)log(l — o (2), where o (t) is
possible mechanism of plateaus. We also show the resultsa sigmoidal function for the nonlinearity of the output
of numerical simulations realizing local minima. Section 5 unit. The results in this paper are independent of the choice
contains conclusion and discussion. of a loss function.

2.2. Hierarchical structure of MLP

2. Geometric structure of the parameter space The parameter vecto®™ consists of aLH + 2H + 1
- dimensional Euclidean spac®,. Each 6" gives a
2.1. Basic definitions nonlinear function Eq. (1) ok, so that the set of all the

functions realized by®y is a function space described by:
In this paper, we consider a three-layer perceptron with

one linear output unit ant input units. The input—output <1 = {0 0™) : R — R|6™ € O} ®
relaticn of a network withH hidden units is described by the We denote the mapping froify, onto %y by
function:
O — Sy, 0 s oM. (6)
H
FH 0 0M) = S v oW x + wip) + Vo, 1 We sometimes writé" for 4 (6). .
=1 It is important to note thatr, is not one-to-one, that is,
different®™ may give the same input—output function. The
where T denotes transpositi(m (Xq, .. xL) € R"is an interchange between; , w; ) and(v,,, w;,) does not alter the
input vector,w; = (Wq, .. vv,L) € IRL(l =j=H) is the image ofmy. In the case of tanh activation function, Chen et
weight vector of theJth hrdden unit and®™ = (v, vy, al. (1993) showed that any analytic map @, — 6, such

o Vis Wi, W1, ..., Wi, W) T summarizes all the parameters  that f ™ (x; T(0)) = f™(x;0") is a composition of
in one large vector. The functiap(t) is called an activation  hidden unit weight interchanges and hidden unit weight
function. In this paper, we use tanh for Introducing the sign flips, which later are defined ky;, W) — (—Vv;, —W)).
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Fig. 1. A network given by a parameter .iaj, %, and%’ﬁjz.

These transforms consist of an algebraic gr@upwhich is
isomorphic to a direct product of Weyl groups. We wilig
for the transform given bg € G.

The function spaces’y (H=10,1,2,...) have a trivial

hierarchical structure:
FoCF1C - CFYy1 TSy C - @)

The inclusion is denoted by, 1 : 41 — 4. On the

other hand, the parameter space of the smaller networks i

not canonically included imd,. Given a functionfy™
realized by a network witld — 1 hidden units, there are a
family of networks withH hidden units and parametey$”
that realizes the same functigfi . In other words, a map
from 8" ' to 8" that commutes the following diagram is not
unique.

Opg_1 —— Oy

m_ll l'rm

SH_1 E— SH
LH-1

)

The set of all the paramete@§”™ that realize the input—
output functions of networks wittd — 1 hidden units is
denoted by:

Q= 13 (-2 (L) 9

H
§H D0 = G ) + L.
=2

unit, wherev; = v, is the weight of the new unit to the
output unit. From the viewpoint of mathematical statistics,
it is also proved by Fukumizu (1996) thékis the set of all
the points at which the Fisher information matrix is singular.
We further investigate how each functiondfy,_; is. Let
fii-3 be a function in%y_1—%4_,. To distinguish@y_;
from @4, we use different parameter variables and indexing:

(13
j
Let 2,0 D) be the set of paramete#§” that realizes a
givenf i ;
QyO ™) = w1 (FE). (14)

Then, 2,0 ) is the union of the submanifolds in each
of </}, %; and%j;,. For simplicity, we show only an exam-
ple of the submanifolds of/,, %, and%5;

A= {O(H) e @H|Vl = O,VO = {0,\/]' = §J,V~V] = "N'IJ’
2=j=H)}
E={0" € Oy|w; = 0,vip(Wip) + Vo = &,V = §, W; = G,

2=j=H)

H -~ ~ ~
From Sussmann’s result (Sussmann, 1992; Theorem 1 and = {07 € Oy, =W, = 0p,Vo = Lo, Vi + Vo = .V = &

its corollary), the parameter se?, is the union of the
following submanifolds of®y (see Fig. 1):

oA ={0 eoy=0 @QA=j=H), (10)

B ={0" € Oyw,=0 (L=j=H), (12)

G, = {07 € OulWy, =+ ) A=ji<j=H).
12

Here,.«Z; is the set of parameters whefe= 0 so that thgth
hidden units plays no role. Similarly, tiih hidden unit has

0 weight in4; so that it outputs only a constant bias term. In
%", thej;th hidden unit ang,th hidden unit have the same

jl_jz’

The submanifoldA is anL + 1 dimensional affine space
parallel to theW;-plane becauseV,; may take arbitrary
values in it, but all the other components@¥ are deter-
mined by prescribed "~V The setZ is a two-dimensional
submanifold defined by a nonlinear equation:

V1p(Wig) + Vo = o, (16)

wherevy, v; andwy, can take arbitrary values provided they
satisfy the above. Thd set is a line in thev,v,-plane,
defined byv; + v, = {,. It is known that all the other
components in20 ™Yy are obtained as the transforms

(or opposite) weight vector and bias, so that their behaviorsof A, Z and I" by g € G (Klrkova & Kainen, 1994;
are the same (opposite). They may be integrated into oneSussmann, 1992). For example, the imageloby the
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oy 12

9, 7
N

_ A VoV W, 0, (0
Fig. 2. Embeddingyy,.
sign flip about the second hidden unit is given by: componentsA, 5 and I, of 02,0 Y); that is:
r9 ={06" e oy, = W, = U, Vo = {o.V1 — Vo = . A= {ag®" )W € R,
Vi = W = 0, (3= = H)}. @ E={Buw®" lv.w) € R?}. (19

r={yn®" ) er}

The image ofA, Z andI" by a hidden-unit interchange is
trivial. Thus, each function of a smaller network is realized
not by discrete points but by high-dimensional submanifolds - )
in 0. 3. Critical points of the MLP model

In order to make analysis more concrete, we give a definite
correspondence betweéh,_; and @ that realize the same
function. We define the following canonical embeddings of
O_, into Oy, which commute the diagram (8), usikge
R (v,w) € R? andA € R as their parameters.

3.1. Learning and critical points

Generally, the optimum parameter cannot be calculated
analytically when the model is nonlinear. Some numerical
optimization method is needed to obtain its approximation.
One widely used method is the steepest descent method,

ay: Oh1— O, 0V (4,0,5, .., 4, W, 05, ... G, . : .
W TR T (€0.0. G20 2. 0n) which leads to a learning rule given by:

S Oy_1— Oy, 0TV (L — vew), v, &, ...
B(V,W) H-1 H> 0 (fo QD( )7 > §27 > gH? ﬂ(t n 1) _ (-)(t) . SGEH(S(I)) , (20)
(w,0"), a3, ....a5)", 0
where § is a learning rate. 18. is the global minimum,
Ya: Oy_1— Oy, (0EH/00)(0.) = 0 holds and the above learning rule stops
there. However, we cannot always obtain the global mini-
0™ (0,000, (1= Mo, Lo o £, 03, 05,03, .., O mum, since all the points that satisf§E,/90)(0) = 0 are
(18 stationary points of Eq. (20). Such a point is callextitical

point of E.
These maps are illustrated in Figs. 2—4. If we change the There are three types of critical point: a local minimum, a
parameter of each embedding, the image8‘fY span the local maximum and a saddle point. A critical pofigtis called

B(v,w)

Section with fixed V, Vs Wj (2<j<H).

Fig. 3. Embeddings ).
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vy

1,0)

Vi =Al-A

Section with Wl = Wr

Fig. 4. Embeddingy; .

a local minimum(maximun) if there exists a neighborhood
around 0, such that for any poin® in the neighborhood
En(0) = Ey(0g) (EH(0) = EH(0p) holds, and called saddle

if it is neither a local minimum nor a local maximum, that is, if
in an arbitrary neighborhood 6f there is a point at whicky

is smaller tharEy(0y) and a point at whicliey, is larger than
En(0o). It is well known that if the Hessian matrix at a critical
point is strictly positive (negative) definite, the critical point is
a local minimum (maximum), and if the Hessian has both
positive and negative eigenvalues it is a saddle.

3.2. Existence of critical points

It is very natural to look for a critical point d& in the set
Oy = 5 H(y-1(F4-1)), because a critical point dfy_;
already satisfies some of the conditions of a critical point of
EH-

Let 01D = (Lou, Lonr oo Gier Uy - O3)T € Oy
—0Oy_, be a critical point ofEy_;. It really exists if we
assume that the global minimum d&,_, is isolated,
which means it is not included i®_,. This assumption is
practically plausible, because, for a set of data which is fitted
well with H hidden units, the optimum network with — 1
hidden units has no redundant hidden units in general.

At the critical point, the following equations hold for2
j=H;

0Ep-1

H-1, _ e ) cH-D . gH-D)
O = — (y D™ oY) = o,

a4y & oz
0E,_ _
$(9Q" 1))
g
- () (D) 0. aH-Dry T o)
=2 TR 0T e X)) = 0,
r=1 z
0E,_ _
%(ei” )
Uj

N
a'e V) - v, - ~T o(Wha(V
=G 3 5 RO @R = 0T,
21)

We have two kinds of critical points.

Theorem 1. Lety, beasin Eqg. (18). Then, for anye R,
the pointy, (0"~ is a critical point of E;.

Theorem 2. Let By.w) be as in Eqg. (18). Then, for any
w E R, the point Bow, (0" P) is a critical point of E.

These theorems are easily obtained if we consider the
partial derivatives ofy, which are given by

En o o by,
a—w)(e)—;lg(w P x;0)),

9EH - ) ) ~To() i

O =2 — (7 IV 0)e@ X)), 1=]=H),
Vj =1 9z

, N ,

—‘;Eﬁ @)=y > e (Y7, 10 0) @' (W X)XMT, (1= = H).
W] =1 0z

(22

Note thatf™(x;0) = f" Vx; 0" Y) for 6 = 5, (8" )
or 0 = Bow (08 P). Itis easy to check that the conditions
Eqg. (21) make all the above derivatives zero.

The critical points in Theorems 1 and 2 consist of a line in
Oy if we mover € R andw € R, respectively. Note that
agy = Bow if W= (w,0")". Thus, these two embeddings
give the same critical point set. 8fis a critical point ofEy,
s0 isTy(0) for anyg € Gy. We have many critical lines in
@H'

The critical points in Theorems 1 and 2 do not cover all of
the critical points ofe,. We consider the special subset of
the critical points which appears because of the hierarchical
structure of the model.

4. Local minima of the MLP model
4.1. A condition for the existence of local minima

In this section, we show a condition that a critical point in
Theorem 1 is a local minimum or a saddle point. The usual
sufficient condition of a local minimum using the Hessian
matrix cannot be applied for a critical point in Theorem 1
and 2. The Hessian is singular, because a one-dimensional
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Fig. 5. Critical set with local minima and plateaus.

set including the point shares the same valueEgfin
common.

Let "~P be a point in@y_;. We define the following
(L + 1) X (L + 1) symmetric matrix:

N
oL _ _
A 5= o E p= (y(V)’f(H 1)(X(V); G(VH 1)))QD”(OZ*)~((V)))~((V))~((V)T.
=1

(23

Theorem 3. Let8! ™ be a local minimum of & ; such
that the Hessian matrix &Y is positive definite. Let,
be defined by Eqg. (18), andl'={0, € 640, =
A0 D) A € R}. A matrix A is defined by Eq. (23). If
A, is positive (negative) definite, any point in the $gt=
{0, € I''A(1 — A) > 0(<0)} is a local minimum of f, and
any point inI" — I is a saddle. If Ahas both positive and
negative eigenvalues, all the pointsfihare saddle points.

For the proof, see Appendix A.

Local minima given by Theorem 3, if any, appear as one
or two segments in a line. It is interesting that such a local
minimum can be changed into a saddle point without alter-
ing the functionf,"” when the point moves in the segment.
Fig. 5 illustrates the error surface around this critical set. We
show only two coordinate axes for variables: one is the
direction alongl” and the other is the direction that attains
the minimum and maximum values at the pointslarEach
point that looks like a maximum in the figure is a saddle
point in reality.

Note that, iff is a local minimum given by Theorem 3 the
image of the point by any transform @, is also a local

minimum. This can be easily proved because the local prop-
erty of Gy around the point does not change by the trans-
form. Therefore, the error function has many line segments
of local minima if the condition of Theorem 3 holds.

The critical points in Theorem 2 do not give local
minima.

Theorem 4. Any critical point given by Theorem 2 is a
saddle.

For the proof, see Appendix B.

The statements of Theorems 3 and 4 are also valid if we
consider the transform of the embedded point by grey
Gy. This can be proved easily because the local property
around the point is not changed by any transformGin
There are many saddle line segments, and line segments
of local minima if any.

4.2. Plateaus

We have proved that, whef, is positive or negative
definite, there exists a one-dimensional submanifoldf
critical points. The output function is the samelinThe set
I' is divided into two partd’gandl” — Iy, wherel 'y consists
of local minima andl” — I'y saddles.

If we map to the function spacey(I") consists of a single
point which is the common functidiyi, € 7},. Therefore,
if we consider the cost functioky as a function on%,
wy(I") is a saddle, becausg, takes both larger and smaller
values tharEy(0®) in any neighborhood of{l) in #.

It is interesting to see thdi, is attractive in its neighbor-
hood. Hence, any point in its small neighborhood is
attracted tol',. However, if we use online learning, in
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4.4. Numerical simulations

1.0 We have tried numerical simulations to exemplify local

minima given by Theorem 3 and plateaus described in

Section 4.2.
—— Target function f(x) In the first simulation, we use a network with one input
--- Local minima unit, one output unit and two hidden units. We do not use

0.5
] bias terms for simplicity. Note that there always exist local

minima in this case, sincd, is a scalar. We use the logistic
function ¢(t) = 1/(1 + e ") as the activation function, and
the mean square errtity, z) = 1/2|ly — 7 for the loss func-
tion. To obtain training data, 100 input data are generated
using a normal distribution with 0 as its mean and 4.0 as its
dJo 5 0 T s T T T o variance, and corresponding output data are obtaingd-as

X f(x) + Z, wheref(x) = 2¢(X) — ¢(4x) and Z is a random
variable subject to the normal variable with 0 as its mean
and 10 * as its variance. For a fixed set of training data, we
numerically calculate the global minimum of MLP with one
hidden unit using the steepest descent method. We update
which the parameter is updated with a training datum the parameter 20 000 times, and use the final state as the
presented one by one, the point attracted tofluctuates global minimum. Even if we try several different initial
randomly alongl’y by the learning dynamics. It eventually conditions the obtained results are almost the same. There-
escapes fronl” when it reached” — I'y. This takes a long  fore, we can consider it as an approximation of the global
time because of the nature of random fluctuation. This minimum 6Y with high accuracy. The parameter is given
explains that this type of critical points are serious plateaus. by . = 0.984 andu,, = 0.475 In this case, we have
This is a new type of saddle which has so far notremarked in A, = 1.910> 0. Then, any point in the setly=
nonlinear dynamics. This type of “intrinsic saddle” is given {(vy, Vo, Wy, Wo)|V1 + Vo = £o., ViV > 0, Wy = W, = Uy, } iS

0.0

Fig. 6. A local minimum in MLP(L = 1,H = 2).

rise to by the singular structure of the topology.f;. a local minimum. We set, = v, = {,./2 as0,(A = 1/2),
and evaluate the values Bf at a million points around, ,
4.3. Remarks which are generated using a four-dimensional normal distri-

bution with @, as its mean and 161, as its variance—covar-

The only property of tanh used in this paper is that it is iance matrix. As a result, all these values are larger than
odd. Kirkova and Kainen ((1994); Theorem 8) introduced E(0,). This experimentally verifies tha, is a local mini-
the notion of affinely recursive functions, and proved that if mum. The graphs of the target functibix) and the function
the activation function is odd or even and is not affinely given by the local minimunfi(x; 8.”) are shown in Fig. 6.
recursive, the functionally equivalent parameters are given Inthe second simulation, we use a network with two input
by interchanges and sign flips, neglecting compensation of units, one output unit and three hidden units. We do not use
constant. A functiorp : R — R is not affinely recursive ifand  bias terms also in this simulation. Thex2 matrix A, can
only if it has a nontrivial affine relatiop(t) = ag(wt + u) + b have both of a negative and a positive eigenvalue at the same
for a,w # 0 and an affine relatioﬁj”;l gowt+u)+b=0 time. The activation function is tanh, and the set of input data
of more than three components can be decomposed into affings 100 independent samples from the normal distribution with
relations of two components (For the precise definition, see 0 as its mean and 261, as its covariance matrix. The target
Klrkova and Kainen (1994).) Using this result, we can function is given by a function in the model, which is defined
deduce that2, is the same as for MLP models with an byv; =v, =v3 =1, w; = (2,17, w, = (1, —1)Tandw; =
odd or even activation function that is not affinely recursive, (0.5,0)". We numerically obtain the global minimum of the
and can determine the transform group for such MLP model with two hidden unit®'®, in the similar method to the
models. The group is still the same @g, while we must first simulation. There are many cases in which the matyix
replace the definition of a sign flip by, wj) — (v, —w;) has a negative and a positive eigenvalue, but for some sets of
for an even-activation function. Similar arguments in training data and initial parameters we can find the matrix
Section 2.2 are valid, and Theorems 1-4 also hold with positive or negative definite. Fig. 7 shows the graph of a
necessary modifications of the statements. A typical acti- function given by one of such local minima and the graph
vation function like the logistic function and Gaussian of the target function. The parameter of this local minimum is
function can be converted by an affine transform to an odd ¢;. = 1.864 {,. = —1.158 u,. = (—0.6800.247)' and
or even function that is not affinely recursive. Therefore, the u,, = (—0.905 —1.158". We numerically confirmed, in
results obtained in the above are applicable to a wide classthe same way as in the first simulation, that this is really a
of three-layer models. local minimum.
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Function of local minimum
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Fig. 7. A local minimum and the target in ML = 2,H = 3).

Next, we have tried to verify that this local minimum sudden steep decrease of the training error. Fig. 9 shows
causes a plateau. In this simulation, we use online learning,the behavior of the parameter, andw,. They move close
in which the parameter is updated with respect to only one to the parameteu,., which gives the local minimum, and
training data that is selected at that time. All of the training suddenly go away from it. This simulation verifies that local
data are used by turns, and training is repeated cyclically. minima given by Theorem 3 can give rise to plateaus as we
We observe the behavior of the parameter after setting it discussed in Section 4.2.
close to the one that gives the local minimum. Fig. 8 is the
graph of the value of error functioBy(0) during learning,
which shows a typical plateau until about 50 000 iterations. 5. Conclusion
One sequence of presenting all data is counted as one itera-
tion in this figure. We can see a very long time interval, in  We investigated the geometric structure of the parameter
which the error function decreases very slowly, and a space of multilayer perceptrons with — 1 hidden units
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Fig. 8. Value of the error function during learning.

embedded in the parameter spacéddiidden units. Based local minima once converge to it and have to escape from it
on the structure, we found a finite family of critical point by random fluctuation. These results are not dependent on the
sets of the error surface. We showed that a critical point of a specific form of activation functions nor the loss functions.
smaller network can be embedded into the parameter space We consider only networks with one output unit. The
as a critical point set of a one-dimensional affine space in extension of the result on existence of local minima is not
two ways. We further elucidated a condition that a point in straightforward. The image of the embeddipg form a

the image of one embedding is a local minimum, and critical line even in the M-dimensional output case.
showed that the image of the other embedding is a saddle.However, the critical line is contained in tiv-dimensional
From this result, we see that under one condition there existaffine space defined by + v, = ,., in which a point does
local minima as line segments in the parameter space, whichnot give a critical point in general, but defines the same
cause serious plateaus because all points around the set dhput—output function as the critical line. From Lemma 1

2

Number of iterations (log)

Fig. 9. Behavior of parameters.
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in Appendix A, we see that any point in the critical line isa ment of I" defined by:
saddle. We have not yet known about existence of local
minima in the case of r)rlmltiple output units. Ve, = {6207 V0 Vo, oo Vo WS, o W) € Oléy = £1.).
Theorems 3 and 4 mean that the critical points are saddles (A4)
in many cases. It is very important to know a condition on \ye havel’ N Ve, = 0,.1f 8, is alocal minimum inv,,_ for
the positive or negative definitenessff This is a difficult an arbitrary, El*FO. itis a local minimum also i, since
problem, because it deeply depends on the relation betweer, has the same value on each point of. It is trivial thak,if
the global minimum irdy,_;, and on the target and random-  i5 3 saddle point iV, , itis a saddle also i Thus, we

ness of training data. From the practical point of view, itis a1 reduce the problem to the HessiarEqfrestricted on
meaningful to see whether the saddle points in Theorems 3V§ We write it by %,
1" 81

and 4 are the only reason of plateaus. If this is true, we can  "Erom the definition ofy and &;, we have

effectively avoid them by the method of natural gradient

(Amari, 1998; Amari, Park & Fukumizu, 2000; Rattray, | emma 1. For any® € {0 e Oum =0},

Saad & Amari, 1998; Yang & Amari, 1998), because it

enlarges the gradient of the repulsive direction from by ﬂ(x. 0) =0 and i(x. 0)=0 (A5)
multiplying the inverse of the almost singular Fisher infor- ’ CIS

mation matrix. However, all of the above problems are left hold.

open.

Appendix A. Proof of Theorem 3 From Eq (A3), we have a|s<18f/8b)(9A) =0 and
(0f/9€5)(0)) = 0 (this is another proof of Theorem 2).

Proof. For simplicity, we change the order of the compo- Therefore, the second derivative Bf at 8, can be written

nents of 8" and 67 as (vy, o, Wy, W3, Vo, Vs, ... Viys as:

Wi, ... i)' and (&, 05, Lo, s, - > U3, -, 01", respec- e,

tively. We introduce a new coordinate system @f; to VVEL(6,) > E(y(”), f(xX",0,)VVi(x™,0,). (A6)

see the embedding, more explicitly. Let (¢.,m", &, =1

b7 Vo, Vs, ... iy, W3, ... W) be a coordinate system of

) Let w represent one of the coordinate components in
Oy —{0|v; + v, = 0}, where:

Em ', 2,07V, Va, .. Vi, W3, .., W), From Lemma 1,

_ 1 . _ at any point 6 € {q =0}, the second derivative
E=Vi—V,, M= v, W), (0%/0&, 9w)(®) = 0 and (9%F/am dw)(®) = 0 unless w =
(AD) 7 (1 = = L + 1). Combining this fact with the expression
ELE=vi—V, b= Wy + V2 Wo. of Eq. (A3), we have:
’ Vi + Vs vy + Vs ,
. . . . . d°E
This is well defined as a coordinate system since the inverse 5 aH 0, 0
is given by: G = mon . (A7)
) 9’y .
=36+ 36, Vo=—3&+ 36, - 0 260D lge(lH—l) ()
_ (A2)
Wy =b+ #ﬂ, W, =b— %ﬂ By simple calculation we can derive the following:
Using this coordinate system, the embedding is Lemma 2. Forany® € {6" € ©,|n =0},
expressed as: o2 o2
N N N X, 0) = ViVo ——— (X, 0) = V;Vo&,¢0" (b TOXXT (A8
Ya i (6203, o, Lav o G U3, s O on 61]( )=\ Zabab( ) = ViVl (D TROXXT (AB)
= (A= DE,0", 8,03, &, Lo -+ £ U5, - O holds.
(A3)

From this lemma, we have(d’Ey/om am)(0,) =
Note that in this definition we use the order of the compo- A(1 — A)Z3.A,. From the assumption, all the eigenvalues
nents introduced at the beginning of the proof. of (9°Ey_1/00 Y 90~ D)@0H V) are positive and,,
Let (Lps, Odes Lovs Lavs -oms Cin U, ..., Ofy) T be the compo- 0. Thus, if A, is positive or negative definite, all the eigen-
nent of@" . The critical point sef” is a one-dimensional  values of%,, atapointinl’ are positive, which mearts

affine space parallel t&;-axis with n =0, & = (., is a local minimum in®y. If A, has positive and negative
b =0, Vo={p Vj={§:EB8=]=H) and W, = 0,3 = eigenvalues, so doeg,, except for two points given by
j=H). A =0,1. Then, all the points il"— I'y are saddle points.

Let £;1. be theg; component ob,, andV,  be a comple- As for the two boundary points dfy, any neighborhood of
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them contains a point of — I',. Thus, the neighborhood
includes a point attaining largés; thanEy(0,) and a point
attaining smalleEy thanEy(0,). Thus, they are also saddle
points, and this completes the proof

Appendix B. Proof of Theorem 4

Proof. First, we show the following lemma.

Lemma 3. Let E®) be a function of class £and#. be a
critical point of E0). If in any neighborhood o8, there
exists a poin® such that £0) = E(0,.)) and(dE/90)(0) #= O,
then®.. is a saddle point.

Proof. LetU be a neighborhood d.. From the assump-
tion, we have a poind; € U such thatE(0,) < E(0,) and a
point 8, € U such thatE(0,) > E(0,). This meand, is a
saddle point. [J

Back to the proof of Theorem 4, note that
Biow @) € {ag@ )W € R-1}. In other words,
the critical line in Theorem 2 is embedded in an- 1
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