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Abstract

Local minima and plateaus pose a serious problem in learning of neural networks. We investigate the hierarchical geometric structure of
the parameter space of three-layer perceptrons in order to show the existence of local minima and plateaus. It is proved that a critical point of
the model withH 2 1 hidden units always gives many critical points of the model withH hidden units. These critical points consist of many
lines in the parameter space, which can cause plateaus in learning of neural networks. Based on this result, we prove that a point in the critical
lines corresponding to the global minimum of the smaller model can be a local minimum or a saddle point of the larger model. We give a
necessary and sufficient condition for this, and show that this kind of local minima exist as a line segment if any. The results are universal in
the sense that they do not require special properties of the target, loss functions and activation functions, but only use the hierarchical
structure of the model.q 2000 Elsevier Science Ltd. All rights reserved.
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1. Introduction

It has been believed that the error surface of multilayer
perceptrons (MLP) has in general many local minima. This
has been regarded as one of the disadvantages of neural
networks, and a great deal of effort has been paid to find
good methods of avoiding them and achieving the global
minimum.

There have been no rigorous results, however, to prove
the existence of local minima. Even in the simple example
of the XOR problem, existence of local minima had been a
controversial problem. Lisboa and Perantonis (1991) eluci-
dated all the critical points of the XOR problem and asserted
with a help of numerical simulations that some of them are
local minima. Recently, Hamney (1998) and Sprinkhuizen-
Kuyper and Boers (1998a,b) rigorously proved that what
have been believed to be local minima in Lisboa and
Perantonis (1991) correspond to local minima with infinite
parameter values, and that there always exists a strictly
decreasing path from each finite point to the global mini-
mum. Thus, there are no local minima in the finite weight
region for the XOR problem. Existence of local minima in

general cases has been an open problem in the rigorous
mathematical sense.

It is also difficult to derive meaningful results on local
minima from numerical experiments. In practical applica-
tions, we often see extremely slow dynamics around a point
that differs from the global minimum. However, it is not
easy to tell rigorously whether it is a local minimum. It is
known that a typical learning curve shows aplateauin the
middle of training, which causes very slow decrease of the
training error for a long time before a sudden exit from it
(Amari, 1998; Saad & Solla, 1995). A plateau can be easily
misunderstood as a local minimum in practical problems.

This paper discusses critical points of the MLP model,
which are caused by the hierarchical structure of the models
having a smaller number of hidden units. For simplicity, we
discuss only the MLP model with a one-dimensional output
in this paper. The input–output function space of networks
with H 2 1 hidden units is included in the function space of
networks with H hidden units. However, the relation
between the parameter spaces of these two models is not
so simple (see Chen, Lu & Hecht-Nielsen, 1993; Ru¨ger &
Ossen, 1997). Sussmann (1992) elucidated the condition
that a function described by a network withH hidden
units can be realized by a network withH 2 1 hidden
units in the case of activation function. In this paper, we
further investigate the geometric structure of the parameters
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of networks which are realizable by a network withH 2 1
hidden units. In particular, we elucidate how they can be
embedded in the parameter space ofH hidden units. Based
on the geometric structure, we show that a critical point of
the error surface for the MLP model withH 2 1 hidden
units gives a set of critical points in the parametric space
of the MLP withH hidden units.

The main purpose of the present paper is to show that a
subset of critical points corresponding to the global mini-
mum of a smaller network can be local minima or saddles of
the larger network. More precisely, the subset of critical
points on which the input–output behavior is the same is
divided into two parts, one consisting of local minima and
the other saddle points. We give an explicit condition when
this occurs. This gives a formal proof of the existence of
local minima for the first time. Moreover, the coexistence of
local minima and saddles in one equivalent set of critical
points explains a serious mechanism of plateaus: when such
is the case the network parameters are attracted in the part
of local minima, stay and walk randomly for a long time
in that flat region on which the performance is the same,
but eventually go out from the part of saddles in the
region. This is a new type of critical points in nonlinear
dynamics given rise to by the hierarchical structure of a
model.

This paper is organized as follows. In Section 2, after
showing the necessary definitions and terminologies, we
elucidate the geometric or topological structure of the para-
meter space. Section 3 discusses critical points of the error
surface. In Section 4, we mathematically prove the coexis-
tence of local minima and saddles under one condition. This
shows not only the existence of local minima but also a
possible mechanism of plateaus. We also show the results
of numerical simulations realizing local minima. Section 5
contains conclusion and discussion.

2. Geometric structure of the parameter space

2.1. Basic definitions

In this paper, we consider a three-layer perceptron with
one linear output unit andL input units. The input–output
relation of a network withH hidden units is described by the
function:

f �H��x; u�H�� �
XH
j�1

vjw�wT
j x 1 wj0�1 v0; �1�

where T denotes transposition,x � �x1;…; xL�T [ RL is an
input vector,wj � �wj1;…;wjL�T [ RL�1 # j # H� is the
weight vector of thejth hidden unit andu�H� � �v0; v1;

…; vH ;w10;w
T
1 ;…;wH0;w

T
H�T summarizes all the parameters

in one large vector. The functionw (t) is called an activation
function. In this paper, we use tanh forw . Introducing the

notations:

~x �
1

x

 !
[ RL11

; ~wj �
wj0

wj

 !
[ RL11

; �1 # j # H�;

�2�
for simplicity, we can write

f �H��x; u�H�� �
XH
j�1

vjw� ~wT
j ~x�1 v0: �3�

Using the result of Ku˚rkova and Kainen (1994), all the
theorems obtained in this paper are applicable for other
sigmoid- or bell-shaped activation functions with necessary
modifications. We will show this later. We use the linear
activation in the output layer. However, all the results are
easily extended to a model with a monotone nonlinear
output unit, because this causes only a nonlinear rescaling
of the output data.

Given N input–output training data {�x�n�; y�n��un �
1;…;N} ; we use a MLP model to realize the relation
expressed by the data. The objective of training is to find
the parameter that minimizes the error function defined by:

EH�u�H�� �
XN
n�1

`� y�n�; f �x�n�; u�H���; �4�

where`� y; z� is a loss function such that̀� y; z� $ 0 and
the equality holds if and only ify� z: When `� y; z� �
�1=2�iy 2 zi2

; the objective function is the mean square
error. We can use other loss functions such asLp norm
`� y; z� � 1=piy 2 zi p and the cross entropỳ � y; z� �
2s� y�log s �z�2 �1 2 s � y��log�1 2 s �z��; wheres (t) is
a sigmoidal function for the nonlinearity of the output
unit. The results in this paper are independent of the choice
of a loss function.

2.2. Hierarchical structure of MLP

The parameter vectoru(H) consists of aLH 1 2H 1 1
dimensional Euclidean spaceQH. Each u(H) gives a
nonlinear function Eq. (1) ofx; so that the set of all the
functions realized byQH is a function space described by:

SH � { f �H��x; u�H�� : RL ! Ruu�H� [ QH} : �5�
We denote the mapping fromQH ontoSH by

pH : QH ! SH ; u �H� 7! f �x; u�H��: �6�
We sometimes writef �H�u for pH(u).

It is important to note thatpH is not one-to-one, that is,
differentu(H) may give the same input–output function. The
interchange between�vj1;wj1� and�vj2;wj2� does not alter the
image ofpH. In the case of tanh activation function, Chen et
al. (1993) showed that any analytic mapT : QH ! QH such
that f �H��x;T�u�H��� � f �H��x; u�H�� is a composition of
hidden unit weight interchanges and hidden unit weight
sign flips, which later are defined by�vj ; ~wj� 7! �2vj ;2 ~wj�:

K. Fukumizu, S. Amari / Neural Networks 13 (2000) 317–327318



These transforms consist of an algebraic groupGH, which is
isomorphic to a direct product of Weyl groups. We writeTg

for the transform given byg [ GH :

The function spacesSH �H � 0; 1;2;…� have a trivial
hierarchical structure:

S0 , S1 , … , SH21 , SH , …: �7�
The inclusion is denoted byiH21 : SH21 a SH : On the
other hand, the parameter space of the smaller networks is
not canonically included inQH. Given a functionf �H21�

u

realized by a network withH 2 1 hidden units, there are a
family of networks withH hidden units and parametersu(H)

that realizes the same functionf �H21�
u : In other words, a map

from uH21 to uH that commutes the following diagram is not
unique.

�8�

The set of all the parametersu(H) that realize the input–
output functions of networks withH 2 1 hidden units is
denoted by:

VH � p21
H �iH21�SH21��: �9�

From Sussmann’s result (Sussmann, 1992; Theorem 1 and
its corollary), the parameter setVH is the union of the
following submanifolds ofQH (see Fig. 1):

A j � {u �H� [ QH uvj � 0} �1 # j # H�; �10�

Bj � {u �H� [ QH uwj � 0} �1 # j # H�; �11�

C^
j1j2 � {u�H� [ QH u ~wj1 � ^ ~wj2} �1 # j1 , j2 # H�:

�12�
Here,Aj is the set of parameters wherevj � 0 so that thejth
hidden units plays no role. Similarly, thejth hidden unit has
0 weight inBj so that it outputs only a constant bias term. In
C^

j1j2; the j1th hidden unit andj2th hidden unit have the same
(or opposite) weight vector and bias, so that their behaviors
are the same (opposite). They may be integrated into one

unit, wherev1 ^ v2 is the weight of the new unit to the
output unit. From the viewpoint of mathematical statistics,
it is also proved by Fukumizu (1996) thatV is the set of all
the points at which the Fisher information matrix is singular.

We further investigate how each function inSH21 is. Let
f �H21�
u �H21� be a function inSH21–SH22: To distinguishQH21

fromQH, we use different parameter variables and indexing:

f �H21��x; u�H21�� �
XH
j�2

z jw� ~uT
j ~x�1 z0: �13�

Let VH�u �H21�� be the set of parametersu(H) that realizes a
given f �H21�

u�H21� ;

VH�u �H21�� � p21
H �iH21� f �H21�

u�H21� �: �14�
Then,VH�u �H21�� is the union of the submanifolds in each
of Aj, Bj andC^

j1j2: For simplicity, we show only an exam-
ple of the submanifolds ofA1, B1 andC1

12;

L � {u�H� [ QH uv1 � 0; v0 � z0; vj � zj ; ~wj � ~uj ;

�2 # j # H�}
J � {u �H� [ QH uw1 � 0; v1w�w10�1 v0 � z0; vj � zj ; ~wj � ~uj ;

�2 # j # H�}
G � {u �H� [ QH u ~w1 � ~w2 � ~u2; v0 � z0; v1 1 v2 � z2; vj � zj ;

~wj � ~uj ; �3 # j # H�} : (15)

The submanifoldL is an L 1 1 dimensional affine space
parallel to thew̃1-plane because~w1 may take arbitrary
values in it, but all the other components ofu(H) are deter-
mined by prescribedu �H21�

: The setJ is a two-dimensional
submanifold defined by a nonlinear equation:

v1w�w10�1 v0 � z0; �16�
wherev0, v1 andw10 can take arbitrary values provided they
satisfy the above. TheG set is a line in thev1v2-plane,
defined byv1 1 v2 � z2: It is known that all the other
components inV�u �H21�� are obtained as the transforms
of L , J and G by g [ GH (Kůrkova & Kainen, 1994;
Sussmann, 1992). For example, the image ofG by the
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sign flip about the second hidden unit is given by:

G �21� � {u�H� [ QH u ~w1 � 2 ~w2 � ~u2; v0 � z0; v1 2 v2 � z2;

vj � zj ; ~wj � ~uj ; �3 # j # H�} : (17)

The image ofL , J andG by a hidden-unit interchange is
trivial. Thus, each function of a smaller network is realized
not by discrete points but by high-dimensional submanifolds
in VH.

In order to make analysis more concrete, we give a definite
correspondence betweenQH21 andQH that realize the same
function. We define the following canonical embeddings of
QH21 into QH, which commute the diagram (8), using~w [
R L11

; �v;w� [ R2 andl [ R as their parameters.

a ~w : QH21 ! QH ; u �H21� 7! �z0; 0; z2;…; zH ; ~w
T
; ~uT

2 ;…; ~uT
H�T;

b�v;w� : QH21 ! QH ; u �H21� 7! �z0 2 vw�w�; v; z2;…; zH ;

�w; 0T�; ~uT
2 ;…; ~uT

H�T;
gl : QH21 ! QH ;

u �H21� 7! �z0; lz2; �1 2 l�z2; z3;…; zH ; ~u
T
2 ; ~u

T
2 ; ~u

T
3 ;…; ~uT

H�T:
�18�

These maps are illustrated in Figs. 2–4. If we change the
parameter of each embedding, the images ofu(H21) span the

components,L , J andG , of VH�u �H21��; that is:

L � {a ~w�u�H21��u ~w [ RL11} ;

J � {b�v;w��u �H21��u�v;w� [ R2} :

G � {gl�u �H21��ul [ R} :

�19�

3. Critical points of the MLP model

3.1. Learning and critical points

Generally, the optimum parameter cannot be calculated
analytically when the model is nonlinear. Some numerical
optimization method is needed to obtain its approximation.
One widely used method is the steepest descent method,
which leads to a learning rule given by:

u�t 1 1� � u�t�2 d
2EH�u�t��

2u
; �20�

where d is a learning rate. Ifup is the global minimum,
�2EH=2u��up� � 0 holds and the above learning rule stops
there. However, we cannot always obtain the global mini-
mum, since all the points that satisfy�2EH=2u��u� � 0 are
stationary points of Eq. (20). Such a point is called acritical
point of EH.

There are three types of critical point: a local minimum, a
local maximum and a saddle point. A critical pointu0 is called
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a local minimum(maximum) if there exists a neighborhood
aroundu0 such that for any pointu in the neighborhood
EH�u� $ EH�u0� �EH�u� # EH�u0� holds, and called asaddle
if it is neither a local minimum nor a local maximum, that is, if
in an arbitrary neighborhood ofu0 there is a point at whichEH

is smaller thanEH(u0) and a point at whichEH is larger than
EH(u0). It is well known that if the Hessian matrix at a critical
point is strictly positive (negative) definite, the critical point is
a local minimum (maximum), and if the Hessian has both
positive and negative eigenvalues it is a saddle.

3.2. Existence of critical points

It is very natural to look for a critical point ofEH in the set
VH � p21

H �iH21�SH21��; because a critical point ofEH21

already satisfies some of the conditions of a critical point of
EH.

Let u�H21�
p � �z0p; z2p;…; zHp; ~u

T
2p;…; ~uT

Hp�T [ QH21

2QH22 be a critical point ofEH21. It really exists if we
assume that the global minimum ofEH21 is isolated,
which means it is not included inQH22. This assumption is
practically plausible, because, for a set of data which is fitted
well with H hidden units, the optimum network withH 2 1
hidden units has no redundant hidden units in general.

At the critical point, the following equations hold for 2#
j # H;

2EH21

2z0
�u �H21�

p � �
XN
n�1

2`

2z
� y�n�; f �H21��x�n�; u�H21�

p �� � 0;

2EH21

2zj
�u�H21�

p �

�
XN
n�1

2`

2z
� y�n�; f �H21��x�n�; u�H21�

p ��w� ~uT
jp ~x
�n�� � 0;

2EH21

2 ~uj
�u�H21�

p �

� zjp

XN
n�1

2`

2z
� y�n�; f �H21��x�n�;u�H21�

p ��w 0� ~uT
jp ~x
�n��~x�n�T � 0T

;

�21�
We have two kinds of critical points.

Theorem 1. Letgl be as in Eq. (18). Then, for anyl [ R;

the pointgl�u�H21�
p � is a critical point of EH.

Theorem 2. Let b (v,w) be as in Eq. (18). Then, for any
w [ R; the pointb�0;w��u�H21�

p � is a critical point of EH.

These theorems are easily obtained if we consider the
partial derivatives ofEH, which are given by

2EH

2v0
�u� �

XN
n�1

2`

2z
� y�n�; f �H��x�n�; u��;

2EH

2vj
�u� �

XN
n�1

2`

2z
� y�n�; f �H��x�n�; u��w� ~wT

j ~x
�n��; �1 # j # H�;

2EH

2 ~wj
�u� � vj

XN
n�1

2`

2z
� y�n�; f �H��x�n�;u��w 0� ~wT

j ~x
�n��~x�n�T; �1 # j # H�:

�22�
Note that f �H��x; u� � f �H21��x; u�H21�

p � for u � gl�u�H21�
p �

or u � b�0;w��u�H21�
p �: It is easy to check that the conditions

Eq. (21) make all the above derivatives zero.
The critical points in Theorems 1 and 2 consist of a line in

QH if we movel [ R andw [ R; respectively. Note that
a ~w � b�0;w� if ~w � �w;0T�T: Thus, these two embeddings
give the same critical point set. Ifu is a critical point ofEH,
so isTg(u) for anyg [ GH : We have many critical lines in
QH.

The critical points in Theorems 1 and 2 do not cover all of
the critical points ofEH. We consider the special subset of
the critical points which appears because of the hierarchical
structure of the model.

4. Local minima of the MLP model

4.1. A condition for the existence of local minima

In this section, we show a condition that a critical point in
Theorem 1 is a local minimum or a saddle point. The usual
sufficient condition of a local minimum using the Hessian
matrix cannot be applied for a critical point in Theorem 1
and 2. The Hessian is singular, because a one-dimensional
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set including the point shares the same value ofEH in
common.

Let u �H21�
p be a point inQH21. We define the following

�L 1 1� × �L 1 1� symmetric matrix:

A2 � z2p

XN
n�1

2`

2z
� y �n�; f �H21��x�n�; u�H21�

p ��w 00� ~uT
2p ~x
�n��~x�n� ~x�n�T:

�23�

Theorem 3. Let u�H21�
p be a local minimum of EH21 such

that the Hessian matrix atu�H21�
p is positive definite. Letgl

be defined by Eq. (18), andG � {ul [ QH uul �
gl�u �H21�

p �;l [ R} : A matrix A2 is defined by Eq. (23). If
A2 is positive (negative) definite, any point in the setG0 �
{ul [ G ul�1 2 l� . 0�,0�} is a local minimum of EH, and
any point inG 2 G0 is a saddle. If A2 has both positive and
negative eigenvalues, all the points inG are saddle points.

For the proof, see Appendix A.
Local minima given by Theorem 3, if any, appear as one

or two segments in a line. It is interesting that such a local
minimum can be changed into a saddle point without alter-
ing the functionf �H�u when the point moves in the segment.
Fig. 5 illustrates the error surface around this critical set. We
show only two coordinate axes for variables: one is the
direction alongG and the other is the direction that attains
the minimum and maximum values at the points onG . Each
point that looks like a maximum in the figure is a saddle
point in reality.

Note that, ifu is a local minimum given by Theorem 3 the
image of the point by any transform inGH is also a local

minimum. This can be easily proved because the local prop-
erty of GH around the point does not change by the trans-
form. Therefore, the error function has many line segments
of local minima if the condition of Theorem 3 holds.

The critical points in Theorem 2 do not give local
minima.

Theorem 4. Any critical point given by Theorem 2 is a
saddle.

For the proof, see Appendix B.
The statements of Theorems 3 and 4 are also valid if we

consider the transform of the embedded point by anyg [
GH : This can be proved easily because the local property
around the point is not changed by any transform inGH.
There are many saddle line segments, and line segments
of local minima if any.

4.2. Plateaus

We have proved that, whenA2 is positive or negative
definite, there exists a one-dimensional submanifoldG of
critical points. The output function is the same inG . The set
G is divided into two partsG0 andG 2 G0; whereG0 consists
of local minima andG 2 G0 saddles.

If we map to the function space,pH(G ) consists of a single
point which is the common functionf �H�

u �H� [ SH : Therefore,
if we consider the cost functionEH as a function onSH,
pH(G ) is a saddle, becauseEH takes both larger and smaller
values thanEH(u(H)) in any neighborhood off �H�

u �H� in SH.
It is interesting to see thatG0 is attractive in its neighbor-

hood. Hence, any point in its small neighborhood is
attracted toG0. However, if we use online learning, in
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which the parameter is updated with a training datum
presented one by one, the point attracted toG0 fluctuates
randomly alongG0 by the learning dynamics. It eventually
escapes fromG when it reachesG 2 G0: This takes a long
time because of the nature of random fluctuation. This
explains that this type of critical points are serious plateaus.
This is a new type of saddle which has so far not remarked in
nonlinear dynamics. This type of “intrinsic saddle” is given
rise to by the singular structure of the topology ofSH.

4.3. Remarks

The only property of tanh used in this paper is that it is
odd. Kůrkova and Kainen ((1994); Theorem 8) introduced
the notion of affinely recursive functions, and proved that if
the activation function is odd or even and is not affinely
recursive, the functionally equivalent parameters are given
by interchanges and sign flips, neglecting compensation of
constant. A functionw : R! R is not affinely recursive if and
only if it has a nontrivial affine relationw�t� � aw�wt 1 u�1 b
for a;w ± 0 and an affine relation

Pm
j�1 ajw�wjt 1 uj�1 b� 0

of more than three components can be decomposed into affine
relations of two components (For the precise definition, see
Kůrkova and Kainen (1994).) Using this result, we can
deduce thatVH is the same as for MLP models with an
odd or even activation function that is not affinely recursive,
and can determine the transform group for such MLP
models. The group is still the same asGH, while we must
replace the definition of a sign flip by�vj ;wj� 7! �vj ;2wj�
for an even-activation function. Similar arguments in
Section 2.2 are valid, and Theorems 1–4 also hold with
necessary modifications of the statements. A typical acti-
vation function like the logistic function and Gaussian
function can be converted by an affine transform to an odd
or even function that is not affinely recursive. Therefore, the
results obtained in the above are applicable to a wide class
of three-layer models.

4.4. Numerical simulations

We have tried numerical simulations to exemplify local
minima given by Theorem 3 and plateaus described in
Section 4.2.

In the first simulation, we use a network with one input
unit, one output unit and two hidden units. We do not use
bias terms for simplicity. Note that there always exist local
minima in this case, sinceA2 is a scalar. We use the logistic
functionw�t� � 1=�1 1 e2t� as the activation function, and
the mean square errorl� y; z� � 1=2iy 2 zi2 for the loss func-
tion. To obtain training data, 100 input data are generated
using a normal distribution with 0 as its mean and 4.0 as its
variance, and corresponding output data are obtained asy�
f �x�1 Z; where f �x� � 2w�x�2 w�4x� and Z is a random
variable subject to the normal variable with 0 as its mean
and 1024 as its variance. For a fixed set of training data, we
numerically calculate the global minimum of MLP with one
hidden unit using the steepest descent method. We update
the parameter 20 000 times, and use the final state as the
global minimum. Even if we try several different initial
conditions the obtained results are almost the same. There-
fore, we can consider it as an approximation of the global
minimum u�1�p with high accuracy. The parameter is given
by z2p � 0:984 andu2p � 0:475: In this case, we have
A2 � 1:910. 0: Then, any point in the setG0 �
{ �v1; v2;w1;w2�uv1 1 v2 � z2p; v1v2 . 0;w1 � w2 � u2p} is
a local minimum. We setv1 � v2 � z2p=2 asul�l � 1=2�;
and evaluate the values ofE2 at a million points aroundul ,
which are generated using a four-dimensional normal distri-
bution withul as its mean and 1026I4 as its variance–covar-
iance matrix. As a result, all these values are larger than
E(ul). This experimentally verifies thatul is a local mini-
mum. The graphs of the target functionf �x� and the function
given by the local minimumf �x; u �1�p � are shown in Fig. 6.

In the second simulation, we use a network with two input
units, one output unit and three hidden units. We do not use
bias terms also in this simulation. The 2× 2 matrix A2 can
have both of a negative and a positive eigenvalue at the same
time. The activation function is tanh, and the set of input data
is 100 independent samples from the normal distribution with
0 as its mean and 25× I2 as its covariance matrix. The target
function is given by a function in the model, which is defined
by v1 � v2 � v3 � 1; w1 � �2;1�T; w2 � �1;21�Tandw3 �
�0:5;0�T: We numerically obtain the global minimum of the
model with two hidden units,u�2�p ; in the similar method to the
first simulation. There are many cases in which the matrixA2

has a negative and a positive eigenvalue, but for some sets of
training data and initial parameters we can find the matrix
positive or negative definite. Fig. 7 shows the graph of a
function given by one of such local minima and the graph
of the target function. The parameter of this local minimum is
z1p � 1:864; z2p � 21:158; u1p � �20:680;0:247�T and
u2p � �20:905;21:158�T: We numerically confirmed, in
the same way as in the first simulation, that this is really a
local minimum.
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Fig. 6. A local minimum in MLP�L � 1;H � 2�:



Next, we have tried to verify that this local minimum
causes a plateau. In this simulation, we use online learning,
in which the parameter is updated with respect to only one
training data that is selected at that time. All of the training
data are used by turns, and training is repeated cyclically.
We observe the behavior of the parameter after setting it
close to the one that gives the local minimum. Fig. 8 is the
graph of the value of error functionE3(u) during learning,
which shows a typical plateau until about 50 000 iterations.
One sequence of presenting all data is counted as one itera-
tion in this figure. We can see a very long time interval, in
which the error function decreases very slowly, and a

sudden steep decrease of the training error. Fig. 9 shows
the behavior of the parameterw1 andw2. They move close
to the parameteru1p, which gives the local minimum, and
suddenly go away from it. This simulation verifies that local
minima given by Theorem 3 can give rise to plateaus as we
discussed in Section 4.2.

5. Conclusion

We investigated the geometric structure of the parameter
space of multilayer perceptrons withH 2 1 hidden units
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Fig. 7. A local minimum and the target in MLP�L � 2;H � 3�:



embedded in the parameter space ofH hidden units. Based
on the structure, we found a finite family of critical point
sets of the error surface. We showed that a critical point of a
smaller network can be embedded into the parameter space
as a critical point set of a one-dimensional affine space in
two ways. We further elucidated a condition that a point in
the image of one embedding is a local minimum, and
showed that the image of the other embedding is a saddle.
From this result, we see that under one condition there exist
local minima as line segments in the parameter space, which
cause serious plateaus because all points around the set of

local minima once converge to it and have to escape from it
by random fluctuation. These results are not dependent on the
specific form of activation functions nor the loss functions.

We consider only networks with one output unit. The
extension of the result on existence of local minima is not
straightforward. The image of the embeddinggl form a
critical line even in the M-dimensional output case.
However, the critical line is contained in theM-dimensional
affine space defined byv1 1 v2 � z2p; in which a point does
not give a critical point in general, but defines the same
input–output function as the critical line. From Lemma 1
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Fig. 8. Value of the error function during learning.

Fig. 9. Behavior of parameters.



in Appendix A, we see that any point in the critical line is a
saddle. We have not yet known about existence of local
minima in the case of multiple output units.

Theorems 3 and 4 mean that the critical points are saddles
in many cases. It is very important to know a condition on
the positive or negative definiteness ofA2. This is a difficult
problem, because it deeply depends on the relation between
the global minimum inQH21, and on the target and random-
ness of training data. From the practical point of view, it is
meaningful to see whether the saddle points in Theorems 3
and 4 are the only reason of plateaus. If this is true, we can
effectively avoid them by the method of natural gradient
(Amari, 1998; Amari, Park & Fukumizu, 2000; Rattray,
Saad & Amari, 1998; Yang & Amari, 1998), because it
enlarges the gradient of the repulsive direction from by
multiplying the inverse of the almost singular Fisher infor-
mation matrix. However, all of the above problems are left
open.

Appendix A. Proof of Theorem 3

Proof. For simplicity, we change the order of the compo-
nents of u(H) and u(H21) as �v1; v2; ~w

T
1 ; ~w

T
2 ; v0; v3;…; vH ;

~wT
3 ;…; ~wT

H�T and �z2; ~u
T
2 ; z0; z3;…; zH ; ~u

T
3 ;…; ~uT

H�T; respec-
tively. We introduce a new coordinate system ofQH to
see the embeddinggl more explicitly. Let �j1;h

T
; j2;

b T
; v0; v3;…; vH ; ~w

T
3 ;…; ~wT

H�T be a coordinate system of
QH 2 {u �H�uv1 1 v2 � 0} ; where:

j1 � v1 2 v2; h � 1
v1 1 v2

� ~w1 2 ~w2�;

j2 � v1 2 v2; b � v1

v1 1 v2
~w1 1

v2

v1 1 v2
~w2:

�A1�

This is well defined as a coordinate system since the inverse
is given by:

v1 � 1
2 j1 1 1

2 j2; v2 � 2 1
2 j1 1 1

2 j2;

~w1 � b 1
2j1 1 j2

2
h; ~w2 � b 2

j1 1 j2

2
h:

�A2�

Using this coordinate system, the embeddinggl is
expressed as:

gl : �z2; ~u
T
2 ; z0; z3;…; zH ; ~u

T
3 ;…; ~uT

H�T

7! ��2l 2 1�z2;0
T
; z2; ~u

T
2 ; z2; z3;…; zH ; ~u

T
3 ;…; ~uT

H�T:
�A3�

Note that in this definition we use the order of the compo-
nents introduced at the beginning of the proof.

Let �z2p; ~u
T
2p; z0p; z3p;…; zHp; ~u

T
3p;…; ~uT

Hp�T be the compo-
nent ofu�H21�

p : The critical point setG is a one-dimensional
affine space parallel toj 1-axis with h � 0; j2 � z2p;

b � ~u2p; v0 � z0p; vj � zjp�3 # j # H� and ~wj � ~ujp�3 #
j # H�:

Let j1p be thej1 component oful , andVj 1p
be a comple-

ment ofG defined by:

Vj1p
:� { �j1;h

T
; j2; b

T
; v0; v3;…; vH ; ~w

T
3 ;…; ~wT

H�T [ QH uj1 � j1p} :

�A4�
We haveG > Vj1p

� ul: If ul is a local minimum inVj1p
for

an arbitraryul [ G0: it is a local minimum also inQH, since
EH has the same value on each point of. It is trivial that iful

is a saddle point inVj1p
, it is a saddle also inQH. Thus, we

can reduce the problem to the Hessian ofEH restricted on
Vj1p

. We write it byGj1p
:

From the definition ofh andj1, we have

Lemma 1. For anyu [ {u �H� [ QH uh � 0} ;

2f
2h
�x; u� � 0 and

2f
2j1
�x; u� � 0 �A5�

hold.

From Eq. (A3), we have also�2f =2b��ul� � 0 and
�2f =2j2��ul� � 0 (this is another proof of Theorem 2).
Therefore, the second derivative ofEH at ul can be written
as:

77EH�ul�
XN
n�1

2`

2z
� y �n �; f �x�n �;ul ��77f �x �n�;ul �: �A6�

Let v represent one of the coordinate components in
�j1;h

T
; j2;b

T
; v0; v3;…; vH ; ~w

T
3 ;…; ~wT

H�: From Lemma 1,
at any point u [ {h � 0} ; the second derivative
�22f =2j1 2v��u� � 0 and �2 2f =2h 2v��u� � 0 unlessv �
hj �1 # j # L 1 1�: Combining this fact with the expression
of Eq. (A3), we have:

Gj1p
�

2 2EH

2h 2h
�ul� 0

0
22EH21

2u�H21� 2u�H21� �u�H21�
p �

0BBBB@
1CCCCA: �A7�

By simple calculation we can derive the following:

Lemma 2. For anyu [ {u�H� [ QH uh � 0} ;

2 2f
2h 2h

�x; u� � v1v2
22f

2b 2b
�x; u� � v1v2j2w

00�b T ~x�~x~xT �A8�

holds.

From this lemma, we have�22EH=2h 2h��ul� �
l�1 2 l�z2

2pA2: From the assumption, all the eigenvalues
of �22EH21=2u

�H21� 2u�H21���u�H21�
p � are positive andz2p ±

0: Thus, if A2 is positive or negative definite, all the eigen-
values ofGj1p

at a point inG0 are positive, which meansul

is a local minimum inQH. If A2 has positive and negative
eigenvalues, so doesGj1p

except for two points given by
l � 0;1: Then, all the points inG 2 �G 0 are saddle points.
As for the two boundary points ofG0, any neighborhood of
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them contains a point ofG 2 �G 0: Thus, the neighborhood
includes a point attaining largerEH thanEH(ul) and a point
attaining smallerEH thanEH(ul ). Thus, they are also saddle
points, and this completes the proof.A

Appendix B. Proof of Theorem 4

Proof. First, we show the following lemma.

Lemma 3. Let E�u� be a function of class C1, andup be a
critical point of E�u�: If in any neighborhood ofup there
exists a pointu such that E�u� � E�up� and�2E=2u��u� ± 0;
thenup is a saddle point.

Proof. Let U be a neighborhood ofup. From the assump-
tion, we have a pointu1 [ U such thatE�u1� , E�up� and a
point u2 [ U such thatE�u2� . E�up�: This meansup is a
saddle point. A

Back to the proof of Theorem 4, note that
b�0;w��u �H21�

p � [ {a ~w�u�H21�
p �u ~w [ RL11} : In other words,

the critical line in Theorem 2 is embedded in anL 1 1
dimensional plane that gives the same function as the criti-
cal line. However, the pointa ~w�u�H21�

p � is not a critical point
for w ± 0; because 2EH =2v1 ± 0 in general. Thus,
b�0;w��u�H21�

p � satisfies the assumption of Lemma 3.A
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