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Abstract The fast and robust automated quality visual
inspection has received increasing attention in the prod-
uct quality control for production efficiency. To effectively
detect defects in products, many methods focus on the hand-
crafted optical features. However, these methods tend to
only work well under specified conditions and have many
requirements for the input. So the work in this paper tar-
gets on building a deep model to solve this problem. The
elaborately designed deep convolutional neural networks
(CNN) proposed by us can automatically extract power-
ful features with less prior knowledge about the images for
defect detection, while at the same time is robust to noise.
We experimentally evaluate this CNN model on a bench-
mark dataset and achieve a fast detection result with a high
accuracy, surpassing the state-of-the-art methods.

Keywords Product quality control · Defect detection ·
Convolutional neural networks

1 Introduction

As an important part of the product quality control, the
quality visual inspection of products is gaining more and
more attention in the industrial manufacture [1–4]. It aims
to ensure the product quality by detecting defects by visual
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means. In the production process, the low product quality
will do no good but harm to any of the participants. On
the one hand, the quality of products will affect the pro-
duction efficiency, since products with poor quality will
crimp the sales and they are only a waste of raw materials
and costs money. On the other hand, product quality relates
to the products in the market share and the credibility of
the factory. Only products with high-quality can obtain the
long-term occupation of the market. However, in the process
of quality visual inspection, many factories still use artifi-
cial methods to do defect detection, which rely heavily on
the manpower and consume much financial resources. Since
a person’s own energy is limited and the human inspec-
tion job is trivial, workers with long-time continuous work
may reduce production efficiency because of fatigue, and
this will lead to the problem of product quality testing and
heavy economic losses brought by the human error. To this
end, it is urgent to bring automated defect detection into the
production process.

With the rapid development of computer technology and
the expansion of its application fields [5, 6], computer vision
has been successfully applied in the quality inspection of
various industrial products, including steel slabs, glass prod-
ucts, fabrics, polycrystalline solar wafers, and so on. These
methods tend to design different algorithms to extract image
features based on actual defect detecion conditions. For
the steel slab, a vision-based automatic detection technique
was proposed in [1] to detect steel surface defects, like
cracks and scratches covered by industrial liquids in the
cold rolling process. In this work only one parameter was
needed to be preset at first, and once selected properly, this
parameter was robust to defective images of different types.
For glass products, the PCA-based defect inspection sys-
tem for mobile phone cover glasses in [2] was proposed,
which can not only recognize several defect types such as
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scratch, crack, deformation, edge broken, and angle cut-
ting simultaneously, but can also recognize the defect type
robustly different from others based on the defect shapes
or structures. Another kind of glass manufacturing was also
introduced in paper [3]. It presented an intelligent system
based on computer vision for the automatic inspection of
2 kinds of defects in glass products, one was the critical
defect in glass cups for food packaging and domestic use
called glass sparkle or fragment of glass, and the other was
the defect called deformation in plates. For fabrics defect
detection [4], most algorithms employed Gabor filters and
Gabor wavelet filters [7–9]. In the work of [10], an embed-
ded machine vision system using Gabor filters and Pulse
Coupled Neural Network (PCNN) was developed to iden-
tify defects of warp-knitted fabrics automatically, which
consisted of image enhancement implemented by Gabor fil-
tering with optimal parameters to make the defects more
obvious, and image segmentation achieved by a parameter
adaptive PCNN layer by layer. Different from the Gabor fil-
ter, the paper [11] proposed a regularity measurement for
defect detection in non-textured and homogeneously tex-
tured images using principal component analysis (PCA),
which is an orthogonal transformation to transform linearly
and non-linearly the correlation of the source variables into
a subspace in which the variables are not correlated. It is
widely used in feature extraction and data compression and
usually used for data preprocessing in the defect detection.
For example, the paper [12] characterized an approach to
defect isolation for the multi-variable process by wavelet
PCA, which was implemented on a statistic system and the
Tennessee Eastman process to obtain satisfactory perfor-
mance.

The widely used defect detection methods have many
restrictions like sensitive to light conditions, needed to be
redesigned when new problems arise and so on. With the
development of big data [13, 14] and the enhancement of
computer computing ability, deep learning strategies have
been successfully applied in various fields. The deep convo-
lutioal neural networks (CNN), a representative of them, can
learn a hierarchy of features from the raw image input by
automatically update the filters during training on massive
amounts of training data. For defect detecion, the paper [15]
proposed a novel deep CNN architecture to detect defects,
which taked all types of defect free and defective samples
together as the input. This model is a 12-class classifier: 6
defect free classes and 6 defective classes.

In our work, we propose a elaborately designed joint
detection CNN architecture to address the defect detec-
tion problem. This network can automatically extract useful
robust features and it works in a two-fold procedure that for
an image sample, firstly the sample class is decided based
on its background texture information, and then whether it
contains defective regions or not is indicated. Our model

works very fast on the validation stage and achieve a
satisfactory correct defect detection rate.

2 Methodology

We use the CNN architecture for defect detection in our
work. And this part is organized as follows. We firstly
provide some theoretical background information about
the CNN network needed for the model in Section 2.1.
Then, we briefly describe the database used in our work
in Section 2.2. Section 2.3 centers on the proposed CNN
framework of our model. And Section 2.4 demonstrates the
critical training details.

2.1 Convolutional neural networks

The convolutional neural networks (CNN) is one typical
type of the artificial neural networks (ANN). The CNN can
automatically learn a hierarchy of features from the input
image matrices, which prove to be better than those hand-
crafted features extracted by carefully designed complex
algorithms. In the recent years, the CNN model has made a
major breakthrough in computer vision and is widely used
in a variety of applications such as image classification [16],
image segmentation [17], object tracking [18], and so on.
Due to the delicate design of the CNN architecture including
weight parameter sharing and pooling operations, the CNN
is easier to train with fewer connections and less parameters,
and the learnt features tend to be shift invarient.

A typical CNN architecture consists of several nested
convolutional and pooling layers followed by fully con-
nected layers at the end. A simplified presentation of this
kind of network can be [Input - Conv - ReLU - Pool - FC]:

– Input: The input of the CNN tends to be the 3-channel
color image or 1-channel gray image matrices contain-
ing the intensity values at each position.

– Conv: The convolutional layers apply a set of filters
each of which is connected to only a small regions of
the output of last layer called the receptive field. And
the filters are usually learnable matrices during train-
ing with samll size like 3 × 3 or 5 × 5. The parameter
sharing scheme is applied in the convolution operations
that one filter is convolved over the whole image input
across the spatial dimensions to extract one feature.

– ReLU: ReLU (Rectified Linear Units) is the most
widely used activation function by adding non-linear
transformations to the output response of the convolu-
tional or fully connected layers. The formula of this
function is f (x) = max(0, x). As one of the sev-
eral keys to the recent success of the deep networks
[16], ReLU can effectively prevent the gradients from
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saturating, expedite convergence of the training proce-
dure while at the same time keep the original value to
the most extent, which proves to be experimental better
than conventional sigmoid-like activation functions [16,
19].

– Pool: The pooling layer performs a form of non-linear
down-sampling along the both spatial dimensions, lead-
ing to reduced spatial size of the output. It aims to
reduce the amount of the network parameters and the
computation cost. The pooling layer is common to be
placed between two successive convolutional layers and
the most common pooling strategy is max pooling,
which outputs the max value from the neighborhood of
the input feature map.

– FC: The fully connected layers are the last part of the
neural networks. All the neurons in the fully connected
layers are connected to all the units of last layer. And
the last fully connected layer generates the output of
the whole network with K neurons, the same number
as the input labels. Each value of the K-dimensional
output represents the probability of the corresponding
label with the help of the softmax function:

p(zi) = exp(zi)
∑K

i=1 exp(zi)
, (1)

where zi denotes the ith value computed by the second
last layer and p(zi) denotes the prediction probability.

After all these layers stack together to form a complete
CNN, the input is fed forward into the network for decision
making. And the hyperparameters are updated by the back
propagation algorithm.

2.2 The dataset

A benchmark dataset [20] is proposed by the competition
called “Weakly supervised learning for industrial optical
inspection” provided by DAGM (German Association for
Pattern Recognition) and GNNS (German Chapter of the
European Neural Network Society). And we evaluate our
method on this dataset, which is referred to as the DAGM
dataset in the following. The DAGM dataset which is shown
in Fig. 1 contains image samples of 6 classes with size
512 × 512 pixel. Each class consists of 1000 defect free
images and 150 defective ones with only one labeled defect
region each on the texture background. This dataset is
highly challenging mainly for two reasons:

– the defective background texture in the same class
varies a lot

– some of the defect regions are very small and some are
very similar to the backgroud texture

In our experiments, we randomly choose 70% of the data as
the training set and the rest 30% as the validation set. This
makes 700/106 (defect free/ defective) samples for training
and 300/44 for validation in each class.

Fig. 1 The original image samples from 6 classes, each of them differs from each other on the background texture. The defective regions are
marked out by a surrounding ellipse, shown in red
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Fig. 2 The architecture of our 11-layer CNN networks. The first
global frame classification part takes the down-sampled images of size
128 × 128 pixel as input and outputs 6 neurons, each of which rep-
resents the corresponding class membership probability. The second

sub-frame detecion part takes extracted mini blocks of the same size
with the first part and only outputs 2 neurons indicating whether the
block is defective or not

2.3 Model implementation

Considering that the defect detection is the problem of
image processing in essence, the CNN network is applied in
our work. To detect the defect areas in the images and label
them correctly, the implementation of our model is twofold.
We design a joint detection CNN architecure which contains
two major parts: the global frame classification part and
the sub-frame detection part. The global frame classifica-
tion part learns to classify the image samples into the correct
class based on their background texture features. The sub-
frame detection part is developed to decide whether each
of the samples contains defective regions or not based on
the output of the first part. The two parts are quite similar
in architecture and they are strung together for the defect
detection forming the whole network.

As shown in Fig. 2, the global frame classification part
aimed for image class classification consists of 11 layers.
For shorthand notation, the architecture can be denoted by
C(32, 3, 3)-S(2, 2, 2)-C(64, 3, 3)-C(64, 3, 3)-S(2, 2, 2)-
C(128, 3, 3)-C(128, 3, 3)-S(2, 2, 2)-FC(1024)-FC(1024)-
FC(6) where C(n, 3, 3) represents a convolutional layer
with n filters of kernel size 3 × 3, S(2, 2, 2) represents a
pooling layer with a subsampling factor of 2× 2 by stride 2
in both dimensions, and FC(n) represents a fully-connected
layer with n neurons. To reduce the model’s computation
cost, the whole 512 × 512 pixel image is down-sampled
to size 128 × 128 pixel at first and then gets fed into the
network as the input. We also apply the padding strategy
that pads zeros around the borders of the feature maps after
each convolution leading to unchanged output shape in each
channel. And the pooling strategy adopted in all the pooling
layers is max-pooling, which is robust to small distortions.
Finally, the last fully connected layer generates the output
vectors each containing 6 units corresponding to the num-
ber of the classes of the image samples, and the 6 values

represent the estimation of each image’s class membership
probability separately via the softmax regression function.

The second sub-frame detection part is quite similar to
the first part in architecture except for the last fully con-
nected layer, which outputs a vector of 2 values indicating
whether the input image is defective or not. Different form
the first part, the second part takes image blocks of size
128× 128 pixel extracted from the original 512× 512 pixel
images as the input. The extraction is performed by the
sliding-window method depicted in Fig. 3. The sliding win-
dow has a size of 128×128 pixel and moves along the rows
and columns over the whole image with a 64 pixel stride. In
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Fig. 3 The sliding-window method we use to extract blocks from the
original images. 49 blocks with size 128×128 pixel are extracted from
each single image sample
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this way, we can extract 49 small blocks from one original
image. Thus, we need to train 6 such sub-networks, each of
which takes the defect free and defective blocks from one
class as input.

The global frame classification part works in conjunction
with the sub-frame detection part for the purpose of defect
detection. Given an image, the first part decides which class
this sample belongs to. Then, this image is divided into 49
blocks and they are fed into one of the sub-networks belong-
ing to the second part according to the output of the first
part. If any of the blocks is detected as defective, then the
whole image is labelled defective.

2.4 Training details

After the train-validation split, the training set has a small
sample size. However, there is no observation of overfitting
in the training process of the first global frame classification
part. The major reason is that the background texture varies
a lot from each other in the 6 classes so that it is easy for the
first part to distinguish among them. Actually, in the first
sub-network, the evenly distributed samples have the sam-
ple size enough in quantity to prevent from overfitting. In
the second sub-network, the defective images only account
for a small proportion (about 13%) in each class and only
a small region in each defective image is labelled defective.
Thus, to prevent the second sub-network sets from overfit-
ting, we apply the effective data augmentation strategy on
the training data. For the defective images in the training set
of each class, we firstly apply the sampling method which
manually extracts 22 defective blocks with size 128 × 128
pixel from each image. Next, we augment these blocks by
a factor of 8 via linear transformations including rotations

and mirrorings. For the defect free samples, to alleviate the
imbalance of sample size between the defect free and the
defective blocks, we perform the sliding-window method
with 128×128 pixel sliding window size and 64 pixel strides
along the x and y axis, which enlarges the number of image
blocks by a factor of 49. In this way, the training set for the
second CNN now has 34300 defect free blocks and 18656
defective blocks for each class.

We select the cross-entropy function as the loss function
of our model. And during the training process, the stochastic
gradient descent with mini-batches of 50 samples is applied
to update the weight parameters. We also incorporate the
momentum and learning rate decay into the stochastic gradi-
ent descent optimizer and the updating rules of the weights
in each iteration are as follows:

vi+1 = μ · vi − lr · ∇g, (2)

wi+1 = wi + vi+1, (3)

lr = lr · 1

1 + d · i
, (4)

where i is the iteration index, w is the weight hyperparame-
ter, μ is the momentum coefficient, v is the current velocity
vector, lr is the learning rate, d is the decay parameter of the
learning rate and ∇g is the average value of gradients with
respect to w over the mini-batch at each iteration. In our
experiments, we setμ and d to 0.9 and 0.012, with which we
observe faster convergence speed and less training errors.

The weight parameters in each layer are initialized from a
truncated random normal distribution subject toN ∼ (0, 2

n
),

where n denotes the number of connections between two
layers. And we initialize the bias value to 0 for every layer
and choose the ReLU activation function according to the
work of He et al. [19].

Table 1 The overall detection
results of our model and the
comparison to the existing
methods

Class Our model 12-class CNN [15] Statistical features [23] SIFT and ANN [24] Weibull [25]

TPR (%)

1 100 100 99.4 98.9 87.0

2 100 100 94.3 95.7 –

3 100 95.5 99.5 98.5 99.8

4 100 100 92.5 – –

5 99.7 98.8 96.9 98.2 97.2

6 100 100 100 99.8 94.9

FNR (%)

1 100 100 99.7 100 98.0

2 100 97.3 80.0 91.3 –

3 100 100 100 100 100

4 93.2 98.7 96.1 – –

5 100 100 96.1 100 100

6 100 99.5 96.1 100 100

Average accuracy (%)

99.8 99.2 95.9 98.2 97.1
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Furthermore, we introduce the L2 regularization which
adds a weight decay term to the loss function to penalize the
large weights during training and avoid overfitting. And the
regularization coefficient λ is set to 5 × 10−5 in our exper-
iments. Apart from that, during the training stage we apply
the drop-out strategy [21] with probability 0.5 to the next
to last and the third from last fully-connected layers which
also helps to avoid overfitting. To expedite the training pro-
cedure, the batch normalization [22] which can address the
internal convariate shift problem is also adopted.

3 Results

We validate our approach on the DAGM defect dataset
following the two-fold procedure and achieve the overall
detection accuracy of 99.8%, outperforming the published
best performance by Daniel et al. [15] which designs a
12-class CNN network. The results and comparisons are
summarized in Table 1. We report the true positive rate
(TPR) of defect free images correctly classified as defect
free and the ture negative rate (TNR) which indicates the
percentage of defective images classified as defective.

The results show that our model is able to distinguish
between the defect free and defective images. And it can
be noticed that except the FNR in class 4, our model
outperforms all the existing methods, which proves the
effectiveness of our model.

Our model is trained on one NVIDIA GTX1080 8GB
GPU for roughly 8 h. And during validation stage, the model
is able to detect 27 images per second, which guarantees
real-time detection with high accuracy.

4 Conclusions

In this work, we propose a twofold joint detection CNN net-
work to automatically extract powerful image features for
defect detection. We evaluate this method on the DAGM
dataset consisting of 6 different image categories, each
of which differs from others on the background texture.
The experiments show that our model is able to classify
the image sample into the correct image class and indi-
cate wheter it contains defective regions or not. This model
achieves a high accuracy of 99.8% of correct defect detecion
rate on the DAGM dataset, outperforming the state-of-the-
art methods while at the same time keeps a high processing
speed which guarantees the real-time detection.
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