
https://doi.org/10.1007/s42484-019-00007-4

REVIEW ARTICLE

Kernel methods in QuantumMachine Learning

Riccardo Mengoni1 · Alessandra Di Pierro1

Received: 28 April 2019 / Accepted: 22 September 2019
© Springer Nature Switzerland AG 2019

Abstract
Quantum Machine Learning has established itself as one of the most promising applications of quantum computers and
Noisy Intermediate Scale Quantum (NISQ) devices. In this paper, we review the latest developments regarding the usage of
quantum computing for a particular class of machine learning algorithms known as kernel methods.

Keywords Quantum Machine Learning · Quantum computing · Kernel methods

1 Introduction

In the era of big data, Machine Learning (ML) provides a
set of techniques to identify patterns among huge datasets
“without being explicitly programmed to perform that task”
(Bishop 2016; Mitchell 1997). In the last few years, building
on the great success of ML, a new interdisciplinary research
topic going under the name of Quantum Machine Learning
(QML) has emerged (Schuld 2015; Wittek 2014; Biamonte
et al. 2017; Ciliberto et al. 2018; Dunjko and Briegel
2018; Arunachalam and Wolf 2017; Perdomo-Ortiz et al.
2018; Schuld and Petruccione 2018). The aim of QML is
to merge in different ways quantum computing and data
mining techniques in order to achieve improvements in both
fields. As shown in Fig. 1, it is possible to distinguish four
approaches to QML, depending on the nature of the dataset
under study and the computation device being used (Dunjko
et al. 2016).

The Classical-Classical (CC) class refers to ordinary
machine learning or to machine learning algorithms that are
inspired by the formalism of quantum mechanics. Here the
dataset represents some classical system and the algorithm can
run on a classical computer (Dong et al. 2019; Canabarro
et al. 2019; Amin et al. 2018; Crawford et al. 2016;

� Riccardo Mengoni
riccardo.mengoni@univr.it

Alessandra Di Pierro
alessandra.dipierro@univr.it

1 Department of Informatics, University of Verona,
Verona, Italy

Stoudenmire and Schwab 2016; Sergioli et al. 2018; Levine
et al. 2018). In the Classical-Quantum (CQ) class, algo-
rithms rely on the advantages of quantum computation in
order to speed up classical ML methods. Data are assumed
to be classical in this class as well (Aı̈meur et al. 2013;
Mikhail et al. 2016; Wiebe et al. 2015; Barry et al. 2014;
Lu and Braunstein 2014; Heim et al. 2015; Bottarelli et al.
2018). Quantum-Classical (QC) refers to the use of classi-
cal ML methods to analyse quantum systems (Agresti et al.
2019; Huembeli et al. 2019; Gray et al. 2018; Benedetti et al.
2019; Di Pierro et al. 2018; O’Driscoll et al. 2019; Iten et al.
2018). Finally, in the Quantum-Quantum (QQ) class, both
the learning algorithm and the system under study are fully
quantum (Yu et al. 2019).

Some very promising results have been obtained
relatively to each of the four frameworks. In this paper, we
have chosen to focus on the CQ section with the aim to
review the main approaches that use quantum mechanics
in order to obtain a computational advantage for a specific
class of ML techniques called kernel methods. Our main
motivation is to set a clear background for those who want
to start investigations or carry out research in this field. A
systematization of the current research in Quantum Machine
Learning should include similar work in the other three
sectors too, which we plan to accomplish in the future.

In the next section we will introduce kernel methods,
with a particular attention to the Support Vector Machine
(SVM) supervised learning model. Then, we will discuss the
two main approaches to quantizing these methods. We have
divided this discussion in two sections. In Section 3 we have
collected those approaches which are aimed at the formula-
tion of a quantum algorithm that implements a quantum ver-
sion of the classical SVM. The second type of approaches
is discussed in Section 4 and is aimed at exploiting the

QuantumMachine Intelligence (2019) 1:65–71

/ Published online: 15 2019November

http://crossmark.crossref.org/dialog/?doi=10.1007/s42484-019-00007-4&domain=pdf
http://orcid.org/0000-0003-4173-7941
mailto: riccardo.mengoni@univr.it
mailto: alessandra.dipierro@univr.it

Fig. 1 The first letter in each box refers to whether the system under
study is classical or quantum, while the second letter indicates whether
a classical or quantum information processing device is used

power of quantum computing to deal specifically with
classically intractable kernels.

2 Kernel methods and SVM

Kernel methods (Theodoridis 2008) are classification
algorithms that use a kernel function K in order to map data
points, living in the input space V , to a higher dimensional
feature space V ′, where separability between classes of
data becomes clearer. Kernel methods avoid the explicit
calculation of the point coordinates in the new space by
means of so called kernel trick, which allows us to work in
the feature space V ′ simply computing the kernel of pairs of
data points in the input space (Theodoridis 2008).

Intuitively, the “trick” consists in considering the
following scenario. Let φ : V → V ′, be a map from the
input space V to the enhanced feature space V ′. Then a
kernel K : V × V → R is a function

K(xi , xj) ≡ 〈
φ(xi), φ(xj)

〉
,

representing the inner product 〈·, ·〉 in V ′, that must satisfy
the Mercer condition (Mercer et al. 1909; Mohri et al. 2012)
of positive semi-definiteness, i.e., for all choices of n real
numbers (c1, . . . , cn) the following relation must hold

M∑

i=1

M∑

j=1

K(xi , xj)cicj ≥ 0.

Clearly, calculating the kernel K(xi , xj) is computationally
cheaper than computing coordinates for each new point
φ(x), and, on the other hand, we are never required to
explicitly compute φ(xi) at any stage of the algorithm. The
existence of a concrete mapping φ : V → V ′ is guaranteed
by the Mercer theorem (Mercer et al. 1909; Mohri et al.
2012), provided that the kernel function K(xi , xj) gives rise
to a kernel matrix obeying the Mercer condition.

Support Vector Machine (SVM) is the best known
example of kernel method. This supervised binary classifier

learns the optimal discriminative hyperplane, based on an
input set of M labelled vectors {(x, y) | x ∈ R

N, y ∈
{−1, +1}}. This is achieved by maximizing the distance,
i.e., the margin, between the decision hyperplane and the
closest points, called support vectors (Cortes and Vapnik
1995).

The SVM optimization problem with hard-margin can be
formulated as the problem to find

argmin
(w,b)

{
1

2
‖w‖2

}
,subject to the constraint ∀iyi(w·xi−b)≥1,

where (xi, yi), with i = 1 . . . M and yi ∈ {−1, +1}, is the
pair of training vector and label, w is the vector which is
normal to the discriminative hyperplane, and b is the offset
of the hyperplane.

An important extension of the SVM method described
above is the so called soft marginSVM, where the best hyper-
plane is the one that reaches the optimal trade-off between
two factors: the minimization of the margin and the restraint
of the point deviation from the margin; the latter is expressed
by means of slack variables ξi tuned by a hyper-parameter
C. A soft margin SVM optimization problem is of the form

arg min
(w,b)

{
1

2
‖w‖2 + C

M∑

i=1

ξi

}

,

subject to the constraint

∀i yi(w · xi − b) ≥ 1 − ξi, ξi ≥ 0. (1)

Usually it is convenient to switch to the dual form, where
Lagrange multipliers αi are introduced in order to include
the constraint in the objective function, by obtaining the
formulation:

arg max
(αi)

M∑

i=1

αi − 1

2

∑

i,j

αiαj yiyj (xT
i xj),

with w=∑

i

αiyixi , subject to
∑

i

αiyi = 0 , ∀i αi ≥ 0.

It is worth noticing that only a sparse subset of the
αis are non-zero and that the corresponding xi are the
support vectors which lie on the margin and determine the
discriminant hyperplane.

In this context, a non-linear classification boundary for
the SVM is obtained by replacing the term (xT

i xj) in
the objective function with a kernel function K(xi , xj) ≡
φ(xi)T (φ(xj)) satisfying the Mercer condition of positive
semi-definiteness. The Lagrangian optimization problem
for the soft margin SVM now becomes

arg max
(αi)

M∑

i=1

αi − 1

2

∑

i,j

αiαj yiyjK(xi , xj),

subject to
∑

iαiyi = 0 with ∀i αi ≥ 0.

QuantumMachine Intelligence (2019) 1:65–7166

Note that the dual form of the SVM optimization problem
is quadratic in the parameter αi and it can be efficiently
solved with quadratic programming algorithms.

An alternative version of SVM that has a central role
in the quantum formulation of the problem is the least-
squares support vector machines (LS-SVM) (Suykens and
Vandewalle 1999). Here, the constraint defined in Eq. 1 is
replaced by the equality constraint

∀i yi(w · φ(xi) − b) = 1 − ei,

where ei are errors terms. In this way, optimal parameters
α and b that identify the decision hyperplane are found by
solving a set of linear equations, instead of using quadratic
programming.

The LS-SVM problem can hence be formulated as

F

(
b

α

)
=

(
0 1T

1 K + γ −1I

)(
b

α

)
=

(
0
y

)
, (2)

where F is a (M +1)×(M +1) matrix, 1T ≡ (1, 1, 1 . . .)T ,
K is the kernel matrix and γ −1 is the trade-off parameter
that plays a similar role to C in soft margin SVM. Binary
class labels are denoted by the vector y ∈ ([−1, 1]M)T .

Solving the quadratic programming problem or the least-
squares SVM has complexity O(M3) (Wittek 2014). A
bottleneck slowing down the computation is determined by
the kernel: for a polynomial kernel K(xi , xj) of the form
(xiT xj + c)d , the best algorithm takes O(M2d), although in
other cases the complexity could be much higher, e.g., for
those kernels depending on a distance whose calculation is
itself an NP problem.

3 Quantum SVM

The first quantum approach to SVM is due to Anguita
et al. (2003). In their work, they consider a discretized
version of the SVM, which also takes into account the
generalization error of the classifier. This setting inhibits the
use of well-known quadratic programming algorithms and
optimization can turn into a problem in the NP complexity
class.

The authors propose to represent different configurations
of the Lagrangian multipliers, αi , as quantum states
|α0α1..αM 〉, and then use Grover algorithm in order to
perform an exhaustive search over the configuration space
in order to find the maximum of the cost function. It is well
known that this task can be accomplished by the Grover
quantum algorithm with complexity O(

√
2M) rather than

the O(2M) required by classical algorithms.
A different approach was proposed by Rebentrost,

Mohseni and Lloyd (Rebentrost et al. 2014), which pre-
sented a completely new quantum algorithm that imple-
ments SVM on a circuit-based quantum computer. This

formulation has become very popular in the last few years
and it is often referred to as the Quantum SVM (QSVM)
algorithm. In order to understand QSVM it is necessary to
clarify that classical input training vectors x are represented
by means of quantum states of the form

| x〉 = 1

|x|
N∑

k=1

(x)k |k〉 ,

where the components of the vectors x are encoded in
the amplitude of the quantum state. The authors claim
that this whole set of M states could in principle be
constructed querying a Quantum Random Access Memory
(QRAM), which uses O(MN) hardware resources but
only O(logMN) operations to access them (Giovannetti
et al. 2008).

The preliminary step of the QSVM algorithm exploits
the fact that dot products can be estimated faster using
the QRAM and repeating the SWAP test algorithm
on a quantum computer (Buhrman et al. 2001). More
precisely, if the desired accuracy is ε, then the overall
complexity of evaluating a single dot product xiT xj is
O(ε−1logN). Calculating the kernel matrix takes therefore
O(M2ε−1logN), instead of O(M2N log(1/ε)) required in
the classical case.

The main idea of the QSVM algorithm is to use the
LS-SVM formulation of Eq. 2 and rewrite it in terms of
quantum states as

F̂ |b, α〉 = |y〉 ,

where F̂ = F/tr(F), with ||F || ≤ 1. Then the
optimal parameters b and α are obtained by applying the
efficient quantum matrix inversion algorithm (Harrow et al.
2009). This algorithm requires the simulation of matrix

exponentials e−iF̂�t , which can be performed in O(logN)

steps (Lloyd et al. 2014).
Moreover, we can add an ancillary qubit, initially in
state |0〉, and use the quantum phase estimation algorithm
(Nielsen and Chuang 2011) to express the state |y〉 in
the eigenbasis |ei〉 of F̂ and store approximations of the
eigenvalues λi of F̂ in the ancilla qubit:

| y〉 | 0〉 →
M+1∑

i=1

〈ei | y〉 | ei〉 | λi〉.

Now apply an inversion of the eigenvalue with a controlled
rotation and un-compute the eigenvalue qubit to obtain

M+1∑

i=1

〈ei | y〉
λi

| ei〉 = F̂−1 | y〉 = |b, α〉 .

In the training set basis, the solution state for the LS-SVM is

|b, α〉 = 1

b2 + ∑M
k=1 α2

k

(

b | 0〉 +
M∑

k=1

αk | k〉
)

.

QuantumMachine Intelligence (2019) 1:65–71 67

The process of classifying new data |x〉 with trained
| α, β〉 requires the implementation of the query oracle

| ũ〉= 1
(
b2 + ∑M

k=1α
2
k |xk|2

) 1
2

(

b | 0〉 | 0〉+
M∑

k=1

|xk| αk | k〉 | xk〉
)

(3)

and also the query state

| x̃〉 = 1

M|x|2 + 1

(

| 0〉 | 0〉 +
M∑

k=1

|x| | k〉 | x〉
)

. (4)

The classification is obtained by computing the inner
product 〈x̃|ũ〉 via a swap test (Buhrman et al. 2001). This
means that, with the help of an ancillary qubit, the state
|ψ〉 = 1√

2
(| 0〉a | ũ〉 + | 1〉a | x̃〉) is constructed and then

measured in the state |φ〉 = 1√
2
(| 0〉a − | 1〉a) with a success

probability given by P = |〈ψ |φ〉|2 = 1
2 (1 − 〈x̃|ũ〉).

The probability P can be estimated to accuracy ε in
O(

P(1−P)

ε2). The class label is decided depending on the

value of P : if it is greater than 1
2 , then |x〉 is labelled −1; if

it is less than 1
2 , then the label of |x〉 is 1.

The overall time complexity for both training and
classification of the LS-SVM is of O(log(NM)).

In the QSVM algorithm, kernelization can be achieved
by acting on the training vector basis, i.e., by mapping each
|xi〉 to a d-fold tensor product

|φ(xi)〉 = |xi〉1 ⊗ |xi〉2 ⊗ ... ⊗ |xi〉d .

This allows us to obtain polynomial kernels of the form

K(
〈
xi |xj

〉
) ≡ 〈

φ(xi)|φ(xj)
〉 = 〈

xi |xj

〉d

that can be computed in O(dε−1logN). Note that in the
QSVM, the kernel evaluation is directly performed in the
high dimensional feature quantum space, while in classical
SVM the kernel trick avoids such expensive calculation.
However, this is no problem in the quantum case thanks
to the exponential quantum speed-up obtained in the
evaluation of inner products.

An experimental implementation of the QSVM have
been shown in Li et al. (2015) and Patrick et al. (2018). Also,
in Windridge et al. (2018), the authors propose a quantized
version of Error Correction Output Codes (ECOC) which
extends the QSVM algorithm to the multi-class case and
enables it to perform an error correction on the label
allocation.

4 Quantum computation of hard kernels

In this section we review the main proposals having as a
core idea the computation of classically hard kernel via

a quantum device. In this context, we can recognize two
common threads. On one side, a hybrid classical-quantum
learning model takes classical input and evaluates a ker-
nel function on a quantum devices, while classification is
performed in the standard classical manner (e.g employing
a SVM algorithm). In the second approach instead, a ker-
nel based variational quantum circuit is trained to classify
input data. More specifically, a variational quantum circuit
(Mcclean et al. 2016) is a hybrid quantum-classical algo-
rithm employing a quantum circuit U(θ) that depends on
a set of parameters θ which are varied in order to minimize
a given objective function (see Fig. 2). The quantum circuit
is hence trained by a classical iterative optimization algo-
rithm that at every step finds best candidates θ starting from
random (or pre-trained) initial values.

Schuld and Killoran recently explored this concepts
(Schuld and Killoran 2019) remarking the strict relation
between quantum states and feature maps. The authors
explain that the key element in both quantum computing
and kernel methods is to perform computations in a high
dimensional (possibly infinite) Hilbert space via an efficient
manipulation of inputs.

In fact it is possible to interpret the encoding of classical
inputs xi into a quantum state |φ(x)〉 as a feature map φ

which maps classical vectors to the Hilbert space associated
with a system of qubits. As said before, two ways of
exploiting this parallelism are described.

In the first approach, called by the authors implicit, a
quantum device takes classical input and evaluates a kernel
function as part of a hybrid classification model. This
requires the use of a quantum circuit Uφ(x) implementing
the mapping

φ : x → |φ(x)〉 = Uφ(x)|000..0〉
and which is able to produce a kernel

K(xi , xj) = 〈000..0|U†
φ(xi)Uφ(xj) |000..0〉

In order for quantum computing to be helpful, such
kernel shouldn’t be efficiently simulated by a classical com-
puter. It is therefore posed the question of what type of fea-
ture map circuits Uφ leads to powerful kernels for classical

Fig. 2 Schematisation of a variational quantum circuit

QuantumMachine Intelligence (2019) 1:65–7168

learning models like SVM but at the same time are classi-
cally intractable. The authors suggest that a way to achieve
such a goal is to employ non-Gaussian elements (e.g., cubic
phase gate or photon number measurements) as part of the
quantum circuit Uφ(x) implementing the mapping to the
feature space.

The second approach, addressed in the paper as explicit,
uses a variational quantum circuit to directly learn a decision
boundary in the quantum Hilbert space. In their example, the
authors first translate classical input to a quantum squeezed
state

x→|φ(x)〉= 1√
cosh(c)

∞∑

n=0

√
(2n)!

2nn! (− expix tanh(c))n|2n〉,

then apply to |φ(x)〉 the parametrized continuous-variable
circuit:

where W(θ) is a repetition of the following gates:

The components of such gates are, more explicitly,

BS(θ1, θ2) = eθ1(eiθ2 â
†
1 â2 − e−iθ2 â1â

†
2),

with θ1, θ2 ∈ R and â, â† creation and annihilation
operators;

D(z) = e
√

2i(Im(z)x̂−Re(z)p̂),

with complex displacement z and finally the quadratic and
cubic phase gates

P(u) = ei u
2 x̂2

and V (u) = ei u
3 x̂3

.

The probability of measuring the Fock state |n1, n2〉 in the
state |2, 0〉 or |0, 2〉 is interpreted as the probability that the
classifier predicts class y = 0 or y = 1

p(|2, 0〉) = p(y = 0) and p(|0, 2〉) = p(y = 1)

The authors trained such a model on the ‘moons’ dataset
using stochastic gradient descent and showed that training
loss s converges to zero after about 200 iterations.

Along the same path, simultaneously to Schuld and
Killoran (2019), Havlicek et al. (2019) propose two
classifiers that map classical data into quantum feature
Hilbert space in order to get a quantum advantage. Again,
one SVM classifier is based on a variational circuit that
generates a separating hyperplane in the quantum feature
space, while the other classifier only estimates the kernel
function on the quantum computer.

The two methods are tested on an artificial dataset x ∈
T ∪ S ≡ Ω ⊂ (0, 2π]2 where T and S are respectively
the training and test sets. This classical input is previously
encoded as φS(x) ∈ R where φS(x) = (π − x1)(π − x2).

On the basis that, in order to obtain an advantage over
classical approaches, feature maps need to be based on a
circuit that is hard to simulate with classical means, the
authors propose a feature map on n-qubits generated by the
unitary

U�(x) = U�(x)H
⊗nU�(x)H

⊗n

where H is the Hadamard gate and

U�(x) = exp

⎛

⎝i
∑

S⊆[n]
φS(x)

∏

k∈S

Zk

⎞

⎠ ,

with Zk being the phase shift gate of angle k and S the test
set. Such circuit acts on |0〉n as initial state and uses classical
data previously encoded in φS(x).

The exact classical evaluation of the inner-product (i.e.,
kernel) between two states obtained using a circuit U�(x)
is #P - hard because it is associate to a Tutte partition
function which is hard to simulate classically (Goldberg and
Guo 2017).

A different approach is taken in Di Pierro et al. (2017),
where the same idea of using quantum computation to
evaluate a kernel is discussed in the context of Topological
Quantum Computation (TQC).

TQC represent a model of quantum computing poly-
nomially equivalent to the circuit based where, instead
of using qubits and gates, the computation is performed
braiding two-dimensional quasi particles called anyons
(Pachos 2012). Moreover, it is well known that some com-
putational problems, such as the approximation of the Jones
Polynomial, i.e., an invariant of links and knots, have
a more straightforward implementation in TQC (Aharonov
et al. 2006).

The approach proposed in Di Pierro et al. (2017) is based
on an encoding of input classical data x in the form of binary
strings into braids, which in TQC are expressed by means
of evolution operators B. This encoding is constructed by

QuantumMachine Intelligence (2019) 1:65–71 69

Table 1 Rundown of the main
results and references Category Method Title

Quantum version
of SVM

Grover algorithm Quantum optimization for training support vector
machines (Anguita et al. 2003)

Quantum version
of SVM

HHL algorithm Quantum support vector machine for big data
classification (Rebentrost et al. 2014)

Experimental NMR 4-qubit quantum
processor

Experimental implementation of a quantum sup-
port vector machine (Li et al. 2015)

Experimental IBM quantum
experience

Quantum algorithm Implementations for begin-
ners (Patrick et al. 2018)

Quantum version of
SVM and ECOC

HHL algorithm Quantum error-correcting output codes (Win-
dridge et al. 2018)

]

Kernel methods Variational quantum
circuit

Quantum machine learning in feature Hilbert
spaces (Schuld and Killoran 2019)

Kernel methods Variational quantum
circuit

Supervised learning with quantum-enhanced fea-
ture spaces (Havlicek et al. 2019)

Kernel methods Topological quantum
computation

Hamming distance kernelisation via topological
quantum computation (Di Pierro et al. 2017)

mapping the bit value 0 to the crossing operator σi , and the
bit value 1 to the adjoint crossing operator σi† :

Hence, a given binary string of length n is uniquely
represented by a pairwise braiding of 2n strands, i.e., by a
braid B ∈ B2n as shown below.

Therefore, applying the braiding Bu associated with the
binary string u to the vacuum state of the anyonic quantum
system |ψ〉 defines an embedding φ into the Hilbert space
H of the anyonic configurations:

φ : u → Bu |ψ〉
The authors finally show that scalar product of anyonic
quantum states obtained with such mapping generates a
kernel that depends on the hamming distance between the
input strings as follows

K(u, v) ≡ 〈ψ |B†
uBv |ψ〉 =

(〈Hopf〉
d

)dH (u,v)

=
(

A4 + A−4

A2 + A−2

)dH (u,v)

where 〈Hopf〉 indicates the Kaufman polynomial (Kauff-
man 1987) in the variable A that is associated to the so
called Hopf link, d = A2 + A−2 and dH (u, v) is the
hamming distance between input strings u and v.

Despite this example does not provide a computationally
hard kernel, the authors suggest that a more complex braid
mapping of the input may lead naturally to a classically
intractable kernel since the calculation of Kaufman

polynomial belongs to the #P - hard class (Goldberg and
Guo 2017).

5 Conclusion

In this paper, we have reviewed the main approaches
to the design of algorithms for kernel methods in ML,
which exploit the power of quantum computing to achieve
a computational advantage with respect to the classical
approaches. We divided the literature on this problem into
two main categories. On the one side, there are attempts
to formulate quantum versions of support vector machine
running on a gate model quantum computer. On the other
side, we grouped different approaches whose core idea
relies on the use of quantum computing techniques in order
to deal with classically intractable kernels. In Table 1, we
give a schematic description of the various results that we
have discussed together with the relative article where they
appear.

References

Agresti I et al (2019) Pattern recognition techniques for boson
sampling validation. Phys Rev X 9:14

Aharonov D, Jones V, Landau Z (2006) A polynomial quantum algo-
rithm for approximating the Jones polynomial. In: Proceedings
of the 38th annual ACM symposium on theory of computing,
pp 427–436

Aı̈meur et al (2013) Quantum speed-up for unsupervised learning.
Mach Learn 90:261–287

Amin MH et al (2018) Quantum Boltzmann machine. Phys Rev X 8:11
Anguita D et al (2003) Quantum optimization for training support

vector machines. Neural Netw 16:763–770
Arunachalam S, Wolf Ronaldde (2017) A survey of quantum learning

theory, arXiv:1701.06806

QuantumMachine Intelligence (2019) 1:65–7170

http://arxiv.org/abs/1701.06806

Barry J et al (2014) Quantum partially observable Markov decision
processes. Phys Rev A 90:032311

Benedetti M et al (2019) Adversarial quantum circuit learning for pure
state approximation. New J Phys 21:043023

Biamonte J et al (2017) Quantum machine learning. Nature 549:195–
202

Bishop C (2016) Pattern recognition and machine learning, vol 738.
Springer, New York

Bottarelli L et al (2018) Biclustering with a quantum annealer. Soft
Comput 22:6247–6260

Buhrman H, Cleve R, Watrous J, De Wolf R (2001) Quantum
fingerprinting. Phys Rev Lett 87:4

Canabarro A, Fernandes Fanchini F, Malvezzi AL, Pereira R, Chaves
R (2019) Unveiling phase transitions with machine learning.
arXiv:1904.01486

Ciliberto C et al (2018) Quantum machine learning: a classical
perspective. Proc R Soc A: Math Phys Eng Sci 474:20170551

Cortes C, Vapnik V (1995) Support-vector networks. Mach Learn
20:273–297

Crawford D et al (2016) Reinforcement learning using quantum
Boltzmann machines, arXiv:1612.05695

Di Pierro A et al (2017) Distance kernelisation via topological
quantum computation theory and practice of natural computing.
Lect Notes Comput Sci 10687:269–280

Di Pierro A et al (2018) Homological analysis of multi-qubit
entanglement. Europhys Lett 123:30006

Dong XY, Pollmann F, Zhang XF (2019) Machine learning of
quantum phase transitions. Phys Rev B 99:121104

Dunjko V, Briegel HJ (2018) Machine learning & artificial intelligence
in the quantum domain: a review of recent progress. Rep Prog Phys
81:074001

Dunjko V et al (2016) Quantum-enhanced machine learning. Phys Rev
Lett 117:6

Giovannetti V, Lloyd S, Maccone L (2008) Quantum random access
memory. Phys Rev Lett 100:4

Goldberg LA, Guo H (2017) The complexity of approximating
complex-valued ising and tutte partition functions. Computational
Complexity 26:765–833

Gray J et al (2018) Machine-learning-assisted many-body entangle-
ment measurement. Phys Rev Lett 121:6

Harrow AW, Hassidim A, Lloyd S (2009) Quantum algorithm for
linear systems of equations. Phys Rev Lett 103:4

Havlicek V, Córcoles AD et al (2019) Supervised learning with
quantum-enhanced feature spaces. Nature 567:2019–212

Heim B et al (2015) Quantum versus classical annealing of ising spin
glasses. Science 348:215–217

Huembeli P et al (2019) Automated discovery of characteristic features
of phase transitions in many-body localization. Phys Rev B 99:6

Iten R et al (2018) Discovering physical concepts with neural
networks, arXiv:1807.10300

Kauffman LH (1987) State models and the Jones polynomial.
Topology 26:395–407

Levine Y et al (2018) Deep learning and quantum entanglement:
fundamental connections with implications to network design. In:
International conference on learning representations

Li Z, Liu X, Xu N, Du J (2015) Experimental realization of a quantum
support vector machine. Phys Rev Lett 114:5

Lloyd S, Mohseni M, Rebentrost P (2014) Quantum principal
component analysis. Nat Phys 10:631–633

Lu S, Braunstein SL (2014) Quantum decision tree classifier. Quantum
Inf Process 13:757–770

Mcclean JR, Romero J, Babbush R, Aspuru-Guzik A (2016) The
theory of variational hybrid quantum-classical algorithms. New J
Phys 18:023023

Mercer J et al (1909) Functions of positive and negative type and their
connection the theory of integral equations, 209 Philosophical
Transactions of the Royal Society of London

Mikhail V et al (2016) Altaisky towards a feasible implementation
of quantum neural networks using quantum dots. Appl Phys Lett
108:103108

Mitchell T (1997) Machine learning. McGraw Hill, New York
Mohri M et al (2012) Foundations of machine learning, vol 432. MIT

Press, Cambridge
Nielsen MA, Chuang IL (2011) Quantum computation and quantum

information. Cambridge University Press, New York
O’Driscoll L et al (2019) A hybrid machine learning algorithm for

designing quantum experiments. Quantum Mach Intell 1:1–11
Pachos JK (2012) Introduction to topological quantum computation.

Cambridge University Press, New York
Patrick J et al (2018) Coles quantum algorithm implementations for

beginners, arXiv:1804.03719
Perdomo-Ortiz A et al (2018) Opportunities and challenges for

quantum-assisted machine learning in near-term quantum comput-
ers. Quantum Sci Technol 3:030502

Rebentrost P, Mohseni M, Lloyd S (2014) Quantum support vector
machine for big data classification. Phys Rev Lett 113:5

Schuld M, Killoran N (2019) Quantum machine learning in feature
Hilbert spaces. Phys Rev Lett 122:6

Schuld M, Petruccione F (2018) Supervised learning with quantum
computers, vol 287. Springer International Publishing, Berlin

Schuld M, Sinayskiy I, Petruccione F (2015) An introduction to
quantum machine learning. Contemp Phys 56(2):172–185

Sergioli G et al (2018) A quantum-inspired version of the nearest mean
classifier. Soft Comput 22:691–705

Stoudenmire E, Schwab DJ (2016) Supervised learning with tensor
networks. Advances in neural information processing systems
(NIPS Proceedings) 29:4799–4807

Suykens JAK, Vandewalle J (1999) Least squares support vector
machine classifiers. Neural Process Lett 9:293–300

Theodoridis S (2008) Pattern recognition, vol 984. Elsevier Academic
Press, Cambridge

Wiebe N et al (2015) Quantum algorithms for nearest-neighbours
methods for supervised and unsupervised learning. Quantum Info
Comput 15:316–356

Windridge D, Mengoni R, Nagarajan R (2018) Quantum error-
correcting output codes. Int J Quantum Info 16:1840003

Wittek P (2014) Quantum machine learning, vol 176. Elsevier
Academic Press, Cambridge

Yu S, Albarrán-Arriagada F, Retamal JC, Wang YT, Liu W, Ke ZJ,
Meng Y, Li ZP, Tang JS, Solano E, Lamata L, Li CF, Guo GC
(2019) Adv Quantum Technol 2(7–8):1800074

Publisher’s Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

QuantumMachine Intelligence (2019) 1:65–71 71

http://arxiv.org/abs/1904.01486
http://arxiv.org/abs/1612.05695
http://arxiv.org/abs/1807.10300
http://arxiv.org/abs/1804.03719

	Kernel methods in Quantum Machine Learning
	Abstract
	Introduction
	Kernel methods and SVM
	Quantum SVM
	Quantum computation of hard kernels
	Conclusion
	References
	Publisher's Note

